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Abstract. A review of the literature on Computational Thinking has revealed the 

importance of computational thinking (CT) as an effective approach in problem-

solving, especially when associated with the presence of technology as a means 

to formulate problem solutions. Using the Computational Thinking Scale (CTS), 

the purpose of this study is to map the development of students' CT as an impact 

of learning statistics. This research is descriptive. To determine the validity of 

the scale, a confirmatory factor analysis (CFA) calculation was conducted. As 

well as the power of difference, internal consistency, and the level of stability. 

The Computational Thinking Scale (CTS) was determined as a valid and reliable 

instrument to determine the CT ability of undergraduate students, based on the 

results of data processing. Students' ability in CT is in the medium range, with 

"Problem Solving" and "Creativity" as the most dominant factors. In contrast, 

"Algorithmic Thinking" is a factor that needs more attention. This indicates that 

students should be exposed to more non-routine and non-procedural problem-

solving case studies, to be more familiar with algorithmic patterns in problem-

solving. 

Keywords: Computational Thinking, Computational Thinking Scale (CTS), 

Confirmatory Factor Analysis (CFA) 

Introduction 

In diverse learning research and practice, computational thinking (CT) has become a 

popular topic over the past decade. There are thousands of entries on search engines 

that map CT in various contexts: definition [1-7]; instructional implementation [1, 3, 

8]. Some of them are even concerned with the process of knowledge transfer from a 

particular discipline to the computational process [9-11]; the field of mathematics [3, 

12-13] dominates this issue. Several of these entries imply that CT is related to coding, 

while others contend that CT is more about programming than coding [9]. 

Although there is no standardized definition of CT, its existence and utility in the 

problem-solving process are not in question [2, 4-5]. CT has boundaries and a general 

framework that should be regarded for future growth [14]. Despite this, CT can still be 

regarded as a valid foundational skill that is not exclusive to the computer field but 
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applies to other disciplines as well. This point with domain-specific and domain-gen-

eral terminology [15]. Domain-specific refers to the utilization of domain-specific 

knowledge or skills that are required for systematically solving problems. Programming 

is, of course, a domain-specific topic in the context of scientific disciplines, as is the 

material examined specifically in the field of computer science. Domain-general refers 

to the skills required to solve problems systematically in daily life or across domains. 

In this context, CT is viewed more as a thinking process framework. 

With the growing research focus on CT, including the possibility of using it as a 

representation of learning performance or learning outcomes [15], an intriguing re-

search question emerges regarding how to assess the growth and development of CT. 

Some studies evaluate CT using programming-oriented tasks or tests of conceptual un-

derstanding [16]; others use robotics programming and reasoning for everyday events 

[17]. As a guide for problem formulation, previous research proposed a five-component 

framework (syntax, data, algorithm, representation, and efficient and effective) [17]. 

Some of them utilized conceptual case study problems [18-19] and even Bebras Chal-

lenge data [20]. 

How the attainment of CT is evaluated is, without a doubt, another significant area 

of research in CT development [14]. From the numerous definitions of CT, this article 

positions CT as a process of problem-solving thought. Situational analysis is frequently 

the impetus and driving force behind problem-solving efforts. Text discourse analysis, 

subject assessments, job analysis, graph analysis, and behavior analysis are therefore 

the most likely evaluation methods to be used [14], which necessitate a validated ob-

jective framework to evaluate CT. One of the obstacles to consider in evaluating CT is 

the lack of consensus on assessment criteria and appropriate instructional feedback 

[21]. the Computational Thinking Scale (CTS) as a reference framework for gauging 

CT development by basing it on the problem at hand [14]. 

CTS is a measurement tool devised and utilized to assess CT. Researchers have de-

veloped at least a few CT measurement instruments, including: 

• Computational Thinking Self-Efficacy Scale [22] consists of 18 items that 

measure four factors: reasoning, abstraction, decomposition, and generalization. 

This scale was created to predict CT activities. 

• The Computational Thinking Scale [23] is comprised of 42 items that measure 

four factors: problem-solving, cooperative learning and critical thinking, creative 

thinking, and algorithmic thinking. The CT of secondary school students is 

measured by this scale. 

• Computational Thinking Scale [24] consists of 30 items that measure three 

factors: robotic and software programming, computational thinking, professional 

development, and career planning. This instrument was designed to measure CT 

in primary school pupils. 

• Computational Thinking Scale [25]: This scale is comprised of 22 items that 

measure five factors: abstraction, decomposition, pattern, algorithm, and 

generalization. This instrument was devised to assess CT in secondary school 

students. 
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• Computational Thinking Scale [15]: This scale is comprised of 19 items that 

measure five factors: abstraction, decomposition, algorithmic thinking, 

evaluation, and generalization. This scale was devised to measure CT among 

secondary school students. 

The purpose of this study is to describe the computational thinking ability of students 

by adapting CTS, especially at the first level of students in college. Of course, this 

research aims to prove or test what has been claimed by previous research, which is 

more centered on learning at the primary and secondary school levels. It is hoped that 

this scale can provide significance for measuring CT, especially at the higher education 

level. To achieve this goal, the data will be analyzed using the confirmatory factor anal-

ysis (CFA) method, adopting the opinion of for the determination of model acceptance 

criteria and analysis results [26]. 

2 Methodology 

In addition to being a descriptive study, this research examines the adaptation of the 

CTS. In this context, the CT of students has been attempted to be determined based on 

studies conducted by previous researchers. The CTS utilized in this study can be down-

loaded at https://csedresearch.org/wp-content/uploads/Instruments/Compu-

ting/PDF/ComputationalThinkingScales.pdf.  

This investigation included 148 first-year Computer Science Education students who 

enrolled in a statistics course. The CTS, comprised of 29 items and five factors, was 

adapted to capture data for this study [25]. As explained in the introduction, to measure 

the CT skills of first-year Computer Science Education students taking the Statistics 

course this scale underwent adjustments, because of the confirmatory factor analysis 

(CFA) conducted, resulting in only 16 items and four factors. The CFA performed on 

the data and the parameters obtained showed an acceptable fit for this four-factor struc-

ture. 

The researcher utilized the JASP 0.17.3 program to process CFA data for this study. 

CFA is used to determine whether indicator variables can be used to corroborate a fac-

tor. The CFA model can be evaluated using the following four criteria: (1) model con-

vergence and acceptable range of parameter estimates; (2) fit indices; (3) significance 

of parameter estimates and related diagnostics; and (4) measurement invariance across 

multiple samples [26]. 

On a Likert scale, each item was rated as follows: never (1), rarely (2), sometimes 

(3), generally (4), and always (5). The scores obtained from the answers provided by 

the students to the five Likert-type scales do not present a standardized picture due to 

the different item numbers within the factors. The derived raw scores on the Likert 

scales were then transformed into standardized scores, with the lowest measure being 

20 and the highest measure being 100, for further data processing. To convert raw 

scores to standard scores, it is necessary to multiply the sum of the item scores for each 

factor by 20, then divide by the number of items for that factor. 

The leveling refers to the equivalence of the scores obtained from the subscales by 

using the following calculation: if the acquisition of the conversion value is < (x ̅ - 
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standard deviation), then it belongs to the low level; if it is > (�̅�+ standard deviation), 

then it belongs to the high level. Data that did not fall into the low or high categories 

were classified as medium. 

3 Result and Discussion 

3.1 CTS Validity and Reliability Measurement 

The initial CFA results for the CTS variable are shown in Table 1. In general, Table 1 

demonstrates that the measurement model is not appropriate. The parametric fit p-

value, GFI, RMSEA, NFI, IFI, CFI, and TLI do not conform to the established criteria. 

Since the model is not yet optimal, the researcher modifies it to acquire a superior 

model. The model is modified by omitting items with factor loadings of less than 0.30, 

including CR five items for the factor creativity, two items for the factor algorithmic 

thinking, one item for the factor cooperative, and all items for the factor critical think-

ing. The removal of items with factor loading below 0.3 was based on the opinion of 

which states that the weakest acceptable factor loading is 0.30 [26]. Therefore, these 

elements will be absent from the final model. No items were taken away for the prob-

lem-solving factor. Table 2 displays the final model's accuracy parameters after the 

elimination of three items. 

Table 1. CTS Accuracy Before Modification 

Category Parameter Fit Output Criteria Description 

Absolute Fit Chi-square P-Value < 0.01 ≥ 0.05 no fit 

 Goodness of fit index (GFI) 0.979 ≥ 0.90 fit 

 Root mean square error of ap-

proximation (RMSEA) 

0.110 ≤ 0.08 no fit 

Incremental fit Normed fit index (NFI) 0.525 ≥ 0.90 no fit 

 Incremental fit index (IFI) 0.633 ≥ 0.90 no fit 

 Comparative fit index (CFI) 0.625 ≥ 0.90 no fit 

 Tucker-Lewis Index (TLI) 0.585 ≥ 0.90 no fit 

Parsimonious fit Parsimonious Normal Fit Index 

(PNFI) 

0.475 0.60 – 

0.90 

no fit 

Table 2. CTS Accuracy after Modification 

Category Parameter Fit Output Criteria Description 

Absolute Fit Chi-square P-Value 0.355 ≥ 0.05 fit 

 Goodness of fit index (GFI) 0.988 ≥ 0.90 fit 

 Root mean square error of ap-

proximation (RMSEA) 

0.054 ≤ 0.08 fit 

Incremental fit Normed fit index (NFI) 0.960 ≥ 0.90 fit 

 Incremental fit index (IFI) 0.953 ≥ 0.90 fit 

 Comparative fit index (CFI) 0.952 ≥ 0.90 fit 

 Tucker-Lewis Index (TLI) 0.942 ≥ 0.90 fit 
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Category Parameter Fit Output Criteria Description 

Parsimonious fit Parsimonious Normal Fit Index 

(PNFI) 

0.702 0.60 – 

0.90 

fit 

 

Table 2 displays the modified model's ultimate form. In the final model, the p-value 

for chi-squared is greater than 0.05. There is no significant difference between the ideal 

model and the proposed model based on observational data, indicating that the model 

is appropriate. The GFI, NFI, CFI, TLI, IFI, and PNFI values also meet the criteria set 

to obtain model fit. Consequently, this final model is fit, which indicates that the pro-

posed model corresponds to the empirical data. Figure 1 depicts the complete model 

and loading factor for each variable in the final model. 

Following model testing and factor load analysis, the reliability test is conducted. 

The internal consistency of an instrument, which can be measured based on the degree 

of item homogeneity, can be interpreted as reliability. Construct reliability (CR) and 

average variance extracted (AVE) comprise the reliability test in CFA analysis [27]. If 

the CR value is less than or equal to 0.70, the item is categorized as reliable. In the 

meantime, the CR value ranges between 0.6 and 0.7, indicating acceptable reliability if 

the indicator's factor load meets the criteria. Using the AVE estimate, internal con-

sistency can also be evaluated. The suggested AVE value is greater than 0.5 [27]. Based 

on the data in Table 3, it is known that all CTS instrument factors and dimensions have 

high reliability. 

 

Fig. 1. CTS Measurement Model 

Based on the calculation of CR and AVE on the CTS factor loading, it is evident that 

the CT factors and dimensions in the form of creativity, algorithmic thinking, coopera-

tion, and problem-solving have convergent validity. Convergent validity quantifies the 

extent to which a measurement is positively correlated with other measurements that 

measure the same construct. Consequently, indicators of a construct should converge 
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or share a significant proportion of variance. If an instrument satisfies the convergent 

validity requirements of factor loading ≥ 0.5, composite reliability value ≥ 0.7, and 

average variance extracted (AVE) ≥ 0.5 [27], it is considered to have convergent valid-

ity. 

The results of CFA calculations should also reveal the discriminant validity of the 

model. Validity is a measure of the extent to which a construct differs from other con-

structs, which means that a latent variable must explain the variance of its indicators 

better than other latent variables. Consequently, the factor loading of the indicator on 

the latent variable in question must be greater than the factor loadings on all other latent 

variables. One method for evaluating discriminant validity is to compare the AVE to 

the square of the correlation between the two constructs. Discriminant validity is ob-

tained when the square root of the AVE is greater than the correlation between con-

structs [26]. Based on the data presented in Table 4, it is known that the four dimensions 

of CTS possess discriminant validity. The number hacked below the main diagonal 

represents the correlation coefficient (r), the number hacked on the main diagonal rep-

resents the AVE value, and the number hacked above the main diagonal represents the 

correlation square (r2). 

Based on the results of the CFA analysis, it can be concluded that CTS is primarily 

influenced by four dimensions: creativity, algorithmic thinking, cooperative, and prob-

lem-solving. The existence of critical thinking does not contribute to the model. This is 

believed to be the consequence of the cooperative dimension's predominance, which 

allows it to compensate for individual limitations in problem-solving. This condition 

can be interpreted as proof that the CTS model has evidence of internal structural va-

lidity. In addition, convergent and discriminant validity evidence supports the CTS 

model. The CTS model has a relatively high degree of dependability, allowing it to 

produce repeatable results that are relatively consistent. 

Table 3. CR and AVE values in CTS 

Indicator 𝜆 Error 𝜆2 CR AVE 

Creativity [Crt]      

CR1 0.851 0.275 0.724 0.821 0.616 

CR2 0.923 0.149 0.852   

CR4 0.523 0.727 0.274   

Total 2,297 1,151 1,850   

Alg. Thinking [A.T]      

AT1 0.564 0.784 0.318 0.851 0.594 

AT3 0.791 0.375 0.626   

AT5 0.833 0.307 0.694   

AT6 0.894 0.201 0.799   

Total 3,082 1,667 2,437   

Cooperative [Cpr]      

CO1 0.562 0.627 0.316 0.764 0.525 

CO2 0.823 0.322 0.677   

CO4 0.742 0.449 0.551   
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Indicator 𝜆 Error 𝜆2 CR AVE 

Total 2,127 1,398 1,544   

Problem-solving [PrS]      

PS1 0.847 0.283 0.717 0.856 0.505 

PS2 0.852 0.275 0.726   

PS3 0.591 0.629 0.349   

PS4 0.630 0.503 0.397   

PS5 0.557 0.611 0.310   

PS6 0.615 0.522 0.378   

Total 4.092 2.823 2.878   

Table 4. AVE Values and Shared Variance Estimates 

Variable item 1 2 3 4 

Creativity [Crt] 3 0.616 0.001 0.002 0.000 

Alg. Thinking [A.T] 4 0.036 0.594 0.280 0.000 

Cooperative [Cpr] 3 0.049 0.529 0.525 0.000 

Problem-solving [PrS] 6 0.004 0.011 0.019 0.505 

3.2 Level of Students’ Computational Thinking  

As shown in Table 5, students' scores in CT ranged from 55.79 to 74.68, with a mean 

of 65.24. The scores were obtained with 16.89% of students possessing a high skill 

level, 68.92% possessing a medium skill level, and 13.51 % possessing a low skill level. 

The level of computational thinking is moderate. The factor with the greatest average 

score is "creativity" (=81.32), whereas the factor with the lowest average score is "al-

gorithmic thinking" (=47.11). In contrast, in the high group, the skill levels of "algo-

rithmic thinking" and "cooperative" received equal proportions (16.89%), and "prob-

lem-solving" received the lowest proportion (6.08%). Based on this, it can be concluded 

that "algorithmic thinking" and "cooperative thinking" are the most prevalent student 

skill levels, while "problem-solving" is the least prevalent. 

Table 5. Students' Computational Thinking Skill Level 

Factor n �̅� St.Dev. 
 

Min. Max. 
Level (f/%) 

 Low Md. High 

Creativity  

148 

81.32 14.96  66.35 96.28 11.49 72.30 15.54 

Alg. Thinking  47.11 20.05  27.06 67.16 15.54 66.89 16.89 

Cooperative 56.33 19.97  36.35 76.30 16.22 66.22 16.89 

Problem-

solving  

73.74 14.26  59.48 88.01 12.84 80.41 6.08 

Computa-

tional Think-

ing  

65.24 9.44  55.79 74.68 13.51 68,92 16.89 
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In general, students' CT is moderate, with "creativity" and "problem-solving" being 

the most influential factors. This confirms the findings of some previous researchers 

that there is a reciprocal relationship between creativity and computer science, particu-

larly CT. On the one hand, it has been demonstrated that computerized platforms and 

programming activities inspire creativity in the production of artifacts in fields such as 

art, graphic design, and music [28-30]. On the other hand, creativity is a catalyst for 

solving algorithmic problems, developing computational artifacts, and acquiring new 

knowledge [31, 32]. Digital learning platforms that promote programming, or CT, fre-

quently provide opportunities to broaden creative expression and foster the growth of 

creative thought. Previous study revealed that "problem-solving" can be defined as a 

series of goal-directed cognitive operations [33]. This definition does not differentiate 

between sequences of actions that are known to achieve a goal and sequences of actions 

that must be performed when the means to achieve the goal are unknown [33]. The 

former is the consequence of experience, while the latter is the situation encountered 

by a novice. Then, Anderson referred to the experience as an automated activity re-

quired for problem-solving, whereas the other activity represented an initial attempt to 

solve the problem [34]. The presence of "creativity" and "problem-solving" in students 

can be interpreted as a worthwhile investment in the development of CT. 

What merits attention is the low grade for the ability of "algorithmic thinking" when 

compared to other skills. The low proficiency in "algorithmic thinking" is likely due to 

students' limited comprehension of determining the optimal path from the problem state 

to the target state. Alan Perlis uses the term algorithmic to describe the quantitative 

analysis of how a person performs a task and classifies it as a fundamental thought 

process that everyone must master [9]. It can be concluded that if students possess this 

skill, they are more likely to possess other skills [14]. Consequently, it is not surprising 

that this ability received the lowest average score and one of the highest scores in the 

high group. This is due to the disparity in students' knowledge and comprehension of 

the problem, its formulation into solution stages, and the execution of the plan through 

computational activities. 

4 Conclusion 

CT is an indispensable component of the problem-solving procedure. Therefore, in-

dividuals must acquire and develop these skills throughout their educational experi-

ence. Specifically, it is stated that if we examine the above-mentioned factors (creative 

thinking, algorithmic thinking, critical thinking, problem-solving, and cooperation 

skills), then individuals will have these skills at school age, develop themselves, create 

opportunities to be able to adapt to technological developments more quickly and pro-

duce something more productive based on technology. This is why CT should be taught 

in elementary education so that students can transition this skill to other problem situ-

ations. Due to the prevalence of complex algorithms and problems in everyday life, 

developing these skills in school will be a significant advantage. Based on the findings 

of this study and the relevant literature, it is suggested that students frequently engage 
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in activities designed to enhance their problem-solving and algorithmic thinking skills, 

particularly in the context of diverse materials and subjects. 
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