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Abstract. Distributed acoustic sensing (DAS) can provide high sensitivity and 

spatial resolution remote positioning and monitoring capabilities, making it 

widely used by researchers for peripheral security applications. However, in daily 

use, complex environments can lead to low accuracy and poor real-time perfor-

mance in event recognition. At present, research on DAS event recognition 

mainly focuses on the classification accuracy of different events, with limited 

discussion on noise interference. Even with a high event recognition rate of 95%, 

thousands of events occurring every day can still lead to hundreds of false posi-

tives, significantly reducing system availability. This study aims to improve the 

practicality of DAS by combining Convolutional Neural Network (CNN) and 

Bidirectional Long Short-Term Memory (LSTM), building on traditional artifi-

cial intelligence (AI) recognition models. By statistically analyzing and summa-

rizing the recent events that occurred at adjacent points, this work proposes a 

secondary analysis method to reduce the frequency of false positives, effectively 

reducing potential daily false positives from hundreds to every 2-3 days, thereby 

improving the practicality of the model. 

Keywords: Distributed Acoustic Sensing, Artificial Intelligence, Signal Recog-

nition. 

1 Introduction 

With the continuous development of technology, communication fiber optic cables are 

one of the infrastructures of modern communication. They are the main medium con-

necting various communication nodes and are of great significance for ensuring the 

stable operation of communication networks [1,2]. Due to the long-term underground 

or underwater exposure of optical cable lines to various environmental and external 

factors, their maintenance is particularly important. Traditional protection measures in-

clude regular inspections and maintenance, setting up fences, installing monitoring 

equipment, etc., to prevent unauthorized personnel from approaching the line for con-

struction. However, due to the possibility of unauthorized construction by relevant per-

sonnel and the untimely detection of manual inspections, serious fiber optic damage 

incidents cannot be avoided in many cases. 
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Distributed fiber optic sensing technology is a technology that uses light waves as
the sensing carrier and optical fibers as the transmission medium [3]. It utilizes the
sensitive characteristics of light to detect changes in external parameters. In this
technology, light waves are captured and transmitted to the receiving end, which
detects changes in the state of light such as intensity, wavelength, frequency, phase,
and amplitude, and demodulates the measured values of physical quantities.
Compared with other monitoring equipment and sensors, distributed fiber optic
sensing technology has the advantages of strong resistance to electromagnetic
interference, good stability, strong corrosion resistance, low long-distance
transmission loss, no need for electricity, strong real-time performance, small size and
easy burial. It is now widely used in various application scenarios such as building
structural health detection, perimeter security in the field of national defense, oil and
gas pipeline monitoring in the field of energy, shape detection in the aerospace
industry, railway safety monitoring and protection, and ocean monitoring. Distributed
fiber optic sensing systems also have characteristics such as high spatial resolution,
high detection sensitivity, wide monitoring range, and short response time. They are
one of the main research and development directions for future intelligent perimeter
security and intelligent scene monitoring [4,5].

With the development of deep learning, researchers combine the collected single
channel or spatiotemporal data with deep learning methods to achieve end-to-end
event recognition. The dataset of deep learning is mainly divided into collected digital
signal data and data obtained through short-time Fourier transform, digital signals are
converted into event images using grayscale images and combined with image
classification algorithms or object detection algorithms for event classification.
However, although traditional recognition models have good classification
performance for different events, there is less discussion on the interference of noise,
and frequent false alarms in practical applications can lead to low device availability.
On the basis of traditional Artificial Intelligence (AI) recognition models [6], this
article proposes a Convolutional Neural Network with Bidirectional Long Short-Term
Memory (CNN-BiLSTM) model, which effectively reduces the frequency of false
alarms and makes the model more feasible by statistically analyzing and summarizing
recent events of neighboring points for secondary analysis.

2 Method

2.1 Background of Distributed Fiber Optic Sensing Technology

At present, the anti-external damage detection of long-distance optical fibers mainly
relies on the collection of data and pattern recognition through distributed fiber
acoustic sensing (DAS) systems. Its working principle is to use a narrow linewidth
laser as the light source to emit probe light. When external vibration events affect a
specific position of the sensing fiber, the electro-optical and thermal optical effects in
the sensing fiber will cause changes in the length and refractive index of the scattering
unit, thereby affecting the phase of the backward Rayleigh scattering light. This
change will propagate to the phase difference of Rayleigh scattering light in the
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detector, allowing for the detection of vibration events within the fiber optic [7].
When the optical fiber is disturbed by external vibrations, its phase difference can be
expressed as

∆� = (4��/�)∆� (1)

, where � is the wavelength of the incident light; ∆� is the optical path change
caused by vibration; n is the refractive index of the fiber core. According to equation
(1), There is a linear relationship between ∆� and the phase difference ∆� between
the two reference regions. Therefore, by demodulating the phase change of the
scattered signal, ∆ phi can be obtained, enabling quantitative measurement of
vibration and achieving distributed fiber optic sound field sensing function.

2.2 Data Preprocessing

The data is first accumulated on the original data, and then judged and filtered based
on the root mean square value set by the threshold and condition of empirical values
over a period of time, as shown in Fig.1. The spatial resolution of the original data is
10m/point, the sampling frequency is 2Khz, and the single collection period is 10s.
Therefore, the size of the single collection of 2D data is 3K * 20K. Due to the large
amount of data, a preset threshold screening is required before analysis.

Fig. 1. Example of the original data (left), and the preprocessed data (right) after summing up
40 frames and calculating the root mean square (Figure Credit: Original).

If the number of frames exceeding the specified threshold within a single
collection cycle (10 seconds) exceeds the specified number of times, the event is
recorded as a possible abnormal event, thus avoiding the computational recognition
difficulties caused by massive raw data.

After the above filtering, the input format for a single event is a one-dimensional
data with a length of 20K. This work splits it into 10 individual data with a length of
2K (1s) and performed 1DCNN and FFT analysis on them.
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2.3 AI-based Recognition Model

Although the vibration information data could be obtained at corresponding positions
through the above system, there are still many difficulties in practical application due
to low data accuracy, large noise interference, and complex data features. Although
there are many papers on using artificial intelligence for pattern recognition, there are
still many difficulties. The data accuracy is mainly limited by the equipment, and as
the measurement distance increases, the errors caused by the equipment will be
exponentially amplified, which is particularly evident in optical fibers with high
losses due to poor quality. Noise interference includes a large number of false alarms
caused by external interference such as vehicles and subways that may have a
pathway due to the complex environment near the fiber optic cable on site. The
complexity of data characteristics is also caused by the on-site environment. For
example, the ground of different media may cause significant differences in the
vibration frequency information monitored by the same equipment, and the different
burial depths of optical fibers and the straight-line distance from the construction
point to the optical fiber will also greatly affect the amplitude of vibration. Traditional
research focuses more on how to distinguish different types of vibrations, and there is
less research on eliminating noise interference [8]. Its testing environment is
relatively single, and it will encounter many difficulties in practical field applications.
This article uses the neural network structure of CNN-BiLSTM network, and based
on this, combines some manually set preselection conditions and a CNN neural
network that references event information from the past period of time, thus achieving
better anti-interference results in complex noise environments [9,10].

Table 1. Structure of the proposed CNN-BiLSTM.

Layer Type Setting Step Activation Dimension
1 Input 2000x1 - - 2000 x 1
2 ConvIDI 1500x 5 2 Relu 1500 x 2000
3 MaxPool+BN 2 2 - 1500 x 1500
4 Conv1D2 1024x 5 2 Relu 1024 x 1500
5 MaxPool+BN 2 2 - 1024 x 750
6 Conv1D3 512x5 2 Relu 512 x 750
7 MaxPool+BN 2 2 - 512 x 375
8 Conv1D4 256x5 2 Relu 256 x 375
9 MaxPool+BN 2 2 - 256 x 187
10 Conv1D5 128x5 2 Relu 128 x 187
11 MaxPool+BN 2 2 - 128 x 93
12 BiLSTM1 256 4 - -
13 BiLSTM2 128 4 - -
14 FC 128 - Relu 128
15 FC 32 - Relu 32
16 Softmax 6 - - 6
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Due to the characteristics of abrupt changes and instability in fiber optic sensing
signals. The network structure for identifying events needs to be determined based on
the characteristics of the collected event data and the performance of different
hyperparameters during the training process. In the feature extraction module, there
are several sets of convolutional modules and BiLSTM modules. The convolution
module consists of Conv1D, which slides the convolution kernel along the time
dimension of the sequence, MaxPool, which reduces the size of the input feature map,
and BatchNormalization, which accelerates model training and enhances model
generalization ability. The BiLSTM module consists of forward LSTM cells and
reverse LSTM cells. The first 15 layers in the specific feature extraction module are
convolutional modules, and the last two layers are BiLSTM modules. The network
settings are as follows: Conv1D1 uses a convolution operation with 1500 kernel sizes
of 5 and a stride of 2, uses a hot path activation function to increase the nonlinearity
of the model, and generates 1500 feature maps with dimensions of 2000. Secondly, a
Max Pool with a stride of 2 is used for pooling operations, extracting the maximum
value from each 2D neighborhood and generating 1500 feature maps with dimensions
of 1500. Normalization (BN) is added after convolution and pooling to accelerate
network training and convergence, control gradient explosion, and prevent overfitting.
The following layers of Conv1D use a similar structure. The architecture is
demonstrated in Table 1.

To balance feature extraction and computation speed, The number of nodes for
BiLSTM1 and BiLSTM2 is set to 256 and 128, respectively, with a time step of 4. In
order to enhance the non-linear expression ability of the network and alleviate the
problem of vanishing gradients when reverse error gradients are transmitted back, the
Relu activation function is used after each convolution operation, which also helps to
improve training accuracy.

In the event classification module, the softmax function is used as the classifier to
calculate the probability scores of six event types, where each element has a value
between 0 and 1, and the sum of all elements is 1. The category with the highest
probability score is used as the classification result of the event. Within the event
classification module, it mainly consists of two fully connected layers (FC) and a
Sofmax layer. The number of neurons in FC1 layer is set to 128, connected to the
feature layer generated by BiLSTM2 layer. The number of neurons in FC2 layer is set
to 32, which is used to fully connect the feature data with the output of FC1 layer.
Finally, the Sofmax layer is used to classify it, which consists of six neurons used to
divide the input feature data into six different event categories.

Subsequently, use the aforementioned neural network to make event judgments on
the filtered events. Due to the complexity of the on-site situation, the accuracy of
individual event judgment is not high enough and there are often false alarms. After
analysis, the concentration of most false alarm events is very low, and frequent false
alarms are rarely seen in the same location in adjacent time periods. However, actual
construction will frequently generate events of the same type. Therefore, based on the
above classification, this work extracts the event types, vibration intensity, and
vibration time from the event information, and count all events in the past 15 minutes
near the location. If the number of events of the same type is greater than 2, it is
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organized into 2 * 900 two-dimensional data, where the i-th row corresponds to the
event judgment information of the i-th second in the past, the first column is the
judgment type of the event (if there are no events, it is recorded as 0), and the second
column is the intensity information of the event (determined by the average value of
the corresponding event).

This work used a 1D CNN network again for training classification, and due to the
integration of information for a period of time, the false alarm rate significantly
decreased.

3 Results

This work choses a testing fiber optic to collect signal data from excavator
excavation, drilling machine construction, and human impact at distances of 5, 10,
and 20 kilometers. Moreover another fiber optic is used to collect signals from
vehicles passing by and subway passing through the entire process as interference
information. This article categorizes the data into 6 different signals, including
drilling machine events, excavator events, crusher events, manual excavation, vehicle
passing, and other noise. The collected raw data format is to generate 2K x 3k
two-dimensional data per second, where 3K corresponds to a total range of 30KM,
with one sampling point every 10m, and 2K is the sampling frequency of the raw
data. This article collects 15000 classic events of different types as a database, of
which 50% are noise events.

After preliminary screening and testing, taking the data of fiber optic deployed on
site with an actual range of 30KM as an example, a total of more than 27000 events
were reported in three days, with an average of no more than 5 event locations
reported every 10 seconds, effectively reducing the amount of data.

After training with the data, the confusion matrix obtained by the CNN-BiLSTM
model on the event validation set can be obtained, as shown in Fig. 2. The rows
represent the label probability of the predicted event, and the columns represent the
true label probability of each event. From the analysis of the confusion matrix, it can
be seen that the CNN-BiLSTM model has high event classification performance, with
drilling machine events achieving a recognition rate of 100%, and the recognition rate
of other events is also above 94.5%.
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Fig. 2. Confusion matrix results of the proposed CNN-BiLSTM model (Figure Credit:
original).

The first type is noise events. Although the recognition rate has reached 95% at
this time, due to the possibility of generating thousands of interferences signals every
day, there are still hundreds of false alarms in practical applications, which brings
great interference to maintenance personnel. It can be seen that it is necessary to
introduce a secondary classification network that integrates a segment of events. This
work used the previously collected data again and generated their corresponding
two-dimensional data in chronological order. It can be seen that due to the manual
setting of requiring more than two reporting events within 15 minutes before
proceeding to the next analysis, this preset condition has effectively filtered out over
80% of scattered false alarm events. After training, its filtering ability for previously
misreported events reached over 95%,In actual on-site testing, false alarms occur
approximately every 2-3 days, and their accuracy is significantly improved.

4 Discussion

After the previous analysis, it can be seen that the introduced deep learning
classification network and comprehensive event network effectively reduce the false
alarm frequency of the system and ensure its usability in practice. However, the
current algorithm still has some shortcomings, such as in practical applications,
differences in the surrounding media of the fiber and the vertical distance between the
construction position and the fiber may lead to some special differences; For example,
due to the need to analyze events over a period of time, it takes 3-4 minutes to
complete event reporting after actual construction. Part of these issues can be
achieved through expanding the sample size to achieve better universality. For
example, the current event library has a sample size of approximately 15000 various
events, and collecting more samples can effectively increase network parameters and
further improve accuracy. On the other hand, the advancement of technological
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equipment can reduce the background noise of the equipment and increase the
credibility of event classification.

5 Conclusion

Distributed fiber optic sensing systems have various characteristics such as
long-distance monitoring, high sensitivity, and strong anti-interference ability, and are
widely used in various scene fields. However, at present, there are shortcomings in
distributed fiber optic sensing event recognition, such as poor event recognition
ability and cumbersome and complex event image recognition algorithms. This study
takes deep learning methods as the starting point from digital signal data and image
data, and has made some progress. A distributed fiber optic acoustic sensing system is
built, and the collection of six types of event data, including manual mining, crusher,
drilling machine, excavator, vehicle passing, and other noise, is completed.

A small event database was collected for six types of events, and deep learning
algorithms were used for event analysis to generate preliminary event classification.
After synthesizing data for a period of time, secondary classification was carried out.

A distributed fiber optic sensing event data recognition method based on 1DCNN
BiLSTM has been proposed. The IDCNN BiLSTM proposed successfully addresses
the issues of low event recognition accuracy, difficulty in processing large amounts of
data, and the need for manual feature extraction in traditional statistical and machine
learning methods in distributed fiber optic sensing events. This model directly inputs
the collected digital signal data into 1DCNN for automatic feature selection and
extraction, and utilizes the memory module of BiLSTM to fully mine the hidden
temporal relationships within the data, thereby completing event recognition.

In addition, to address the issue of insufficient accuracy in identifying individual
events and the inability to effectively eliminate noise interference, this work
introduced a comprehensive secondary CNN event analysis system over a period of
time. By collecting 15 minutes of events for comprehensive analysis, this work
successfully avoided the problem of a large number of false alarms of noise events,
making it suitable for practical application.

However, the introduction of a comprehensive time analysis system will lead to a
longer actual response time, and there may be a delay of 3-4 molecules from
construction to actual reporting. In response to this, there may be better models and
larger samples in the future to make the response time shorter.
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