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Abstract. Climate change and land conversion adversely affected paddy 

productivity. On the other hand, paddy price has asymmetrically responded to 

changes in input costs. The price adjustment more slowly when input costs 

increase. The study investigated the impact of climate change and prices 

dynamics on the supply response of paddy in West Kalimantan. The study 

employed Auto-regressive Distributed Lag (ARDL) model approach to the 

cointegration with an error correction term and used monthly time series data 

from January 2018 – April 2023. The study found that climate change and energy 

prices index negatively effect paddy supply in the short and long run. The study 

further exhibited that paddy and fresh fruit bunches producer prices have a 

positively significant effect paddy supply in the short run. In the long run, 

increased paddy producer price show decreased productivity. The study 

recommends that supporting small farmers in increasing paddy supply requires 

policy interventions such as climate change adaptation, land expansion poli-cy, 

income diversification,  input and output subsidies. 
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1 Introduction 

Rice is the most important food in the world because more than half of the world's 

people eat it every day. Rice provides 20% of the world's energy through food. It is also 

the main basic food for the poorest and least-nourished people in Asia and Africa, who 

can't buy or don't have access to more healthy foods [1]. Consequently, rice is 

considered one of the most important goods in the world. It is linked not only to global 

food security, but also to economic growth, job creation, social safety, and peace in the 

area. 
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Rice (paddy) is recognized as a crucial agricultural commodity for the Indonesian 

economy [2]. In 2021, the paddy harvest area reached around 10.41 million hectares or 

decreased by 245.47 thousand hectares (2.30%) compared to 2020. Meanwhile, paddy 

production in 2021 was 54.42 million tons. If converted into rice, rice production in 

2021 reached around 31.36 million tons, or a decrease of 140.73 thousand tons (0.45%) 

compared to rice production in 2020 [3]. On the other hand, there was an increase in 

rice consumption from 2019 reaching 77.5 to 114.6 kg per capita per year in 2021 [4]. 

In 2022 Indonesia is the fourth largest rice consumption country in the world reaching 
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35.3 million tons [5]. A disparity in consumption and production suggests insufficient 

national rice. However, the rice production is still lower than the needs of Indonesia’s 

266.91 million population. In order to meet national rice needs, in the 2015–2019 pe-

riod, on average, Indonesia imported 1.03 million tons of rice per year. Furthermore, 

rice production has a positive and significant effect on food security, this means an 

increase in paddy production [6]. Hence, national rice production should be maintained 

and even increased, such that that food security in Indonesia can be maintained [7].  

Land use competition continues to grow as the regional economy develops [8]. The 

decrease of paddy fields as a result of functions being shifted for non-agricultural and 

the tendency for irrigated rice output to slope downward, particularly on the island of 

Java, which is the the center of rice crops in Indonesia. Conversion of paddy fields 

occurred at 96 thousand ha per year [9].  BPS shows that within 10 years, Indonesia 

lost 1 million ha of paddy fields. Existing paddy fields are decreasing due to conversion 

and levelling off, especially in intensive rice fields [10].  

Seeing the conditions that occur in Java, the increase in production is directed at 

expanding production areas outside Java by utilizing neglegted land, transmigration 

area land and upstream watershed agricultural land. Beyond  Java Province, there is 

potential land for the expansion of agricultural areas in wetlands in  amounting to 7.3 

million ha [10]. The cultivation of rice plants is targeted towards suboptimal regions, 

mostly located beyond the island of Java. West Kalimantan Province show that the 

potential land area for the development of wetland food crops reaches 1,090,514 ha 

[11]. However, the use of existing paddy fields in 2022 is only 241,479 ha [12]. This 

shows that there are still large opportunities for rice field expansion in West Kaliman-

tan. The available land that can be developed for rice field development is identified as 

covering an area of 411,960 ha and more than half of them are in Sambas and Ketapang 

regencies [13]. 

However, at this time there is also increasing land use competition, especially be-

tween subsistence crops (rice) and commercial destination commodities in West Kali-

mantan Province. Land conversion from rice to oil palm is often associated with a de-

crease rice area, mainly in oil palm development centers [7]. Land use competition be-

tween oil palm and rice commodities like this has occurred in several oil palm devel-

opment areas [14][15]. Farmers choose to cultivate oil palm because this plant is more 

economically profitable. This change in land use from rice to oil palm is feared to 

threaten the sustainability of food crops, especially rice. Hence, land use management 

should be carried out properly to prevent the decline in rice agricultural land as a result 

of the conversion to oil palm plantations [7]. This pressure has resulted in efforts to 

increase rice productivity or even its sustainability has been disrupted [8]. It is proven 

that West Kalimantan's rice productivity is still very low, only reaching 30.28 kw/ha 

from the national productivity which reached 52.38 kw/ha [12].  

In some research trend yield explained more than 80 percent of the yield changes 

over time, suggesting a minor role for other factors such as prices. However, farmers' 

supply response is mostly dominated by non-price factors over price factors. Non-price 

factors include the area of production, rainfall, import, exchange rate, etc. Because of 

the imperfect condition of such factors, farmers may become reluctant to grow more 

rice in the next production period [16]. 
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Climate change is clearly the dominant factor explaining the main part of yield de-

viations from the trend. Climate change has a variety of impacts on crop yields and is 

known to have potential effects on (regional) crop yield evolution [17]. El Ni˜no South-

ern Oscillation (ENSO) is one of the most important drivers of climate variability glob-

ally, affecting significantly the frequency of heavy rains,flooding, drought, and heat 

waves. Understanding the risks posed to agricultural production by the occurrence of 

El Ni˜no and La Ni˜na events (the warm and cool phases of ENSO, respectively) is 

crucial for guiding adequate responses that mitigate negative climate variability impacts 

[18]. The El Nino-Southern Oscillation affects Indonesian rainfall. ENSO is an atmos-

pheric-sea interaction in the tropical Pacific Ocean that alternates between cold (La 

Nina) and warm events. (El Nino). Recent rainfall anomalies have reduced crop acre-

age, size, and yields, affecting grain output [19]. El Nino and La Nina dominated West 

Kalimantan from June to August [20]. In the resent years annual precipitation levels 

typically do not have a substantial influence on the production of paddy fields in the 

majority of the West Kalimantan area [21]. 

To better understand how economic decision making affects paddy yields, open the 

production technology-box and relate it to inferred agronomic activities and yields [22]. 

The measurement of supply elasticity, which quantifies the quantity response to 

changes in pricing, is a crucial tool for informing judgments on policy changes. The 

concept of supply elasticity has significant relevance in the field of production econom-

ics and is now used by agricultural economists as a means to assess the efficacy of 

pricing strategies in the allocation of resources among farmers. Estimations of supply 

responsiveness serve as valuable indicators for the development of economic policy 

formulations [23].  

The current search problem arises because changing agricultural policies have 

caused significant structural changes in supply response; variations in costs, prices, pro-

duction technologies, and climate conditions over time are considered the main factors 

that affect the supply response of any crop; and decisions about which crops to produce 

are optional. The discovery and evaluation of such correlations could improve future 

cultivated area projections, allowing farmers to make short- and long-term choices [24].  

The issue of agricultural supply responsiveness has always been a crucial concern in 

the pursuit of sustainable economic growth. However, the desired outcome may not be 

realized by rice farmers even if the aforementioned structural issues, namely non-price 

constraints, persist. The primary focus of this study is to analyze the response of paddy 

supply to both climate change and price dynamics. Additionally, the explain the con-

cept of responsiveness in both the short and long term? The assessment of supply re-

sponse characteristics has significant potential in enabling informed decision-making 

among rice farmers and other stakeholders involved in the production and marketing 

processes. Moreover, the evaluation of agricultural supply response serves as a legiti-

mate approach to analyzing the influence of climate change and price dynamics. The 

study used the Error Correction version of the Autoregressive Distributed Lag (ARDL) 

technique to cointegration. This approach allows for the inclusion of mixed regressors 

and enables separate estimation of both long-run and short-run elasticities.  
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2 Research and Methods 

The study used secondary data, including paddy yield, the ENSO index, producer prices 

for paddy and fresh fruit, and the energy price index.  The data used in this research 

were obtained from many sources, which included the Central Statistics Agency (BPS) 

of West Kalimantan Province, the International Monetary Fund, and the National Oce-

anic and Atmospheric Administration.  The dataset included a time frame spanning 

from January 2018 to April 2023, with all values being converted into logarithmic rep-

resentation. In order to assess the impact of climatic change and price dynamics on 

paddy supply in West Kalimantan, this study used the Autoregressive Distributed Lag 

(ARDL) technique developed by Pesaran[25]. 

2.1 Theoretical Framework of Supply Response Approach 

The present study proposes a framework for analyzing the supply response of paddy 

using the Nelovian partial adjustment model. The Nerlove model established the con-

cept of partial adjustment, which posits that due to the time required for equilibrium to 

be reached, only a partial adjustment occurs during a given time period. The delay seen 

in achieving equilibrium may be attributed to several factors, one of which being the 

time required for consumer preferences to evolve and adapt, as well as the time needed 

for production processes to adjust accordingly [26]. The supply model is characterized 

by its ability to determine the output based on a collection of exogenous variables, 

which include delayed output, input prices, and other factors that influence supply. Re-

sponse models for supply are often calculated using either a direct process or a duality 

technique.  One significant benefit of this method is its simplicity in terms of data needs 

and the potential for a reduced number of specification mistakes. The Nerlovian model 

is considered to be more realistic in comparison to other supply response models due 

to its assumption of a progressive and continual adjustment of short-run supply to long-

run value, as well as the recursive creation of price expectations.  The conventional 

structural format of the Nerlove model is as follows: 

𝐴𝑡
∗ = 𝛼0 + 𝛼1𝑃𝑡

∗ + 𝛼2𝑍𝑡 + 𝑈𝑡 (1) 

Equation 1 delineates the relationship between desired productivity and expected 

price, with the former being influenced by the latter as well as an exogenous variable 

and a disturbance term. The Nerlove model included the addition of a significant non-

market variable, denoted as Z, in order to mitigate challenges related to parameter iden-

tification. The symbols denoting the variables are presented in the following manner.: 

𝐴𝑡
∗ =desired productivity at time t 

𝑃𝑡
∗ = expected future price at time t 

𝑍𝑡 = any oyher relevant variable at time t  

𝑈𝑡 = random residual 

𝛼0, 𝛼1, 𝑎𝑛𝑑 𝛼2 = parameters 
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2.2  Model Specification of Supply Response Approach 

The assessment of the paddy supply response may be quantified by considering many 

factors such as the overall cultivated land area, the resulting output or yield, and the 

total production per unit of land area. The determination of aggregation levels is con-

tingent upon the research purpose and the accessibility of data. The chosen approach 

for capturing the supply response models included using natural logarithmic transfor-

mation for both the dependent and independent variables. The incorporation of exoge-

nous variables, such as the price of fresh fruit bunches serving as a proxy for the price 

of alternative crops, was expected in order to enhance the existing models. The ENSO 

index serves as a proxy for assessing climatic change, while the energy price index 

functions as a proxy for evaluating pricing inputs.  

This study used the autoregressive distributed lag (ARDL) approach to assess the 

effects of climatic change and price dynamics on paddy output in the region of West 

Kalimantan [25]. The ARDL approach was chosen because to its ability to estimate 

both long and short-term cointegration connections among the variables under exami-

nation. In this study, the autoregressive distributed lag (ARDL) methodology is utilized 

to address the issue of cointegration. This approach ensures that the estimates of supply 

response remain consistent even in the presence of endogeneity in the regressors. Ad-

ditionally, it allows for the estimation of separate long-run and short-run elasticities 

when exogenous variables do not possess the same level of integration [23]. This 

method can also be used to find out if variables are cointegrated at integration order I 

(0), I (1), or a mix of both. 

The ARDL model encompasses many techniques as a starting point. To ascertain the 

integration order of the variables, the research used the Augmented Dickey-Fuller 

(ADF) and Phillips-Perron (PP) unit root tests prior to implementing the time series 

econometric model. It is important to guarantee that the study variables demonstrate 

stationarity and do not feature integration beyond the second level. When a variable 

exhibits integration beyond the second order, it has the potential to provide imprecise 

results. In order to evaluate the presence of cointegration among the variables, the 

boundaries cointegration test was used. This research examines the influence of climate 

change and price dynamics on paddy yields. The variables included are the ENSO in-

dex, energy price index, fresh fruit bunches, and paddy producer pricing. 

Hence, the below expression represents the typical structure of the paddy yield func-

tion.: 

𝑌𝑖𝑒𝑙𝑑𝑡 = 𝑓(𝐸𝑁𝑆𝑂𝑡 , 𝑃𝑃𝑃𝑡 , 𝑃𝐹𝐹𝐵𝑡 , 𝐸𝑁𝐸𝑅𝐺𝑌𝑡) (2) 

Yield for paddy productivity, Climate Change for ENSO Index, PPP for Paddy Pro-

ducer Price, PFFB for Fresh Fruit Bunches Prices and ENERGY for Energy Price In-

dex. 

The linear model may be developed by using the natural logarithm:  
𝐿𝑛𝑌𝑖𝑒𝑙𝑑𝑡 = 𝛼0 + 𝛼1𝐿𝑛𝐸𝑁𝑆𝑂𝑡 + 𝛼2𝐿𝑛𝑃𝑃𝑃𝑡 + 𝛼3𝐿𝑛𝐹𝐹𝐵𝑡 + 𝛼4𝐿𝑛𝐸𝑁𝐸𝑅𝐺𝑌𝑡 + 𝜀𝑡 (3) 

  

Where 𝛼1, 𝛼2, 𝛼3, 𝛼4 are the coefficients to be estimated 𝛼0 is the intercept and 𝜀𝑡 is 

the error term. In order to investigate the short-term and long-term paddy yield, The 
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equation may be expressed equation 3 as the long-run cointegration of the ARDL equa-

tion as follows: 

𝐷𝐿𝑛𝑌𝑖𝑒𝑙𝑑𝑡 = 𝛽0 + ∑ 𝛽1𝐷𝐿𝑛𝐸𝑁𝑆𝑂𝑡

𝑛

𝑖=1

+ ∑ 𝛽2

𝑛

𝑖=1

𝐷𝐿𝑛𝑃𝑃𝑃𝑡 + ∑ 𝛽3

𝑛

𝑖=1

𝐷𝐿𝑛𝐹𝐹𝐵𝑡 + ∑ 𝛽4

𝑛

𝑖=1

𝐷𝐿𝑛𝐸𝑁𝐸𝑅𝐺𝑌𝑡

+ 𝛾1𝐿𝑛𝐸𝑁𝑆𝑂𝑡 + 𝛾2𝐿𝑛𝑃𝑃𝑃𝑡 + 𝛾3𝐿𝑛𝐹𝐹𝐵𝑡 + 𝛾4𝐿𝑛𝐸𝑁𝐸𝑅𝐺𝑌𝑡 + 𝐸𝐶𝑀𝑡 + 𝜀𝑡 

(4) 

Where 𝛽1, 𝛽2, 𝛽3, 𝛽4 are the coefficient of short-run dynamics and γ1 is the coeffi-

cient of long-run for paddy  yield 

𝐷 𝑎𝑛𝑑𝜀𝑡   represent the first difference operator and the error term, respectively. An 

Ordinary Least Square (OLS) regression was conducted using equation 3 in order to 

ascertain the presence of long-term cointegration among the variables. This research 

used the ARDL limits F-statistic to ascertain the presence of cointegration over time 

between climatic change, price dynamic variables, and paddy output in West Kaliman-

tan. The null hypothesis of no association and the hypothesis of long-term solid cointe-

gration were examined in our study. Consequently, the next assumptions were formu-

lated: 

𝐻0: 𝛾1 = 𝛾2 = 𝛾3 = 𝛾4this null hypothesis demonstrates that in the long run paddy 

yield and climate change and prices are not cointegrated. 

𝐻1: 𝛾1 ≠ 𝛾2 ≠ 𝛾3 ≠ 𝛾4 this alternative hypothesis indicates that in the long run 

paddy yield is cointegrated  with climate change and prices.  

The Johansen cointegration approach will validate long-term cointegration with cli-

mate change and pricing next. After establishing the long-term link between the varia-

bles of interest, analyze their short-term correlation. Equation (4) was employed. We 

can investigate short-term dynamics and error correction term using the ARDL model.  

After identifying long-term relationships on study variables, we use diagnostic tests 

to check our results' dependability. Serial correlation was examined using the Breusch-

Godfrey LM test. We also tested heteroscedasticity using the Breusch-Pagan-Godfrey 

test and model stability with the Ramsey Reset, CUSUM, and CUSUM Square tests. 

3 Result and Discussions 

Descriptive statistics for research variables are needed to start data analysis. Results of 

descriptive statistics are in Table 2. We find positive skewness in all variables and al-

most similar means and medians. All variables have kurtosis values below 3, which 

fulfills the cutoff value of 3. 
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Table 1.  The summary of descriptive statistics. 

 YIELD ENSO PPP PFFB ENERGY 

Mean 1.109 (0.306) 8.605 7.510 5.072 

Median 1.096 (0.450) 8.593 7.495 5.010 

Maximum 1.311 0.900 8.780 8.252 5.931 

Minimum 0.962 (1.300) 8.492 6.964 4.023 

Std. Dev. 0.088 0.655 0.065 0.320 0.419 

Skewness 0.433 0.324 0.532 0.321 0.011 

Kurtosis 2.294 1.656 2.861 2.247 2.742 

 

Jarque-Bera 3.333 5.933 3.074 2.608 0.179 

Probability 0.189 0.051 0.215 0.271 0.914 

 

Sum 70.947 (19.600) 550.721 480.672 324.596 

Sum Sq. Dev. 0.487 26.998 0.270 6.465 11.076 

 

Observations 64 64 64 64 64 

 

To examine the enduring association between the variables being examined, this re-

search used two kinds of unit root tests, namely the Augmented Dickey-Fuller (ADF) 

test and the Phillips-Perron (PP) test. Table 2 presents the results of the conducted tests, 

indicating that none of the variables exhibit stationarity at their respective levels. Nev-

ertheless, when applying the first difference, it is seen that all variables exhibit station-

arity and integration, so indicating the possibility of a legitimate long-term association 

between the underlying variables. Therefore, the Autoregressive Distributed Lag 

(ARDL) technique is considered appropriate for further investigation of this connec-

tion. 

Table 2. Unit root test results. 

Variable 

ADF PP 

At Level PROB 
First Dif-

ferences 
PROB At Level PROB 

First Dif-

ferences 
PROB 

YIELD -1.502857 0.5256 -5.235442 0.0000 -3.944978 0.0031 -14.70891 0.0000 

ENSO -2.311221 0.1717 -2.925819 0.0481 -1.659298 0.4468 -3.020938 0.0384 

PPP -1.872944 0.3428 -6.318104 0.0000 -2.150863 0.2261 -6.240754 0.0000 

PFFB -1.351271 0.6004 -7.397556 0.0000 -1.40933 0.5723 -7.387161 0.0000 

ENERGY -1.502857 0.5256 -5.235442 0.0000 -0.986265 0.7532 -5.071082 0.0000 

Table 3 shows anticipated long-term cointegration ARDL bounds test results. Based on 

the ADF and PP unit root tests, we used the ARDL limits test to find long-term cointe-

gration variables. Critical upper and lowest limits define test statistics. The null hypoth-

esis is rejected if empirical F statistics exceed the upper limit, demonstrating cointegra-

tion between variables. ARDL bound test findings show that the estimated F-statistic 

value exceeds upper limit values at 1% significance. 
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Table 3. ARDL bound test. 

F-Bounds Test  Null Hypothesis: No long-run relationships exist 

Test Statistic Value Significance I0 Bound I1 Bound 

F-statistic 7.390776    

  10% 2.45 3.52 

  5% 2.86 4.01 

  2.50% 3.25 4.49 

  1% 3.74 5.06 

Table 3 shows anticipated long-term cointegration ARDL bounds test results. Based on 

the ADF and PP unit root tests, we used the ARDL limits test to find long-term cointe-

gration variables. Critical upper and lowest limits define test statistics. The null hypoth-

esis is rejected if empirical F statistics exceed the upper limit, demonstrating cointegra-

tion between variables. ARDL bound test findings show that the estimated F-statistic 

value exceeds upper limit values at 1% significance. Thus, ENSO index, energy price 

index, fresh fruit bunches, and paddy producer prices cointegrate with paddy yields 

throughout time. Johansen cointegration (Table 4) validated and confirmed the long-

term cointegration between paddy yield and other parameters. The findings verified 

long-term cointegration, revealing varying correlations 

Table 4. Johansent cointegration test results. 

Dependent Variable Paddy Productivity   

  Trace 0.05  

Hypothesized Eigenvalue Statistic 
Critical 

Value 
Prob.** 

r  0 0.554039 102.3709 69.81889 0.0000 

r   1 0.291984 53.11194 47.85613 0.0148 

r  2 0.250806 32.04938 29.79707 0.0271 

r   3 0.146271 14.43518 15.49471 0.0717 

r   4 0.075499 4.788547 3.841466 0.0286 

Table 5 shows the long- and short-run ARDL calculation results. The negative ENSO 

index coefficient suggests that rising climate change anomalies affect paddy production 

in the short and long term. Our analysis shows that a 1% increase in average anomalous 

climate change reduces paddy production by 0.14 and 0.2%. Paddy productivity is af-

fected by climate change. Climate change is anticipated to reduce agricultural yield in 

several nations [17][27]. Extreme weather and climate events lower agricultural 

productivity and cause food shocks via global supply systems, worsening food security 

and nutrition in vulnerable places [28]. Climate change impacts agriculture and making 

growing crops tricky. Climate change's direct and indirect consequences on agriculture 

include changed precipitation patterns, droughts, floods, and pest and disease spread 

[29]. Rice production processes vary according to numerous reasons, including natural 

resource degradation, biotic and abiotic causes, labor shortages, new technology, etc. 

Agriculture requires 70% of the world's freshwater, 40% of which is used for rice. Rice 
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cultivation uses a lot of water and creates a lot of greenhouse gases (GHG), especially 

methane, which is more powerful than carbon dioxide [30].  

Furthermore, the research demonstrates that the producer price of paddy has had an 

adverse effect on paddy production over a longer period of time. According to the find-

ings, a 1% rise in the producer price of paddy is associated with a decrease in paddy 

production by 0.2%. The outcome aligns with other research findings, which suggest 

that the supply response of paddy exhibits a limited degree of sensitivity to fluctuations 

in price [2,31,32]. However, there is a positive short-term impact shown in lags 4 and 

5 when the paddy productivity is raised by 1%, resulting in a corresponding rise of 

1.1% in the paddy producer price.  The price of rice is characterized by its inherent 

volatility and susceptibility to seasonal variations. In the majority of instances, farmers 

get a somewhat reduced price during the period of harvest. The potential for decreased 

market prices and unfavorable circumstances across several components may result in 

a reduction in rice production by farmers in subsequent years on their farmed area. 

Prices have a pivotal role in shaping the impact of economic policies on the supply of 

production and the generation of earnings. However, the augmentation of output neces-

sitates a confluence of supplementary incentives, including the provision of productive 

technology and the establishment of sufficient private and public infrastructure[16]. 

In contrast, the producer price of fresh fruit bunches has a positive impact on paddy 

productivity in both the short and long term. Our study reveals that a 1% increase in the 

price change results in a respective 0.15 increase in paddy productivity. The rapid ex-

pansion of oil palm land area has not compromised the sustainability of rice, particu-

larly in terms of land area development and productivity. The growth rate of oil palm 

land area surpasses that of rice plantations. From 1991 to 2017, rice fields in South 

Sumatra experienced a growth rate of approximately 4.6%. The rice development cen-

ters, namely Banyuasin, Ogan Ilir, and East OKU Regencies, continue to serve as sig-

nificant rice production areas in South Sumatra. It is also crucial to enhance the income 

of rice farmers through various fertilizer supply programs, improve distribution pat-

terns, and support agricultural infrastructure to ensure the continued interest of farmers 

in maintaining rice farming land [7].  

The study concludes that the energy price index reduces paddy output in the short 

and long term. Paddy yield drops when energy prices rise. It may cause long-term dam-

age. The consequences on agricultural productivity are minimal, but rising energy 

prices will reduce farmers' welfare by 0.6% to 1.4% [33].  

Supply-side theory suggests that higher crude oil prices raise production costs and 

move the supply curve to the left, raising food prices. The energy price index and food 

price indexes (grains, other food, and oils) have bidirectional causation at different fre-

quencies [34].Energy plays a crucial role in all stages of the crop production process 

[35]. The anticipated price surges are expected to have a significant influence on the 

whole of the food industry, resulting in escalated expenses along the value chain span-

ning from agricultural production to the final consumer. Various factors might poten-

tially impact on-farm production costs, commodity transport costs, milling, processing, 

and value addition activities [36]. The impact of rising energy costs varies throughout 

various stages of production, both in terms of intensity and timing. This implies that 
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the influence of heightened energy costs on the pricing of food items seen in supermar-

kets is minimal, whereas the impact on crop prices in agricultural fields is more sub-

stantial. The energy demand associated with various agricultural activities, such as land 

preparation, planting, crop upkeep (including fertilizer and weed control), threshing, 

and harvesting, is of significant importance. The energy input for fertilizer application 

in rice production had the highest values, accounting for 73.80%, 75.11%, and 76.90% 

of the total energy input in small, medium, and big farms, respectively [37]. Oil price 

increases may directly affect agricultural and food output. Mainly because oil and de-

rivatives are utilized in primary (tractors, fertilizers, etc.) and secondary (drying, cool-

ing, storage, transport, and distribution) agricultural product production. Thus, rising 

oil prices raise production costs. This implies increasing oil and gasoline costs for oil 

importers risk their energy and food security [38]. Only the following season's harvest 

is fully affected by rising energy costs [34]. To mitigate energy price impacts and re-

duce carbon emission in agriculture, several policy implications have been proposed, 

including strengthening energy market supervision, building an energy saving price-

setting mechanism, launching policy instruments to improve energy efficiencies and 

facilitate cleaner farming, and formulating regional energy saving and emission reduc-

tion measurements [33]. 
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Table 5. Short Run and Long Run ARDL model 

 

Table 5 illustrates long- and short-term ARDL calculations and diagnostic tests that 

demonstrate model stability. The study's climatic change and price dynamic 

components explain 91% of paddy production fluctuation, according to R2 = 0.91. As 

Variable Coefficient Std. Error t-Statistic Prob.   

D(YIELD(-1)) 4.199284 0.815096 5.151888 0.0001

D(YIELD(-2)) 3.83005 0.780644 4.906269 0.0001

D(YIELD(-3)) 3.394149 0.730915 4.643701 0.0002

D(YIELD(-4)) 2.157777 0.55613 3.879989 0.0011

D(YIELD(-5)) 1.617138 0.390685 4.139235 0.0006

D(YIELD(-6)) 1.276954 0.296115 4.312361 0.0004

D(YIELD(-7)) 0.33921 0.208467 1.627165 0.1211

D(ENSO) -0.141186 0.090432 -1.561231 0.1359

D(ENSO(-1)) 0.117207 0.157193 0.745624 0.4655

D(ENSO(-2)) -0.158977 0.139943 -1.136011 0.2709

D(ENSO(-3)) 0.188442 0.149253 1.262568 0.2229

D(ENSO(-4)) -0.082976 0.148108 -0.560243 0.5822

D(ENSO(-5)) 0.117094 0.164882 0.710165 0.4867

D(ENSO(-6)) -0.156211 0.158832 -0.983498 0.3384

D(ENSO(-7)) 0.103269 0.076101 1.356987 0.1916

D(PPP) -0.36517 0.355908 -1.026023 0.3185

D(PPP(-1)) 0.135455 0.436597 0.310252 0.7599

D(PPP(-2)) -0.459336 0.447359 -1.026772 0.3181

D(PPP(-3)) -0.604624 0.501735 -1.205068 0.2438

D(PPP(-4)) 1.125181 0.54602 2.060695 0.0541

D(PPP(-5)) 1.260492 0.554102 2.274837 0.0354

D(PFFB) 0.154754 0.080408 1.924599 0.0702

D(PFFB(-1)) 0.101823 0.097776 1.04139 0.3115

D(PFFB(-2)) -0.277962 0.092696 -2.998643 0.0077

D(PFFB(-3)) -0.11503 0.103516 -1.111224 0.2811

D(PFFB(-4)) -0.090367 0.097889 -0.923165 0.3681

D(PFFB(-5)) -0.071092 0.073515 -0.967043 0.3463

D(ENERGY) -0.256651 0.106693 -2.405516 0.0271

D(ENERGY(-1)) 0.111979 0.177337 0.631445 0.5357

D(ENERGY(-2)) 0.172388 0.177079 0.973506 0.3432

D(ENERGY(-3)) -0.299041 0.147224 -2.031192 0.0573

D(ENERGY(-4)) 0.184777 0.097029 1.904361 0.073

CointEq(-1) -5.340206 0.949405 -5.624792 0.0000

ENSO -0.020906 0.006083 -3.436695 0.0029

PPP -0.226917 0.052609 -4.313268 0.0004

PFFB 0.150175 0.015469 9.708115 0.0000

ENERGY -0.074126 0.006784 -10.926352 0.0000

C 2.30647 0.498711 4.624865 0.0002

R-squared 0.917665

Adjusted R-squared 0.748419

S.E. of regression 0.043207

Sum squared resid 0.033603

Log likelihood 128.257

Diagnostic Test F-satistics Prob

F-statistic 5.422104 0.000175

Heteroskedasticity Test 1.760366 0.1001

Correlation  LM Test 2.156096 0.1268

Jarque Bera Normality Test 0.227505 0.892479

Dependent Variable Paddy Productivity (YIELD) 

Short Run Dynamics

Long Run Coefficients
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illustrated in Fig. 1, CUSUM and CUSUM squared tests assessed model stability. Both 

tests validate our findings that model residuals are structurally stable. 

 

 

Figure 1. CUSUM and CUSUM squared tests 

4 Conclusion 

The research used monthly time series data from January 2018 to April 2023 to an-

alyze how climate change and pricing dynamics affected West Kalimantan paddy pro-

duction. The long-term link between variables was validated using ARDL bound test-

ing and Johansen cointegration. Our research found that climate change, energy price 

index, and increasing impact paddy production in the short and long run. However, 

fresh fruit bunches boost paddy output in both timeframes. The research also shows 

that paddy producer price reduces output over time. In West Kalimantan, agricultural 

sustainability, climatic resilience, and resource management impact paddy yield. The 

policy suggests improving these factors. Extension personnel should train farmers to 

use new technologies and boost output. 
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        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
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