
Tensor C*-Algebra on Two Qubit Spin-1/2 System 

Rivani Adistia Dewi1, Imam Nugraha Albania1, *, Rizky Rosjanuardi1 and Sumanang 

Muhtar Gozali1 

1 Mathematics Study Program, Faculty of Mathematics and Natural Science Education, 

Universitas Pendidikan Indonesia, Bandung, Indonesia 

albania@upi.edu 

Abstract. Spin-1/2 system is one of the most important phenomenon in quantum 

mechanics. Such a system is known to be expressed as Pauli matrices, that is 

𝜎1 = (
0 1
1 0

), 𝜎2 = (
0 −𝑖
𝑖 0

), and 𝜎3 = (
1 0
0 −1

) . By inserting the identity 

matrix 𝐼, we can construct a C*-algebra 𝐶∗({𝐼, 𝜎1, 𝜎2, 𝜎3}) with 

|{𝐼, 𝜎1, 𝜎2, 𝜎3}⨂{𝐼, 𝜎1, 𝜎2, 𝜎3}| = 16 = |{𝐸𝑖𝑗: 𝑖, 𝑗 = 1,2,3,4} |, where 𝐸𝑖𝑗 is the 

canonical basis of C*-algebra 𝑀4(ℂ). In this study, by using the linear 

independence concept, we got 𝐶∗({𝐼, 𝜎1, 𝜎2, 𝜎3})⨂𝐶∗({𝐼, 𝜎1, 𝜎2, 𝜎3}) ≅ 𝑀4(ℂ). 

This means, that for any observable in the composite of two spin-1/2 systems, by 

self-adjointness of Pauli matrices, it can be expressed by the field reduction from 

ℂ to ℝ in 𝑠𝑝𝑎𝑛{𝐼, 𝜎1, 𝜎2, 𝜎3}⨂{𝐼, 𝜎1, 𝜎2, 𝜎3} where the structure itself is non-

associative algebra. Furthermore, given a Hamiltonian 𝐻(𝑡) = (𝜎1⨂𝜎1) +

𝒥 𝑠𝑖𝑛(𝜔𝑡) (𝜎3⨂𝐼) + 𝒥 𝑠𝑖𝑛 (𝜔𝑡 +
𝜋

2
) (𝐼⨂𝜎3) and the initial state which is a 

linear combination of Bell basis, by using the integration factor method and the 

commutation fact of the exponential operator, we got the following time-

dependent state |𝜓(𝑡)⟩ =
1

√2
(𝑒

(
𝑖𝑡

ℏ
)(

𝑖𝒥

ℏ𝜔
𝑐𝑜𝑠(𝜔𝑡))(

𝑖𝒥

ℏ𝜔
𝑠𝑖𝑛(𝜔𝑡))𝜈𝑖(5−𝑖))

𝑖=1

4

 with 𝜈𝑖𝑗 =

𝛿(𝑖+𝑗)5(−1)𝑚𝑎𝑘𝑠{𝑖,𝑗}, where 𝛿𝑖𝑗 is Kronecker delta. 
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1 Introduction 

Spin-1/2 is the "spin" of particles in a physical system where it takes a "rotation" of 

720° for an object to return to its "initial position" [6]. In [8], the state of a particle in a 

spin-1/2 system corresponds to spin operators which are described in 2 × 2 matrices 

called the Pauli matrices 

 𝜎1 = (
0 1
1 0

) , 𝜎2 = (
0 −𝑖
𝑖 0

) , 𝜎3 = (
1 0
0 −1

). (1) 

In determining the state of a particle in a spin-1/2 system, Pauli matrices are used to 

determine the state of one particle, so to determine the state of two particles, it is 

necessary to design the tensor product of Pauli matrices. Pauli matrices has become an 
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active study in the past 5 years back as seen in [1]-[5], [7] and [9]-[12] since its signif-

icance to many applications. The scope of this article is the composite of two spin-1/2 

systems, that is C*-algebra 𝐶∗(𝒜)⨂𝐶∗(𝒜) with 𝒜 = {𝐼, 𝜎1, 𝜎2, 𝜎3}, where 𝐼 is 2 × 2 

identity matrix, then define the time-dependent state |𝜓(0, 𝑡)⟩; 𝑡 > 0 for the time-de-

pendent Hamiltonian 

 𝐻(𝑡) = (𝜎1⨂𝜎1) + 𝒥 sin(𝜔𝑡) (𝜎3⨂𝐼) + 𝒥 sin (𝜔𝑡 +
𝜋

2
) (𝐼⨂𝜎3), (2) 

with the initial state |𝜉⟩ =
1

√2
(|𝜙+⟩ + |𝜓+⟩) which is a superposition (linear combina-

tion) of the Bell bases. 

This article explains that 𝒜⨂𝒜 is linearly independent and the number of matrices 

from the set 𝒜⨂𝒜 is 16 which is same as the canonical bases of 𝑀4(ℂ), so that 

𝐶∗(𝒜⨂𝒜) (since 𝐶∗(𝒜) is finite dimensional and so 𝐶∗(𝒜⨂𝒜) is isomorphic to 

𝐶∗(𝒜)⨂𝐶∗(𝒜)) and 𝑀4(ℂ) are interchangeable. Furthermore, it is found that the Hei-

senberg uncertainty is smaller in the composite of two spin-1/2 system than in the single 

qubit system. This article also provides the state |𝜓(𝑡)⟩ for the time-dependent Hamil-

tonian. 

 𝐻(𝑡) = (𝜎1⨂𝜎1) + 𝒥 sin(𝜔𝑡) (𝜎3⨂𝐼) + 𝒥 sin (𝜔𝑡 +
𝜋

2
) (𝐼⨂𝜎3), (3) 

and the initial state |𝜉⟩ =
1

√2
(|𝜙+⟩ + |𝜓+⟩). 

2 Method 

To find out the interchangeability between 𝐶∗(𝒜)⨂𝐶∗(𝒜) and 𝑀4(ℂ), we will prove 

that 𝐶∗(𝒜)⨂𝐶∗(𝒜) ≅ 𝑀4(ℂ). Consider that the number of elements of 𝒜⨂𝒜 is 16 

which is same as the dimension of 𝑀4(ℂ), so it is sufficient to prove the linear inde-

pendence of 𝒜⨂𝒜. The method for solving this problem is classify forms of "similar" 

𝒜⨂𝒜 elements into subsets of 𝒜⨂𝒜, then analyze whether each element of each 

subset is a linear combination of other elements in that subset or not. 

To find out |𝜓(𝑡)⟩ we need a time evolution operator 𝑈(𝑡) with initial state |𝜉⟩. So, 

it is necessary to find the solution of the Schrödinger equation. 

 𝑖ℏ
𝑑

𝑑𝑡
𝑈(𝑡) = [𝜎1⨂𝜎1 + 𝒥 sin(𝜔𝑡) (𝜎3⨂𝐼) + 𝒥 sin (𝜔𝑡 +

𝜋

2
) (𝐼⨂𝜎3)] 𝑈(𝑡) (4) 

to get 𝑈(𝑡), then multiply it by |𝜉⟩. The method for finding the solutions of the Schrö-

dinger equation is by the integration factor of homogeneous linear differential equa-

tions, the fact that 𝑒𝐴+𝐵 = 𝑒𝐴 𝑒𝐵 if and only if 𝐴𝐵 − 𝐵𝐴 = 0 for compatible matrices 

𝐴 and 𝐵, and the fact that ∑
1

𝑛!
𝐴𝑛∞

𝑛=0  is convergent for every square matrix 𝐴. 
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3 Result and Discussion  

3.1 The Structure of 𝐬𝐩𝐚𝐧 𝓐⨂𝓐 

For spin-1/2 system, the tensor product 𝑃⨂𝑄 where 𝑃 and 𝑄 are 2 × 2 matrices is 

defined as follows: 

 𝑃⨂𝑄 = (
𝑝11𝑄 𝑝12Q
𝑝21Q 𝑝22Q

) (5) 

which is a 4×4 matrix. Consider that 

 𝒜 = {𝐼, 𝜎1, 𝜎2, 𝜎3} = {(
1 0
0 1

) , (
0 1
1 0

) , (
0 −𝑖
𝑖 0

) , (
1 0
0 −1

)}. (6) 

For technical reasons and ease of notation, define 𝐼 = 𝜎0 and 𝜎𝑖⨂𝜎𝑗 = 𝜎𝑖𝑗 for each 𝑖, 𝑗 ∈

{0,1,2,3}.  

Lemma 1. The eigenvalues of 𝜎𝑖𝑗 are 1 and −1, for each 𝑖, 𝑗 ∈ {1,2,3} with multiplicity 

2. 

Proof. It is easy to see that the eigenvalues of 𝜎𝑖 and 𝜎𝑗 are 1 and −1, for each 𝑖 ∈

{1,2,3}. Let 𝜆1 and 𝜆2 are the eigenvalues of 𝜎𝑖 and 𝜎𝑗 respectively with the correspond-

ing eigenvectors are 𝑣1 and 𝑣2 respectively. We have (𝜎𝑖⨂𝜎𝑗)(𝑣1⨂𝑣2) =

(𝜎𝑖𝑣1)⨂(𝜎𝑗𝑣2) = (𝜆1𝑣1)⨂(𝜆2𝑣2) = 𝜆1𝜆2(𝑣1⨂𝑣2), so that the eigenvalues of 𝜎𝑖𝑗 are 

{ −1, −1,1,1}. 

Proposition 2. For each 𝑖, 𝑗, 𝑘 ∈ {1,2,3}, 1) σij are self-adjoint.; 2) tr σij = tr σk.; and 

3) det σij = − det σk. 

Proof. 1) Clear.; 2) Since the trace of a matrix is equal to the sum of all its eigenvalues, 

then by Lemma 1, we have tr 𝜎𝑖𝑗 = 0 = tr 𝜎𝑘 for each 𝑖, 𝑗, 𝑘 ∈ {1,2,3}.; 3) Since the 

determinant of a matrix is equal to the product of all its eigenvalues, then by Lemma 1, 

we have det 𝜎𝑖𝑗 = 1 = −(−1) = − det 𝜎𝑘 for each 𝑖, 𝑗, 𝑘 ∈ {1,2,3}. 

Theorem 3. 𝐶∗(𝒜)⨂𝐶∗(𝒜) ≅ 𝑀4(ℂ) with norm operator (matrix) and transpose con-

jugate involution. 

Proof. We classify 𝒜⨂𝒜 into subsets (𝒜⨂𝒜)1, (𝒜⨂𝒜)2, (𝒜⨂𝒜)3, and (𝒜⨂𝒜)4 

as follows: 

 (𝒜⨂𝒜)1 = {𝜎00, 𝜎03, 𝜎30, 𝜎33}; (𝒜⨂𝒜)2 = {𝜎01, 𝜎02, 𝜎31, 𝜎32}; (6) 

 (𝒜⨂𝒜)3 = {𝜎10, 𝜎13, 𝜎20, 𝜎23}; (𝒜⨂𝒜)4 = {𝜎11, 𝜎12, 𝜎21, 𝜎22}. (7) 

It can be showed that (𝒜⨂𝒜)𝑖  is linearly independent for every 𝑖 ∈ {1, 2,3,4}. Con-

sider that for any 𝜎𝑚𝑛 ∈ (𝒜⨂𝒜)𝑖, we have 𝜎𝑚𝑛 ∉ span(𝒜⨂𝒜)𝑖\{𝜎𝑚𝑛} for each 𝑖, 
and based on the classification of the subset (𝒜⨂𝒜)𝑖 of 𝒜⨂𝒜, we obtain that 𝜎𝑚𝑛 ∉
span(𝒜⨂𝒜)𝑗 ; 𝑗 ≠ 𝑖. So, 𝒜⨂𝒜 is linearly independent, and because of the number 

of elements of 𝒜⨂𝒜 is 16 which is same as the dimension of 𝑀4(ℂ), then 

span 𝒜⨂𝒜 = 𝑀4(ℂ). This means 𝐶∗(𝒜⨂𝒜) ≅ 𝑀4(ℂ). Since 𝐶∗(𝒜) ≅ 𝑀2(ℂ), then 

𝐶∗(𝒜⨂𝒜) ≅ 𝑀4(ℂ) = 𝑀2(ℂ)⨂𝑀2(ℂ) ≅ 𝐶∗(𝒜)⨂𝐶∗(𝒜). 
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3.2 State |𝝍(𝒕)⟩ 

To obtain the time dependent state |𝜓(𝑡)⟩, we need time evolution operator that pre-

sented in the following lemma. 

Lemma 4. If 𝐻(𝑡) = 𝜎11 + 𝒥 sin(𝜔𝑡) (𝜎30) + 𝒥 sin (𝜔𝑡 +
𝜋

2
) (𝜎03), then 𝑈(𝑡) =

𝑒
𝑖

ℏ
(−𝜎11)𝑡+

𝑖𝒥

ℏ𝜔
(cos(𝜔𝑡)(𝜎30)−sin(𝜔𝑡)(𝜎03)). 

Proof. By solving the Schrödinger equation 

 
𝑑

𝑑𝑡
𝑈(𝑡) +

𝑖𝒥

ℏ
[

𝜎11

𝒥
+ sin(𝜔𝑡) (𝜎30) + cos(𝜔𝑡) (𝜎03)] 𝑈(𝑡) = 0 (8) 

using the integration factor 𝑒
𝑖

ℏ
𝜎11𝑡+

𝑖𝒥

ℏ𝜔
(sin(𝜔𝑡)(𝜎03)−cos(𝜔𝑡)(𝜎30))

, then we obtain 

𝑑

𝑑𝑡
(𝑒

𝑖
ℏ

𝜎11𝑡+
𝑖𝒥
ℏ𝜔

(sin(𝜔𝑡)(𝜎03)−cos(𝜔𝑡)(𝜎30))𝑈(𝑡)) = 0. 

 ⇒ 𝑒
𝑖

ℏ
𝜎11𝑡+

𝑖𝒥

ℏ𝜔
(sin(𝜔𝑡)(𝜎03)−cos(𝜔𝑡)(𝜎30))𝑈(𝑡) =1  

 ⇒ 𝑈(𝑡) = 𝑒
𝑖

ℏ
(−𝜎11)𝑡+

𝑖𝒥

ℏ𝜔
(cos(𝜔𝑡)(𝜎30)−sin(𝜔𝑡)(𝜎03)). (9) 

Theorem 5. If 𝐻(𝑡) = 𝜎11 + 𝒥 sin(𝜔𝑡) (𝜎30) + 𝒥 cos(𝜔𝑡) (𝜎03) with initial state 

|𝜉⟩ =
1

√2
(|𝜙+⟩ + |𝜓+⟩), then 

 √2|𝜓(𝑡)⟩ = (𝑒
(

𝑖𝑡

ℏ
)(

𝑖𝒥

ℏ𝜔
𝑐𝑜𝑠(𝜔𝑡))(

𝑖𝒥

ℏ𝜔
𝑠𝑖𝑛(𝜔𝑡))𝜈𝑖(5−𝑖))

𝑖=1

4

, (10) 

with 𝜈𝑖𝑗 = 𝛿(𝑖+𝑗)5(−1)𝑚𝑎𝑘𝑠{𝑖,𝑗}, where 𝛿𝑖𝑗  is Kronecker delta. 

4 Conclusion 

Our result 𝐶∗(𝒜)⨂𝐶∗(𝒜) ≅ 𝑀4(ℂ) says that the observables in the composite of 

two spin-1/2 system includes all the self-adjoint matrices in 𝑀4(ℂ). The canonical basis 

𝐸𝑖𝑗  of 𝑀4(ℂ) is not self-adjoint for each 𝑖 ≠ 𝑗, while the observables are represented by 

self-adjoint operators/matrices. Because 𝒜⨂𝒜 is a self-adjoint set, then restrict the 

span 𝒜⨂𝒜 to its self-adjoint elements is sufficient to restrict the field ℂ to ℝ. 
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source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

338             R. A. Dewi et al.

http://creativecommons.org/licenses/by-nc/4.0/

	Tensor C*-Algebra on Two Qubit Spin-1/2 System



