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Abstract. Simulating the propagation of congestion in urban rail transit systems 

is a complex and multifaceted task, especially when dealing with periods of 

excessive overcrowding. This study aims to address this challenge by presenting 

a predictive model for traffic congestion based on the SIR (Susceptible, Infected, 

Recovered) model commonly used in epidemiology. By formalizing the 

phenomenon of congestion as a process of susceptibility recovery, we hope to 

provide a more comprehensive understanding of how it spreads within urban rail 

networks. 

In developing our predictive model, we have identified six key contributing 

factors that influence the rate at which congestion spreads. These factors include 

passenger flow, train intervals, ease of passenger transfers between lines or 

stations, timing of congestion events throughout the day, initial station affected 

by congestion, and overall station capacity. By considering these factors in our 

model, we aim to provide transit authorities and planners with valuable insights 

into how they can effectively manage and mitigate congestion within their 

systems. 

To illustrate the potential impact of our SIR-based model on managing urban 

rail transit congestion, we offer an illustrative example that demonstrates its 

practical application. Through this example scenario, we hope to showcase how 

our approach can enhance existing strategies for addressing overcrowding and 

improving overall system efficiency. 

Ultimately, our goal is to contribute to the development of more effective 

solutions for managing congestion in urban rail transit systems through data-

driven modeling and analysis. We believe that by leveraging advanced predictive 

models such as the SIR framework, transit authorities can make informed 

decisions that lead to better service reliability and improved passenger 

experiences. 

Keywords: infectious disease control, SIR epidemic model, transportation 

networks. 

  

© The Author(s) 2024
Z. Ahmad et al. (eds.), Proceedings of the 2024 5th International Conference on Urban Construction and
Management Engineering (ICUCME 2024), Advances in Engineering Research 242,
https://doi.org/10.2991/978-94-6463-516-4_2

https://doi.org/10.2991/978-94-6463-516-4_2
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-516-4_2&domain=pdf


1 Introduction 

Nowadays, the world is facing an unprecedented challenge posed by the rapid spread 
of a contagious virus called Coronavirus or COVID-19 [1]. In response to this 
epidemic's swift transmission, the Chinese government accomplished several measures 
in late January to impede its outbreak such as imposing a lockdown on Wuhan city and 
closing all access routes leading to it [2]. As of now, the pandemic has been recognized 
in nearly 213 countries and worldwide. On January 13th, 2020, Thailand became the 
first country outside of China to report an outbreak of COVID-19 [3]. By May 28th, 
2020, there were approximately 5.76 million cases globally with around 2.39 million 
recoveries and sadly resulting in about 358 thousand deaths [4]. 

The declaration of COVID-19 as an epidemic and Global Public Health Emergency 
was made by the World Health Organization (WHO) on January 30th, 2020 [5], 
coinciding with a significant date that highlighted its worldwide threat on March 11th, 
2020 [6]. As a result, COVID-19 was classified as a global pandemic. Governments 
across the globe have implemented measures to contain the spread of this new 
coronavirus by imposing restrictions on movement and social interactions. The 
implementation of social distancing has been widely acknowledged as an effective 
strategy in managing transmission. The rapid increase in global cases has presented 
significant challenges in various sectors such as public health, politics, economics, 
education, and social behavior. Additionally, poverty rates and unemployment levels 
have surged globally due to the consequences of this outbreak. Managing COVID-19 
has proven exceptionally difficult due to its highly contagious nature combined with 
prolonged incubation periods and limited understanding of how it spreads. Countries 
worldwide are actively collaborating in extensive efforts aimed at reducing or 
preventing further outbreaks [7]. Numerous healthcare organizations and 
pharmaceutical companies are racing against time to develop vaccines or treatments for 
COVID-19, however, none have achieved success thus far. The impact on the global 
economy has been severe with many nations facing substantial economic crises caused 
by the devastating effects of this virus [8]. 

Given the current global uncertainty, it is crucial for policymakers to possess 
accurate assessments of the impact COVID-19 has had so far and its potential future 
consequences [9]. Precisely predicting the spread of this pandemic can aid officials in 
implementing effective preventive measures and preparing for healthcare interventions. 
While obtaining precise estimations may present challenges, researchers can employ 
established methodologies to generate approximate forecasts. This valuable 
information equips authorities with vital data for making well-informed decisions 
regarding strategies aimed at minimizing the repercussions of COVID-19 [10]. 

The SIR model, a widely used mathematical framework for predicting pandemics, 
is based on the acronym Susceptible-Infected-Recovered. It divides individuals into 
three categories: those susceptible to the disease, those confirmed as infected and 
capable of spreading it, and those who have either recovered or died from the illness 
[11]. These classifications represent different stages of a contagious disease. The SIR 
model is particularly useful in estimating healthcare needs during an epidemic by 
assuming that individuals who recover from a disease gain lifelong immunity and 
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cannot be reinfected. Despite their simplicity, SIR models have shown significant 
accuracy in forecasting pandemics. 

Apart from the process of transmitting, the expansion of urban traffic congestion is 
acknowledged as a complicated phenomenon that requires the utilization of 
computationally intensive microscopic models for analysis. This research introduces a 
framework that utilizes SIR models, similar to those employed in modeling disease 
transmission among populations, to demonstrate how traffic congestion spreads and 
dissipates within cities. By conducting empirical analyses across different cities, we 
validate the proposed dynamics based on contagion. This framework can be utilized for 
monitoring, predicting, and controlling the proportion of congested links in urban 
networks over time. 

2 Basic Definition of Sir Model 

Lorenzo Pellis and his team have made a noteworthy discovery indicating that practical 
scenarios can be incorporated into stochastic epidemic models [12], even without 
considering the temporal dynamics of the outbreak. Despite ignoring the temporal 
dynamics, this model still preserves the distribution of final sizes. In this research, the 
SIR model is utilized to examine traffic congestion on highways by considering three 
states: susceptible to congestion (𝑆), experiencing congestion (𝐼), and relieved from 
congestion (𝑅). These states are represented as time-dependent functions denoted as 
𝑆 𝑡 , 𝐼 𝑡 , and 𝑅 𝑡  respectively [13]. 

In areas with heavy traffic, the presence of vehicles has a stochastic impact on nearby 
uncongested vehicles, characterized by an average transmission rate denoted as 𝜆. At 
the same time, vehicles gradually move away from the congested area at an average 
recovery rate of 𝜇 (transitioning from infected to recovered state). Moreover, vehicles 
affected by congestion can also contribute to further congestion through the average 
transmission rate 𝜆 (transitioning from susceptible to infected state) [14]. 

In the SIR propagation model, a constant total number of vehicles, denoted as 𝑁, is 
utilized throughout the process. The variable 𝑆 𝑡  represents vehicles experiencing 
free-flowing traffic conditions, while 𝐼 𝑡  signifies congested vehicles and R(t) 
denotes departing vehicles. Consequently, there exists a differential equation that 
governs the interrelationships among these variables: 

   𝛽 𝑆 𝐼 (1) 

   𝛽 𝑆 𝐼 𝑣 𝐼 (2) 

  𝑣 𝐼  (3) 
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3 Modified Sir Model 

Given that the initial SIR model is a dynamic mathematical framework at a micro level 
utilizing ordinary differential equations, there exists potential for enhancement in 
characterizing vehicles operating in congested scenarios, particularly those engaged in 
continuous movement. Additionally, while addressing computationally demanding 
differential equations within the SIR infectious disease model tends to oversimplify 
intricate random behaviors encountered, adopting a cellular automata approach 
simplifies both the verification and resolution of complexities associated with this 
matter [15]. Furthermore, this alternative method enables a more precise depiction of 
complex stochastic behaviors by offering an improved configuration setup. As a result, 
simulations incorporating both temporal and spatial congestion propagation attributes 
become viable. 

Cellular automata is a discrete model that operates on time-space and state, 
comprising of four essential components: cell, cell space 𝐿, cell neighbor 𝐾, and cell 
rule 𝐹. Specifically, CA = (𝐿, 𝑆𝑑, 𝐾, 𝐹), where 𝑆𝑑 represents the set of states for 
each individual cell. By utilizing the CA-SIR model in conjunction with these 
definitions [16], it becomes feasible to effectively tackle the problem of traffic 
congestion propagation. A network is formed by 𝑁  cells, wherein each cell 
corresponds to a vehicle. The future condition of a cell relies on its present state and 
the conditions of adjacent cells. The ensemble of cell states is denoted as 𝑆𝑑 , , 
representing the state of the cell in row 𝑖 and column 𝑗 at time 𝑡. We define 𝑆𝑑 ,  = 
{0, 1, 2}, where 0 indicates susceptible vehicles to congestion (𝑆 ), 1 represents 
congested vehicles ( 𝐼 ), and 2 denotes unaffected vehicles by congestion ( 𝑅 ). 
Neighborhood rules are based on Moore-type neighbors. Evolution rule for cells: When 
𝑆𝑑 ,  = 0, if there are congested vehicles nearby, each congested vehicle has a 
probability λ of being influenced. If successful, 𝑆𝑑 ,  becomes 1; otherwise, 𝑆𝑑 ,  
remains as 0. When 𝑆𝑑 ,  = 1, with a probability b during each unit time step, a 
congested vehicle may transition into an uncongested impact vehicle. If successful, 
𝑆𝑑 ,  becomes 2; otherwise, 𝑆𝑑 ,  remains as 1. 

4 Case Study and Contributing Factors 

In addition to the SIR model and propagation rate, we will also consider factors such 
as passenger flow patterns, train schedules, and station capacity in our quantitative 
analysis of urban railway networks. By taking a comprehensive approach, we aim to 
provide a more thorough understanding of the operational conditions and challenges 
faced by these networks. 

The case study conducted at Beijing Xizhimen Station serves as an important 
example of how our approach can be applied in real-world scenarios. The station's role 
as an interchange for multiple lines makes it a particularly relevant location for studying 
oversaturation and congestion issues within urban railway systems. 
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Figure 1 provides a visual representation of the rail transit network at Xizhimen 
Station, allowing us to better understand the layout and connections between different 
lines. This information is crucial for identifying potential bottlenecks or areas where 
improvements can be made. 

Our calibration process involved collecting data on various aspects of station 
operations, including passenger counts, walking speeds, departure intervals, travel 
times between stations, and total journey durations. These data points were essential 
for validating the accuracy of our calculations using the SIR model. 

Furthermore, by comparing our findings with existing research (as presented in 
Tables 1, 2 and 3), we are able to situate our analysis within the broader context of 
urban railway network studies. This comparative approach allows us to identify any 
discrepancies or similarities with previous work and contributes to the overall 
robustness of our methodology. 

 

Fig. 1. A part of Beijing metro network [17] 

The difference in transfer rate between line 4 and line 2 becomes apparent when 
comparing other research findings [18], while the remaining transfer rates show 
similarity. In contrast to our collected data, the project evaluation report from China 
Metro Engineering Consulting Company [19] provides more precise information. 
Therefore, we have chosen to use our collected data as a reference point for parameter 
calibration. Table 2 presents time-related parameter values for three lines at Xizhimen 
Station. Additionally, Table 3 compares walking speeds during transfers at Beijing 
metro line 5 and Haidian Huangzhuang Station, which serves as an interchange station 
for both line 10 and line 4, with the data obtained at Xizhimen Station. 

Table 1. The number of the rate at which passengers are transferred [17] 

Subway routes 
Transfer rate during 

peak hours (%) 
Transfer rate during 
normal hours (%) 

Transfer rate 
(%) in 2015 

Line 4 to line 2 13 9 75 
Line 13 to line 2 36 27 27 
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Line 2 to line 4 27 28 51 
Line 13 to line 4 31 2 8 

Line 2 to line 13 40 39 43 

Line 4 to line 13 6 5 7 

Table 2. The number of the parameters related to time [17] 

Metro lines 

Duration 
of 

walking 
during 
rush 
hours 
(min) 

Duration 
of 

walking 
during 
regular 
hours 
(min) 

Duration 
of 

waiting 
during 
busy 

periods 
(min) 

Duration 
of 

waiting 
during 
regular 

operating 
hours 
(min) 

Duration 
of travel 
between 
a pair of 
stations 
(min) 

Overall 
duration 

of 
operation 

(min) 

Line 4 to 2 3.72 2.69 2.09 4.51 2.02 39.12 
Line 13 to 2 6.64 3.64 2.01 4.52 2.03 39.07 
Line 2 to 4 3.82 2.70 2.03 4.01 2.02 79.02 

Line 13 to 4 5.25 3.03 2.53 4.03 2.11 79.03 
Line 2 to 13 6.79 3.56 2.62 5.49 3.09 50.11 

Line 4 to 13 8.11 5.11 2.63 5.50 3.04 50.09 

Table 3. Peak-hour pedestrian velocity within the transfer corridor for passengers [17] 

Metro lines 4-2 13-2 2-4 2-13 2-13 4-13 
The pace of walking 

(m/s) 
0.828 0.732 0.793 0.720 0.617 0.644 

Table 4. The data input for the calculation of calibration values [17] 

Metro lines 

Data 
sequence 
of peak-

hour 
features 

𝑋  

Data 
sequence 

of 
correlation 

factor 
during 
peak 

hours 𝑋  

Data 
sequence 

of 
correlation 

factor 
during 
peak 

hours 𝑋  

Data 
sequence 

of 
regular-

hour 
features 

𝑋  

Data 
sequence 

of 
correlation 

factor 
during 
regular 

hours 𝑋  

Data 
sequence 

of 
correlation 

factor 
during 
regular 

hours 𝑋  
Line 4 to 2 3.73 0.12 0.16 0.34 0.08 0.22 
Line 13 to 2 6.63 0.33 0.29 0.51 0.26 0.27 
Line 2 to 4 3.83 0.24 0.14 0.32 0.27 0.14 
Line 13 to 4 5.27 0.35 0.15 0.15 0.04 0.13 
Line 2 to 13 6.78 0.40 0.23 0.61 0.38 0.21 

Line 4 to 13 8.12 0.08 0.26 0.33 0.06 0.27 
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The calculation results for calibration model is shown in Table 4. Based on the data 
presented in Tables 1 and 2, Table 5 displays the calculated value of kpeak, which 

represents the propagation rate. For simulation purposes under oversaturated 
conditions, line 4's propagation rate (𝑘   = 28.7%) is selected as the peak-hour 
𝑘 . 

Table 5. Variations in the congestion propagation rate 𝒌𝒑𝒆𝒂𝒌 across various lines [17] 

Subway routes Rate of dissemination (%) 
Line 4 to 2 16.5 

Line 13 to 2 30.2 
Line 2 to 4 17.3 

Line 13 to 4 19.7 
Line 2 to 13 30.4 
Line 4 to 13 15.1 

Line 2 30.1 
Line 4 27.8 

Line 13 19.9 

 

Fig. 2. Congestion propagation procedure [17] 

The congestion propagation process depicted in Figure 2 demonstrates a rapid 
increase in the number of congested stations within the first 5 minutes. Subsequently, 
there was a decrease observed at time step 8, followed by a minor reduction between 
time step 8 and 25. In order to compare the simulation results with real-life 
circumstances, we made adjustments to parameter 𝑁  as shown in Figure 3a. The 
alternatives for measures taken by operators are illustrated in Figure 2, which include 
bypassing stations 1 and 3 without stopping, and reducing the time step from 5 to 3 for 
neighboring stations to the initial station experiencing congestion (𝑁 ). As a result of 
these adjustments, within a span of 25 minutes, the number of congested stations 
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decreases to only six, with stabilization occurring between time step 10 and 25. By 
varying its value (e.g., using values such as 5 ,4 ,3 and 2), we can better illustrate how 
parameter 𝑁  impacts the system. This is demonstrated through simulations presented 
in Figure 3a. Additionally, Figure 3b displays different evolutions of propagation rates: 
0.23 ,0.20 ,0 .16 and 0 .10, respectively. From this figure, it can be concluded that if we 
reduce the propagation rate, the total number of congested stations will also decrease. 
However, a comparison between (b) and (a) clearly indicates that reducing adjacent 
stations significantly mitigates an increase in total congestion while improving 
efficiency accordingly. 

Studies have indicated that the expansion of congested stations is directly impacted 
by an increase in the rate of transmission. Therefore, a more effective strategy would 
involve bypassing certain stations without stopping to decrease the number of 
neighboring stations 𝑁 . Furthermore, there are several measures available to alleviate 
overcrowding by reducing the transmission rate 𝑘. These tactics involve managing the 
flow of passengers at entry and exit points, adjusting train schedules, improving transfer 
convenience, and expanding station accessibility. 

 
Fig. 3. Reproduction of congestion spread simulation with varying parameter values. [17] 

5 Conclusions 

The SIR model, which stands for Susceptible, Infected, and Recovered, is a widely used 
mathematical model in epidemiology to understand the spread of infectious diseases. 
In recent years, this model has also been applied to study congestion in transportation 
networks. By simulating the transmission of congestion in an overloaded network, the 
SIR model provides valuable insights into how congestion spreads and how it can be 
resolved. 

One novel method that has been introduced to determine the speed at which 
congestion spreads is through analyzing various factors that influence its spread. These 
factors include passenger movement characteristics, time intervals between train 
departures, ease of passenger transfers, timing of congestion occurrences, initial station 
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where congestion starts, and station capacity. By taking these factors into account, 
strategies can be generated for resolving oversaturation and improving congestion 
management. 

However, there are still additional significant factors that require further 
investigation to enhance the capabilities of the SIR model. For example, understanding 
how different types of transportation modes (such as buses or subways) interact with 
each other during peak travel times could provide valuable insights into managing 
overall network congestion more effectively. 

Overall, the SIR model provides a comprehensive analysis of processes related to 
congestion and offers insights into predicting trends so that traffic controllers can 
quantitatively observe these processes. As technology continues to advance and data 
collection becomes more sophisticated in transportation systems around the world, the 
application of mathematical models like SIR will continue to play a crucial role in 
improving our understanding and management of network congestions [20]. By 
differentiating between various measures aimed at enhancing congestion conditions, 
this model enables traffic controllers to evaluate outcomes and select optimal solutions 
for effectively resolving oversaturated conditions. This includes the ability to analyze 
the impact of infrastructure improvements, such as adding new lanes or implementing 
public transportation options, on reducing congestion. 

As the need for daily passenger transportation grows, it becomes crucial to include 
an assessment of congestion propagation and efficiency differentiation in urban transit 
networks' expansion plans. This will involve considering factors such as population 
growth, land use patterns, and economic development when planning for future transit 
system expansions. 

In addition, effective recovery strategies can be developed by employing a 
comprehensive quantitative model like SIR. This model can replicate current conditions 
within urban transit systems and accurately predict congestion spread trends based on 
real-time data analysis. By utilizing this predictive tool, traffic controllers can 
proactively implement measures to alleviate potential congestion hotspots before they 
become problematic for commuters. 
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