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Abstract. In modern Building Information Modeling (BIM), precise boundary 

extraction is crucial for terrain construction and model generation. Addressing 

the limitations of current edge detection methods in boundary extraction from 

remote sensing images, this paper proposes a novel edge detection model named 

Efficient Channel Attention Optimized Multi-layer Fusion Edge Detection Net-

work (EMF-NET). To retain more feature information during the network's 

downsampling process and improve the accuracy of boundary extraction, we in-

tegrate the Efficient Channel Attention (ECA) mechanism with max-pooling lay-

ers, creating the ECA Poolblock. The ECA Poolblock enables the network to 

more accurately identify target boundaries and structures during edge detection 

tasks, enhancing the precision and robustness of boundary extraction. Addition-

ally, EMF-NET adopts a multi-layer end-to-end network architecture based on 

the concept of multi-value fusion, significantly outperforming traditional single-

layer encoder-decoder architecture edge detection networks. Experimental re-

sults demonstrate that the proposed edge detection network achieves an F1 score 

of 90.18% and an Intersection over Union (IOU) of 80.78% in remote sensing 

image boundary extraction tasks on GF-2 dataset, markedly superior to other 

state-of-the-art edge detection methods, showcasing excellent edge detection per-

formance. 
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Boundary Extraction 

1 Introduction 
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In modern Building Information Modeling (BIM), the accuracy of boundary extraction 
is crucial for precise terrain construction and model generation[1]. Traditional edge de-
tection methods often struggle with the complex boundaries present in remote sensing 
images, resulting in suboptimal performance in BIM applications[2]. For instance, clas-
sic edge detection techniques like the Canny edge detector[3] and Sobel[4] operator are 
susceptible to noise interference when processing high-resolution remote sensing im-
ages, leading to inaccurate boundary extraction. Moreover, single-layer encoder-de-
coder architectures based on convolutional neural networks (CNNs)[5-7] have im-
proved edge detection accuracy to some extent but still face limitations in extracting 
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boundary details and complex structures. To address these issues, researchers have pro-
posed various improvements. For example, the U-NET architecture, which integrates 
multi-scale features, performs well in edge detection tasks[8]. However, its single-layer 
structure restricts the depth and effectiveness of feature fusion. To further enhance the 
accuracy and robustness of boundary extraction, some studies have introduced attention 
mechanisms to improve detection performance by enhancing the expression of key fea-
tures. Nevertheless, existing multi-layer fusion[9] and attention mechanism[10] meth-
ods still have room for improvement in terms of computational efficiency and feature 
retention. 

To address the above problems, this paper proposes a novel edge detection model, 
EMF-NET. This method combines the ECA [11] mechanism with max-pooling layers 
to create the ECA Poolblock. The ECA Poolblock allows the network to more accu-
rately identify target boundaries and structures in edge detection tasks, thereby enhanc-
ing the precision and robustness of boundary extraction. Our contributions are as fol-
lows: 

1. ECA Poolblock. This paper introduces the ECA Poolblock, a novel module combin-
ing the Efficient Channel Attention (ECA) mechanism with max-pooling layers. 
This integration allows the network to retain more feature information during the 
downsampling process, resulting in more accurate identification of target boundaries 
and structures. Consequently, it enhances precision and robustness. 

2. Multi-layer Fusion Architecture. This paper proposes a multi-layer fusion architec-
ture based on the concept of multi-value fusion. This network architecture amalgam-
ates multiple independent results to enhance the model's robustness and perfor-
mance. It addresses the common issue where single-layer networks fail to effectively 
capture boundary features in remote sensing images due to complex textures and 
structures, thereby improving the level of detail in edge extraction results. 

3. Experimental results on the the GF-2 and Denmark Marker satellite remote sensing 
datasets demonstrate that the proposed EMF-NET significantly outperforms com-
monly used edge detection methods across various metrics in boundary extraction 
tasks, exhibiting superior performance. 

2 Approach 

2.1 EMF-NET 

Traditional edge detection methods often suffer from a loss of detail and critical seman-
tic information during the downsampling process due to the reduction in feature map 
resolution, ultimately affecting the accuracy of edge detection results. Additionally, re-
mote sensing images inherently possess complex ground cover and blurred boundaries, 
leading to common problems such as boundary ambiguity, misclassification, and omis-
sions in the output. To address these issues, this paper proposes the EMF-NET, which 
integrates the novel ECA Poolblock and a multi-layer fusion architecture based on the 
concept of multi-value fusion. The ECA Poolblock combines the Efficient Channel At-
tention (ECA) mechanism with pooling layers, enabling the automatic learning of 
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channel and spatial information in feature maps and optimizing the representation ca-
pability of feature maps. This enhances the clarity, accuracy, and robustness of the re-
sults. By introducing the ECA Poolblock at each downsampling stage in the encoder 
layer, the network can focus more on important features while preserving more detail 
during downsampling. 

The multi-layer fusion architecture employs the multi-value fusion concept, apply-
ing data augmentation techniques such as rotation and mirroring to input images to 
generate multiple varied inputs. These inputs are then processed by segmentation net-
works with identical structures. The multi-value fusion approach allows for the integra-
tion of multiple predicted images to obtain the final result. The multi-layer fusion ar-
chitecture designed in this paper endows EMF-NET with the modularity to replace the 
backbone network module based on specific requirements. Common end-to-end edge 
detection networks, such as U-Net, Convolutional Encoder-Decoder (CED), Richer 
Convolutional Features (RCF), and Holistically-Nested Edge Detection (HED), can be 
integrated into EMF-NET. This flexibility allows the construction of models suitable 
for various tasks and datasets, enhancing EMF-NET's performance and robustness in 
handling different types of noise and variations in remote sensing images. Additionally, 
this provides EMF-NET with strong scalability and flexibility in fields such as medical 
image segmentation, natural scene segmentation, and remote sensing image segmenta-
tion. To better address the complexities and variations in ground cover in remote sens-
ing images and enhance the model's robustness, we chose U-Net as the backbone net-
work. The structure of the EMF-NET network with U-Net as the backbone is illustrated 
in Figure 1. 

 

Fig. 1. EMF-NET structure  

As illustrated in Figure 1, EMF-NET begins by taking remote sensing images as 
input into the data augmentation module. Through techniques such as mirroring and 
flipping, various different inputs are generated. These inputs are then fed into the multi-
layer fusion architecture. In the U-NET network, optimized with the introduction of the 
ECA Poolblock to enhance the downsampling process, multiple independent results are 
fused based on the multi-value fusion concept. This process yields the final refined 
boundary results. 

2.2 ECA PoolBlock 

During the downsampling process in U-NET, the resolution of feature maps is reduced, 
leading to the loss of detail and important semantic information. This results in 
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decreased segmentation accuracy and blurred boundaries. The Efficient Channel Atten-
tion network proposed by Hang Zhang et al., is an attention mechanism designed to 
enhance neural network performance. Its core idea is to capture inter-channel depend-
encies using one-dimensional convolution, thereby improving the model's performance 
and generalization ability. Compared to traditional attention mechanisms, ECA avoids 
complex dimensionality reduction and expansion processes, preserving the integrity of 
the original channel features. This helps the model better learn and utilize the correla-
tions between channels, achieving both efficiency and lightweight characteristics. The 
ECA mechanism adaptively computes the kernel size 𝑘 of the one-dimensional convo-
lution based on the number of channels. The formula for calculating the kernel size 𝑘 
is as follows: 

 k  

 (1) 

This paper combines the Efficient Channel Attention (ECA) mechanism with max-
pooling layers to construct the ECA Poolblock. The ECA Poolblock can adaptively 
compute and adjust the kernel size k of the one-dimensional convolution based on the 
number of channels in the input feature map. Consequently, it dynamically captures 
channel dependencies across different ranges. This powerful adaptive mechanism sig-
nificantly enhances the model's ability to extract boundary feature information. 

2.3 Multi-layer Fusion Architecture 

In image processing tasks, due to the complexity and diversity of input images, single-
layer models often struggle to capture all relevant information. Therefore, fusing mul-
tiple prediction results can improve the model's performance and robustness. The basic 
principle of the multi-value fusion concept is to integrate the results of multiple inde-
pendent predictions to obtain a more accurate and reliable final prediction. Its ad-
vantage lies in its ability to leverage the differences between multiple models or pre-
diction results, thereby overcoming the limitations of a single model or prediction. This 
enhances the accuracy of the final result and the generalization capability of the model, 
making it more suitable for different data distributions and scenarios. This paper pro-
poses a multi-layer fusion architecture based on the concept of multi-value fusion, aim-
ing to improve the model's ability to extract boundary feature information from remote 
sensing images. The workflow of this architecture is illustrated in Figure 2. 

 
Fig. 2. Architecture of Multi-layer Fusion  
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For the input image, the convolution operation sequentially samples the image, and 
the weights of the feature map correspond to the pixels. Thus, inputting the same image 
in different orientations results in different sampling outcomes. In this paper, we apply 
data augmentation methods such as rotation and mirroring to the same input image, 
generating multiple different images based on the original input. These augmented im-
ages are then input into identical backbone networks, producing multiple distinct pre-
diction results. Using the weighted fusion strategy from the multi-value fusion concept, 
we fuse these independent prediction results to obtain the final output of the multi-layer 
fusion architecture. The number of stacked layers can range from 1 to 𝑛. When the 
number of layers is 1, the proposed stacked architecture degenerates into the original 
single-layer architecture, demonstrating the generalization capability of the multi-layer 
stacked network architecture. In this paper, the original input image is subjected to 90°, 
180°, and 270° rotations, followed by mirroring along the X-axis and Y-axis. Conse-
quently, a total of 6 augmented images are generated after data augmentation. The fu-
sion based on the multi-value fusion concept is described by equation (2): 

 𝑃final   (2) 

In equation (2), Pi represents the predicted segmentation result image from the i-th 
segmentation network in the stacked network architecture, and wi denotes the weight of 
this segmentation result image. By applying data augmentation techniques such as ro-
tation and mirroring to the input image, we generate multiple varied images, which 
enhance the model's coverage of image information, improve its understanding of com-
plex scenes, and reduce the occurrence of information loss. Using the multi-value fu-
sion concept, the model integrates multiple predicted segmentation images to obtain the 
final segmentation result. This fusion method compensates for the limitations of indi-
vidual prediction results, further enhancing the model's understanding of the image. It 
enables the model to better adapt to different scenes and data distributions, thereby im-
proving the accuracy and stability of the final boundary recognition results. 

The main feature of the multi-layer fusion architecture in this paper is the replacea-
bility of its backbone network module. This feature allows for the selection of different 
backbone network modules according to the specific requirements of the task and data 
characteristics, thereby constructing edge detection models suitable for various scenar-
ios and enhancing the model's performance and robustness. For example, when the tar-
get task requires the model to better handle issues arising from complex ground cover 
and variability, and the dataset size for the target task is relatively small, selecting U-
Net as the backbone network module and integrating it into the network can fully lev-
erage U-Net's characteristics for small dataset tasks. These characteristics include skip 
connections and the use of an encoder-decoder structure for feature extraction and res-
toration at different levels, thereby improving the accuracy and robustness of the re-
sults. Conversely, when the target task demands high accuracy in edge detection and is 
sensitive to details, U-Net can be replaced with the HED module. HED utilizes deep 
convolutional neural networks for multi-scale edge detection and improves detection 
accuracy by fusing the detection results at various scales. 

448             T. Qin et al.



3 Experiments 

3.1 Data Set and Evaluation Metrics 

To evaluate the proposed EMF-NET, experiments were conducted on the GF-2 and 
Denmark Marker satellite remote sensing datasets. The Denmark Marker dataset[12], 
released in 2016 by Denmark's European Union Land Parcel Identification System 
(LPIS), contains nearly 600,000 parcels, each with a unique identification number. The 
GF-2 dataset is from a multispectral Earth observation satellite developed by the China 
Academy of Space Technology (CAST), primarily tasked with providing high-resolu-
tion remote sensing image data for China's land resource surveys and urban planning. 
The datasets were divided into training, validation, and test sets in a 6:2:2 ratio. 

To evaluate the performance of the proposed EMF-NET, we utilized two commonly 
used evaluation metrics: Intersection over Union (IOU) and F1 score. IOU is one of the 
most widely used metrics in edge detection tasks, quantifying the ratio of the intersec-
tion between the predicted instances and the ground truth instances. The calculation 
formula is shown in equation (3): 

 𝐼𝑂𝑈 ∑  (3) 

In equation (3), TPi represents the number of pixels correctly predicted as class i and 
overlapping with the ground truth, FPi represents the number of pixels incorrectly pre-
dicted as class i without overlapping with the ground truth, and FNi represents the num-
ber of pixels that belong to class iii but were not correctly predicted. N is the total num-
ber of classes. The IOU value ranges from 0 to 1, with higher IOU values indicating 
better model performance.  

The F1 score is a metric that considers both precision and recall. It is commonly 
applied in binary classification scenarios between the target and background in instance 
segmentation tasks. The formula for calculating the F1 score is shown in equation (4): 

 𝐹1
 Precision  Recall 

 Precision  Recall 
 (4) 

In equation (4), Precision is the ratio of the number of pixels correctly predicted as 
the target to the total number of pixels predicted as the target. Recall is the ratio of the 
number of pixels correctly predicted as the target to the total number of actual target 
pixels.  

3.2 Implementation Settings 

All models were trained using the Adam optimizer with a learning rate set to 0.001 and 
a batch size of 8. The training was conducted on an NVIDIA GeForce GTX 4090 GPU 
with 24GB of memory, using PyTorch as the deep learning framework. 
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Fig. 3. Loss and Val Loss over Epochs  

Figure 3 shows the relationship between the loss function of the model and the num-
ber of epochs in this study. It can be observed that as the number of training epochs 
increases, the model's loss gradually decreases. When the training epochs approach 40, 
the loss on the training set converges to approximately 0.05, and the loss on the valida-
tion set stabilizes. This indicates that the model is able to extract useful features from 
the data and learn effectively, demonstrating good convergence. Additionally, it shows 
that the model has relatively low computational resource requirements. 

3.3 Performance Comparison 

To investigate the segmentation performance of the proposed EMF-NET, we conducted 
a performance comparison experiment. The experiment compared the performance of 
EMF-NET with other classic models: U-NET, Canny, Sobel, ED-NSNP, and EDTER 
on the two remote sensing datasets. The experimental results are shown in Table 1. 

Table 1. Comparison results of all methods on two datasets. 

DataSet GF-2 Denmark Marker 

Model F1 IOU F1 IOU 

U-NET 
Canny 
Sobel 

ED-NSNP[13] 
EDTER[14] 
EMF-NET 

81.71 72.64 78.31 69.34 
83.69 71.68 77.5 65.82 
83.01 70.96 78.16 66.81 
86.42 76.42 81.61 71.16 
88.94 79.14 82.01 73.35 
90.18 80.78 83.91 74.9 

As observed from the experimental results in Table 1, the baseline model U-NET 
achieved F1 and IOU scores of 81.71% and 72.64%, respectively, on the GF-2 remote 
sensing dataset. Edge Detection Transformer (EDTER) is an edge detection model 
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based on the Transformer architecture. Compared to traditional convolutional neural 
network (CNN) models, EDTER leverages the self-attention mechanism to capture 
both global and local information, thereby improving the accuracy and robustness of 
edge detection. Compared to the U-NET baseline model, its F1 and IOU values in-
creased by 7.23% and 6.5%. The EMF-NET designed in this paper consists of two core 
modules: the ECA Poolblock and a multi-layer fusion architecture. The ECA Poolblock 
uses one-dimensional convolution to capture inter-channel dependencies, avoiding 
complex dimensionality reduction and expansion processes, thereby preserving the in-
tegrity of the original channel features. This helps the model better learn and utilize the 
correlations between channels, achieving both efficiency and lightweight characteris-
tics. The multi-layer fusion architecture improves the model's generalization ability by 
integrating multiple independent prediction results and leveraging the differences be-
tween them, thereby compensating for the limitations of single-layer structures and 
making the results more precise. EMF-NET improved the F1 and IOU scores by 8.47% 
and 8.14%, respectively, compared to the U-NET baseline model. Additionally, it 
showed significant improvements over the advanced edge detection model ED-NSNP 
on the GF-2 remote sensing dataset, demonstrating the excellent performance of EMF-
NET in edge detection tasks. On the Denmark Marker dataset, EMF-NET achieved an 
F1 score of 83.91% and an IOU of 74.9%, significantly outperforming several other 
edge detection methods. This demonstrates the model's generalizability and excellent 
performance across different types of datasets. Figure 4 shows examples from the per-
formance comparison experiments of the three models—U-Net, ED-NSNP, and CCIS-
NET—on the GF-2 dataset. 

 

Fig. 4. Visualization results for case study 

As shown in Figure 4, two images from the GF-2 remote sensing dataset were used 
to demonstrate the instance segmentation effects. It was observed that the results from 
the U-NET baseline model contained significant noise and misclassification/omission 
issues at the boundaries. The more advanced ED-NSNP model reduced the amount of 
noise and, to some extent, preserved the boundary parts that were ignored in the U-NET 
results. However, it still failed to completely resolve the noise and misclassifica-
tion/omission problems. The rightmost images show the results of the proposed EMF-
NET model. Through the multi-layer fusion architecture and the ECA Poolblock, which 
enhance the extraction and retention of information in the input feature maps, the num-
ber of noise points in the segmentation results is significantly reduced. The EMF-NET 
model effectively addresses the misclassification/omission issues that are challenging 
for other edge detection methods, preserving the boundary parts that were ignored in 
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both U-NET and ED-NSNP. This demonstrates the superior performance of the pro-
posed EMF-NET model in edge detection tasks. 

4 Model Analysis 

4.1 Ablation Studies 

To investigate the performance improvement effect of the ECA Poolblock, which is 
based on the ECA attention mechanism, ablation experiments were conducted using the 
U-NET network as the foundation. The experiments compared the performance of four 
segmentation models on the GF-2 remote sensing dataset: U-NET, U-NET combined 
with the SE attention mechanism[15] (U-NET_SE), U-NET combined with the STN 
attention mechanism[16](U-NET _STN), and U-NET combined with the proposed 
ECA Poolblock (U-NET _ECA). The experimental results are shown in Table 2.  

Table 2. Ablation results of the attention mechanisms 

Model F1(%) IOU(%) 

U-NET 81.71 72.64 
U-NET_SE 82.98 73.85 

U-NET_STN 84.11 75.67 
U-NET_ECA 85.12 76.17 

Comparing the performance of the models combined with different attention mech-
anisms in Table 2, it is observed that both SE and STN improved the performance of 
U-NET to some extent. When combined with the proposed ECA Poolblock, the U-NET 
model's performance metrics improved by 3.41% and 3.53%, respectively, showing su-
perior optimization effects compared to the SE and STN attention mechanisms. This 
demonstrates the effectiveness of the ECA-based pooling module constructed in this 
paper. To investigate the performance improvement effect of the multi-layer fusion ar-
chitecture based on the multi-value fusion concept proposed in this paper, we compared 
the performance of two models on the GF-2 remote sensing dataset: U-NET_non using 
a single-layer network architecture and U-NET_mul using the multi-layer fusion archi-
tecture. The results of the ablation experiments are shown in Table 3. 

Table 3. Ablation results of the multi-layer fusion 

Model F1(%) IOU(%) 

U-NET_non 81.71 72.64 
U-NET_mul 86.17 75.86 

As observed from the results in Table 3, the multi-layer stacked architecture de-
signed in this paper significantly improves the model's generalization ability by inte-
grating multiple independent prediction results. U-NET_mul can fully leverage the dif-
ferences between various prediction results, compensating for the limitations of obtain-
ing segmentation results using only a single-layer structure. This leads to more accurate 
segmentation results, with an improvement of 3.22% in IOU and 4.46% in F1 compared 
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to U-NET_non. These results demonstrate the effectiveness of the multi-layer fusion 
architecture in optimizing model performance.  

5 Conclusion 

This paper proposes an Efficient Channel Attention Optimized Multi-layer Fusion Edge 
Detection Network (EMF-NET). By introducing the ECA attention mechanism during 
the downsampling process, it addresses the issue of boundary information loss caused 
by changes in feature map resolution in U-NET. Additionally, to tackle the problem of 
boundary blurring due to the inability to fully capture fine edge features in high-reso-
lution remote sensing images, a multi-layer fusion architecture based on the multi-value 
fusion concept was constructed. This significantly enhances U-NET 's performance in 
high-resolution remote sensing image edge extraction tasks. Finally, experimental re-
sults on the GF-2 dataset demonstrate that EMF-NET outperforms advanced algorithms 
in boundary extraction. 
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