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Abstract. In the rapidly advancing field of medical simulations, cosmetic surgery 

simulations have become crucial tools for surgical planning, training, and enhancing 

patient communication. These simulations allow surgeons to visualize and predict 

post-operative outcomes, which aids in making informed decisions and strengthens 

the surgeon-patient relationship. Despite advancements in techniques like bone tissue 

cutting and prosthesis transplantation, challenges remain in accurately depicting 

postoperative appearances, largely due to the limitations of the underlying geometric 

models used in these simulations. The advancement of sophisticated computer-

assisted technologies has significantly driven the evolution of mesh deformation 

algorithms. These algorithms support the iterative refinement of geometric designs 

through a process called mesh deformation. Typically, this involves maintaining a 

constant mesh topology while updating node locations to align with geometric 

changes, a requirement that can become restrictive when significant modifications are 

necessary. This review paper examines two advanced mesh deformation algorithms: 

Laplacian-based mesh deformation and grayscale texture-based mesh deformation, 

each serving distinct roles in the field of cosmetic surgery simulation. The aim is to 

juxtapose these techniques, analyzing their effectiveness in achieving detailed and 

realistic surgical simulations.  

Keywords: Mesh Deformation, Differential Domain Methods, Volumetric 

Laplacian, Grayscale Texture. 

1 Introduction 

  

© The Author(s) 2024
Y. Wang (ed.), Proceedings of the 2024 International Conference on Artificial Intelligence and Communication
(ICAIC 2024), Advances in Intelligent Systems Research 185,
https://doi.org/10.2991/978-94-6463-512-6_33

In the rapidly advancing field of medical simulations, cosmetic surgery simulations have
become crucial tools for surgical planning, training, and enhancing patient
communication. These simulations allow surgeons to visualize and predict post-operative
outcomes, which aids in making informed decisions and strengthens the surgeon-patient
relationship. Despite advancements in techniques like bone tissue cutting and prosthesis
transplantation, challenges remain in accurately depicting postoperative appearances,
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largely due to the limitations of the underlying geometric models used in these
simulations. The advancement of sophisticated computer-assisted technologies has
significantly driven the evolution of mesh deformation algorithms. These algorithms
support the iterative refinement of geometric designs through a process called mesh
deformation. Typically, this involves maintaining a constant mesh topology while
updating node locations to align with geometric changes, a requirement that can become
restrictive when significant modifications are necessary. This review paper examines two
advanced mesh deformation algorithms: Laplacian-based mesh deformation and grayscale
texture-based mesh deformation, each serving distinct roles in the field of cosmetic
surgery simulation. The aim is to juxtapose these techniques, analyzing their effectiveness
in achieving detailed and realistic surgical simulations.

Laplacian-based mesh deformation has traditionally been used on surface meshes, but
has recently been extended to volumetric meshes, such as tetrahedral meshes [1,2]. This
method calculates Laplacian coordinates that capture the local curvature of the mesh,
facilitating detailed edits. While effective for small rotations, its initial non-rotation
invariant nature posed challenges for larger transformations [1], leading to advancements
that adapt these methods to better handle the comprehensive three-dimensional
requirements of volumetric meshes. Grayscale texture-based mesh deformation represents
a more recent innovation that simplifies the deformation process significantly. By
encoding deformation data directly onto a grayscale image, this method eliminates the
need for complex preprocessing steps, allowing for more flexible and immediate
adjustments to the mesh [3-5]. This approach is particularly valuable in dynamic surgical
simulation environments where speed and adaptability are crucial.

2 Mesh Deformation Based on Laplacian Coordinates

2.1 Volumetric Mesh with Differential Domain Methods

Since 2004, Differential Domain Methods (DDMs) have significantly advanced the
optimization of geometric model edits. These methods analyze the differential properties
of deformation functions and optimize results under constraints. Among these, Lipman et
al. [6] and Sorkine et al. [7] introduced the Laplacian editing method as a type of DDMs.
The method's core concept, the Laplacian coordinate of a vertex, represents the difference
between a vertex's coordinates and the weighted average of its adjacent vertices. This acts
as a linear approximation of the Laplace operator on a smooth surface, indicating the
direction and magnitude relative to average curvature.

However, Laplacian coordinates are not rotation invariant, requiring local
transformations for precise modifications. This involves using the Laplace equation to re-
establish the three-dimensional vertex coordinates from the modified Laplacian
coordinates, preserving mesh detail during deformation. Both Lipman et al. [6] and
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Sorkine et al. [7] initially applied these methods to surface meshes, which are limited to
the exterior dimensions and can distort significantly under large rotations. These methods
are typically effective for rotations under 90 degrees. To overcome the limitations of non-
rotation invariance in Laplacian coordinates, Lipman et al. [8] introduced a linear
rotation-invariant coordinate system leveraging the first and second fundamental forms of
discrete differential geometry. This enhancement transforms the Laplacian coordinates
from the original world coordinate system to a local frame, involving the solution of two
linear systems to preserve detailed accuracy in deformed meshes.

In cosmetic surgery simulations, where precision is crucial, volumetric meshes,
particularly tetrahedral meshes, are preferred due to their detailed volumetric accuracy.
Unlike surface meshes, which only depict exteriors, tetrahedral meshes consist of vertices,
edges, faces, and tetrahedrons that fill the entire structure, providing a robust 3D
representation. This comprehensive approach helps maintain structural integrity during
deformations, making volumetric meshes ideal for tackling challenges related to distortion
and volume preservation, thus ensuring more accurate and realistic outcomes.

2.2 Tetrahedral Mesh and Laplacian Coordinates

A tetrahedral mesh specifically refers to a type of volumetric mesh where the volume is
divided into tetrahedra – a 3D simplex consisting of four vertices, six edges, and four
triangular faces – each tetrahedron in the mesh fits together with others to fill a three-
dimensional space [9]. The tetrahedral mesh is represented as a pair � = �, � , where �
is a set of � points in three-dimensional Euclidean space, with each point corresponding
to a vertex coordinate. The set � is an abstract simplicial complex that includes all
adjacency information of the mesh and consists of subsets for vertices �, edges �, faces �,
and tetrahedrons � . Similar to surface meshes, the Laplacian coordinates on tetrahedral
mesh are computed for each vertex. For a vertex ��, its Laplacian coordinate �� is defined
as:

�� = ∆� �� = ��
��∈�1 ��

��� � �� − � ��� # 1

Here, ��� is a variable weight for the edge between vertices �� and ��, and �� is the
normalization weight of the central vertex �� , which relates to the volume of the dual
Voronoi cell associated with �� . The Laplacian operator can then be expressed in matrix
form:

� � , � � , � � = � � � , � � , � � = �−1�� � � , � � , � � # 2

Where � is the matrix representation of the Laplacian operator, constructed from the
diagonal matrix � of volume weights and the symmetric sparse matrix �� that contains
the weights of the edges of the mesh. The terms � � , � � , � � are the �, �, and �
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coordinates of the original mesh vertex coordinates and � � , � � , � � represent the
Laplacian coordinates of the original mesh vertex coordinates. These special coordinates
capture how a vertex is positioned relative to its neighbors.

The matrix � is diagonal, which means that only the entries going from the top left to
the bottom right have values; the rest are zero. Each value on the diagonal ���
corresponds to the volume weight of a vertex ��, which is 1/��. Here, �� is determined by
the volume of space around that vertex, given by the Voronoi cell volume.
�� , it’s a matrix that describes the connection weights between each vertex and its

neighbors. It is defined such that if the row and column correspond to the same vertex,
i.e., � = �, the entry is the negative sum of the weights��� for all neighboring vertices ��.
Conversely, If the row and column correspond to a pair of neighboring vertices, i.e., �� is
a neighbor of �� , the entry is ��� , the weight of the edge between them. Entries for vertex
pairs that are not neighbors are set to zero. The matrix �� is then given by the formula:

�� � =
−

��∈�� ��
���, �� � = ��

���, ���� ∈ �� ��
0, ��ℎ������

# 3

In this equation, ��(��) denotes the set of vertices that are direct neighbors of vertex ��.
The sparse matrix �� captures the edge weights and is used to build the full Laplacian
operator matrix �, which is expressed by multiplying the inverse of� with ��:

� = �−1�� # 4

While there isn't a direct equivalent of the mean curvature normal [10] for a tetrahedral
mesh, the Laplacian coordinates effectively represent a vertex's relative position vector
against its immediate neighbors. This provides a differential attribute that helps establish
global relationships between vertex coordinates.

2.3 Mesh Deformation Based on Laplacian Coordinates

Tetrahedral mesh deformation using Laplacian coordinates retains translational invariance
but not rotational or scaling invariance. During deformation, the original Laplacian
coordinates �� are transformed to accommodate the modifications, resulting in the
modified coordinates ��' . The coordinates of the deformed mesh �' can then be
reconstructed by solving the following optimization problem – an objective function:

�' = argmin
�' �

�� ∥ Δ� �'� −� ��
'∥2 # 5

Here, the aim is to find the new vertex positions that minimize the squared differences
between the modified Laplacian coordinates and the original ones: find the best new
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positions for vertices �' such that, when the Laplacian operator is applied to these
positions, the resulting difference from the original mesh is minimized [11]. �� is a
volume weight for each vertex related to its Voronoi cell in the mesh, and Δ� is the
Laplacian operator applied to the new positions. ��' are the target Laplacian coordinates
after deformation. The solution to the least squares problem is thus can be computed by
solving the normal equation [10]:

�����' = ����' # 6

It’s essentially a set of equations derived from the objective function that are solved to
obtain new vertex positions �' . The matrix � has volume weights, and � is the Laplacian
matrix, which relates vertex positions to each other. Substituted � with �−1�� from
equation 4 to make it clearer how � is constructed from � and ��, this yields:

���−1���' = ���' # 7

After canceling out M on both sides, this presents another way to express the problem
being solved—adjusting the mesh while keeping its new shape as close as possible to the
target shape defined by �' . Multiply both sides by �−1 to get rid of � yields the bi-
Laplacian operator equation:

�2�' = ��' # 8

Alternatively, the modified Laplacian coordinates �' can be directly substituted into
equation 2 to get the single Laplacian operator equation:

��' = �' # 9

Since the weight �� for each vertex �� is defined as the reciprocal of the volume of the
Voronoi cell surrounding that vertex, �� =

1
(�����)

. The single Laplacian equation after

normalization becomes:

���' = �' # 10

Where �� is now a normalized sparse matrix that incorporates the weights �� for each
vertex. Essentially, �� has been scaled so that each row is weighted by the corresponding
Voronoi cell volume. The bi-Laplacian equation after normalization becomes:

����' = ���' # 11

Where � is the Laplacian matrix with normalization, and �� is its transpose. The
normalization here means that both � and �� reflect the weighting by Voronoi cell
volumes. The bi-Laplacian, represented as ���, is often favored over the single Laplacian
in mesh deformation tasks. This preference stems from its property of creating a positive-
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semidefinite matrix. A positive-semidefinite matrix is advantageous because, when it is
also of full rank, it ensures that there is a unique solution to the optimization problem,
minimizing the potential for ambiguous results. Moreover, the multiplication of the
Laplacian matrix by its transpose ��� , isn't the same as applying the Laplacian operator
twice in sequence. Instead, this product considers both the immediate and extended
neighborhood around each vertex. Consequently, the resultant deformation benefits from
a smoothing effect that gracefully balances local vertex adjustments with broader, more
global mesh considerations.

2.4 Application

Fig. 1. Comparison of Mesh Manipulation on a Simplified Muscle Model [12]

As shown in Fig. 1, Research [12] has compared a simplified representation of a thin layer
of muscle model, where the boundaries on both sides are fixed. A small manipulative
region in the center is selected for upward translation operations, comparing (a) single
Laplacian surface mesh, (b) double Laplacian surface mesh, (d) single Laplacian
volumetric mesh, and (e) double Laplacian volumetric mesh. The results show:

Surface meshes experienced severe distortion, with the bottom boundary surfaces
essentially remaining undeformed, while the volumetric meshes effectively preserved
volume characteristics, and the deformation of the bottom boundary surfaces was very
realistic. This is because some common operational methods require the use of volumetric
meshes with internal grid structures and connections to properly diffuse local
transformations and exert stronger deformation influences on distant areas. Additionally,
since the translations themselves did not account for local rotational transformations, the
deformations using a single Laplacian operator were not effective, whereas the double
Laplacian operator still effectively maintained a smooth transition between the
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constrained boundary areas and the free deformation areas, resulting in correct
deformation outcomes.

3 Mesh Deformation Based on Grayscale Texture

Among various methods, differential domain mesh deformation algorithms stand out due
to their ability to preserve the geometric details of meshes. However, these algorithms
typically require the mesh model to undergo preprocessing, where the mesh is stored data
structures, and differential domain coordinates of model vertices are calculated. Such
preprocessing can be complex and time-consuming.

Addressing the need for simplification and efficiency, a novel approach has been
proposed which utilizes grayscale texture for mesh deformation [3-5]. This approach
decouples deformation data from geometric data, using grayscale textures to manage
deformation, simplifying the deformation process by eliminating extensive preprocessing
and allows for precise, direct manipulation of the mesh. Such advantages make grayscale
texture-based deformation particularly suitable for the dynamic and detailed requirements
of cosmetic surgery simulations.

3.1 Calculation of Texture Coordinates for Grayscale Images

The first step in mesh deformation operation is to construct a gray-scale texture that stores
the deformation information. The steps are as follows:

1. Target Area Drawing: Choose an appropriate selection tool to draw the target
area on the screen for the deformation operation, as shown in Fig. 2 a).

2. Grayscale Image Creation: Use the OpenCVSharp package to create a grayscale
image that matches the size of the software window. Then, apply the flood-fill
method to fill in the target area, resulting in the effect shown in Fig. 2 b).

3. Grayscale Texture Blurring: Blur the grayscale texture to ensure a smooth
transition between the target and non-target deformation areas, as shown in Fig.
2 c).

Fig. 2. Gray-scale Texture Generation [4]

The third step of blurring the texture uses common algorithms such as average blur,
Gaussian blur, and median blur. The main difference between them lies in the convolution
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kernel used for processing. The experiments conducted with these algorithms on the
grayscale texture are shown in Table 1, with a convolution kernel size of 13×13.

Table 1. Experimental Results of Different Blur Algorithms [4]

Blur Algorithms 0
Iterations/n

20
Iterations/n

40
Iterations/n

Mean Blur

Gaussian Blur

Median Blur

Fig. 3. Influence of Blur Algorithm on the Mesh Deformation [4]

A convolution kernel is a grid of weighted cells used to calculate the sum of products
between each kernel element and the corresponding image pixel it covers. The result is the
new pixel value at that position. For an � × � average blur kernel, the value of each
element in the kernel is 1

�×�
. The Gaussian blur convolution kernel is based on the

Gaussian function:

� �, � =
1

2��2
�−

�2+�2

2�2 # 12
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Where � represents the standard deviation, and � and � correspond to the distances
from the current position to the center in integer distances. Fig. 3 illustrates the effects of
different blur algorithms in practice, revealing that the median blur effect is the least
smooth at the transition between target and non-target areas post-deformation. Both
average and Gaussian blurs resolve this issue effectively. However, when controlling for a
certain deformation range, the Gaussian blur did not achieve the expected amplitude at the
most deformed vertex, while the average blur results were closer to the expected outcome.
Considering all factors, the decision was made to use the average blur algorithm [4,5].

Fig. 4. Flow Chart of Texture Coordinate Calculation
(Picture credit: Original)

After generating the grayscale texture, it must be mapped to the mesh vertices by
computing texture coordinates, denoted as ����� , for the mesh model vertices. The
method used involves line-of-sight-based linear interpolation to compute texture
coordinates, transforming the model's three-dimensional coordinates from local to screen
space. This normalizes the vertex coordinates, with the computational workflow outlined
in Fig. 4.

Consider � as the aggregate transformation that is the product of all individual
transformation, thus:
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� = ���������������� # 13

This composite transformation is mathematically represented as:

����� = � ∙ � # 14

3.2 Mesh Deformation Based on Grayscale Texture

To ensure a clear visual differentiation between the areas of a 3D model slated for
deformation and those that are not—the target and non-target regions—the use of shader
technology is instrumental [4,5]. By projecting a pre-constructed grayscale texture onto
the model, with the lips selected by a shape-selection tool, shaders facilitate an intuitive
presentation of the regions undergoing deformation (see Fig. 5).

Fig. 5. The Shape-Selection Tools, Gray-scale Texture, and Projection Rendering [4]

For the effective display of deformation regions, one might use a grayscale texture map
� included in the shaders, the model texture coordinates ����� , and the source color
������� . Consider a point on the model, represented by the coordinates (��, ��) , which
corresponds to the pixel �� on the grayscale texture map �. The gray-scale intensity �� as
this point can be determined through:

�� = �� ∙ ���� # 15

Here, ���� is a vector, commonly (0.299, 0.587, 0.114) , which represents the
perceived luminosity of each color channel to the human eye, a standard in grayscale
conversion [13]. The on-screen visual output, ������� , combines the diffuse color ��������
from the graphics pipeline with the source color ������� modulated by the computed
intensity:

������� = �������� ∙ 1 − �� + ��������� # 16

This equation illustrates a linear interpolation between the diffuse color and the source
color, influenced by the intensity ��. It creates a visual blending where the influence of the
base color increases with the intensity of the grayscale texture, achieving a realistic
rendering of the target deformation region.
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The essence of this mesh deformation algorithm lies in utilizing the gray-scale intensity
� from grayscale texture map �, mapped via �����, as weights for vertex transformation.
Thus, the new vertex set �' is derived by adding the weighted displacement to the original
coordinates, as formulated:

�' � = � � +� ∙ � # 17

This equation articulates how each point in the designated target area, originally at
�(�) , shifts to a new position �'(�) , propelled by the transformation weight � ,
embodied in the deformation vector � . Fig. 6 below visualizes this transformation

process:
Fig. 6. Flow Chart of Mesh Deformation Algorithm

(Picture credit: Original)
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3.3 Application

The 3D cosmetic surgery simulation system developed by the Guangdong Provincial Key
Laboratory of Computer Integrated Manufacturing at the Guangdong University of
Technology has applied this Mesh Deformation algorithm Based on Grayscale Texture.
This system, which is crafted for offline medical aesthetic simulations on a PC-based
platform, leverages this algorithm to provide realistic and precise simulations of various
cosmetic procedures. This system comprises three main components: a PC running
Windows 10 Pro. 64-bit, the cosmetic surgery simulation software, and the FaceGo180G
3D facial scanner by Revopoint [4]. This comprehensive system simulates over 20
different cosmetic procedures, including eyelid surgery, rhinoplasty, lip enhancement, and
facial slimming, to provide realistic portrayals of potential post-operative outcomes.
Developed with the Unity3D game engine and leveraging the OpenCVSharp package, the
interface is strategically segmented into four principal functional modules, as shown in

Fig. 7.

Fig. 7. Structural Mockup of Original System Interface
(Picture credit: Original)

The Cosmetic Vault module uses XML files to store patient data and manages a
database for facial cosmetic knowledge, facilitating actions like registration, deletion, or
modification of patient information and managing 3D facial models. The Facial Analysis
module employs facial recognition technology to identify key facial landmarks and
generates detailed reports on facial metrics. The Intelligent Cosmetic Procedures module
also uses facial recognition to automatically pinpoint areas for treatment, minimizing
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manual input and enhancing user interaction. Lastly, the Precision Sculpting Tools
module provides manual tools for users to select and adjust any facial area, allowing
greater control and customization in the simulation process.

The system has been preliminarily launched in the market and is in partnership with
The General Hospital of the Southern Theater Command of the Chinese People's
Liberation Army for further clinical application. By employing this simulation system,
Fig. 8 and Fig. 9 demonstrate the before-and-aftereffects of specific cosmetic procedures.

Fig. 8. Facial Slimming Simulation [5]

Fig.9. Rhinoplasty Simulation [5]

4 Conclusion

This review evaluates two advanced mesh deformation techniques in cosmetic surgery
simulations: volumetric mesh deformation using Laplacian coordinates and grayscale
texture-based mesh deformation. The Laplacian-based method, demonstrated on a
simplified muscle model, effectively preserves volume and achieves realistic
deformations within fixed boundary conditions, making it ideal for precise volumetric
representations. Enhancements could focus on improving rotation invariance and
introducing adaptive weighting to increase accuracy and realism. Integrating machine
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learning could also optimize deformation parameters, enhancing computational efficiency
and accuracy in real-time applications. The grayscale texture-based method reduces
preprocessing by encoding deformation data directly into grayscale images. Applied in the
Guangdong Provincial Key Laboratory’s 3D cosmetic surgery simulation system, this
method facilitates rapid and flexible adjustments, proving particularly effective in
dynamic surgical environments. Future advancements could improve texture mapping
techniques to automatically adjust granularity based on deformation complexity, thus
boosting performance and accuracy.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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