
The Application of Machine Learning Algorithms on 

Triaxial Passive Seismic Data to Identify The Geological 

Location of The Signal Source 

Muhammad Randy Azhari1, Bagus Mahendro Wibowo Adhi1, Evi Fazriati1, 
and Yudi Rosandi1* 

1 Department of Geophysics, Faculty of Mathematics and Natural Sciences, Universitas 

Padjadjaran, Jatinangor, Indonesia 

rosandi@geophys.unpad.ac.id 

Abstract. The characteristics of ground vibration are determined by the local 

geological and physical conditions of the Earth. Such vibrations can be detected 

using the passive seismic measurement. This research aims to create an advanced 

signal processing program to classify the local characteristic of ground vibration 

signals, applying the machine learning techniques, specifically the Convolutional 

Neural Network. The research process involved data acquisition, data 

preprocessing, model creation, model training, and model testing. Data 

acquisition was performed using a triaxial seismometer. The acquired data was 

converted into image representations in the form of axial spectrograms. The 

training data was divided into three directional components. The training process 

consists of two steps namely the component identification step and classification 

step. For the component identification we obtained accuracy of 87.8%. Whereas, 

for the classification step we obtain 90.8% using the horizontal model and 95.3% 

using the vertical model. Based on the confusion matrix evaluation, the model 

achieved an accuracy of over 85% in the overall classification. Furthermore, in 

the testing process correct classifications that matched the labels in all 

experiments was achieved. This work demonstrates the capability of classifying 

the local characteristic of ground vibration signals by means of the Convolutional 

Neural Network algorithm. 
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The local physical and geological conditions of every region have distinct characteris-

tics, which is reflected in the ground vibrations patterns. These vibrations are mechan-

ical waves that propagate through the soil, caused by natural sources or human activi-

ties. The propagation speed in a medium is determined by several factors, i.e. the source 

frequency, the material characteristics, and the environmental conditions [1]. Every 

medium has natural frequencies and harmonics, due to material characteristics such as 

molecular density and porosity. Ground vibration signals exhibit different spectral sig-
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nal patterns depending on the geological conditions [2]. Ground vibrations carry infor-

mation through the frequencies they contain, and this information can be used to assess 

geological conditions [3]. 

Ground vibrations can be recorded using passive seismic methods. Passive seismic 

methods are also known as microtremor methods because they detect very small vibra-

tions. Rock formations are important parameters that influence the ground vibration 

acceleration values in a specific region [4]. Research using geophone sensors to detect 

differences in subsurface materials [5]. This research revealed that variations in mate-

rials can be identified through the soil medium, which affects wave propagation veloc-

ity. Research to classify and characterize soil that could potentially trigger landslides, 

a natural disaster [6]. To understand the physical and geological characteristics of a 

region, it is necessary to employ methods capable of identification and classification. 

Therefore, studies utilizing machine learning methods are required to obtain efficiency 

and high accurate results. One of the popular machine learning methods for object iden-

tification and image classification is the Convolutional Neural Network [7]. 

Ground vibration signal data can be highly complex, containing intricate patterns 

and variations that may not be easily discernible to the human eye or conventional 

methods [8]. The CNN method is excellent at capturing complex patterns within data, 

making it suitable for analyzing complex signals such as ground vibrations [9]. CNN is 

adept at automatically extracting relevant features from raw data. In the context of 

ground vibration signals, CNN can discern subtle variations and extract features that 

are crucial for understanding the characteristics of the signals [10]. 

The Convolutional Neural Network (CNN) is a deep learning algorithm designed for 

processing two-dimensional data, such as sound or images. CNN can be employed for 

classifying labeled data using supervised learning methods, where training data and 

target variables are available, aiming to categorize data into existing data labels. Re-

search to identify plant species using the CNN method, achieving an accuracy rate of 

90% [11]. Another study focused on identifying fruit types using the CNN method with 

the MobileNetV2 architecture, achieving accuracy levels of up to 99% [12]. The CNN 

method is still rarely applied to cases involving ground vibration signal data. Therefore, 

there is a need for a study to apply machine learning methods using ground vibration 

signal data. 

This research focuses on three locations, two in campus experiment fields (Lapangan 

Merah and the arboretum, Universitas Padjadjaran) and a landslide prone area at East 

part of Bandung basin (Desa Cihanjuang, Cimanggung, Sumedang, West Java). To ease 

the discussion the locations are denoted as L1, L2, and L3, respectively. They were 

selected due to the varying environmental conditions. L1 is on a plateau, L2 is situated 

in a valley, L3 lies inside a landslide prone area. We assumed that the selection would 

reveal distinct characteristics of ground vibration signals. Data acquisition was per-

formed using a microtremor method with a triaxial seismometer, followed by data pro-

cessing that is essential to eliminate noise and transform the raw data into spectrograms. 

This is a necessary step in the machine learning method to identify ground vibration 

signals using CNN. The spectrograms are put in an image format. The program was 

written in Python programming language, based on the pre-trained CNN model. This 
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research aims to develop a program that can identify geological locations from the 

ground vibration signals. 

2 Methodology 

This research is generally conducted in five stages: data acquisition, data preprocessing, 

model creation, model training, and model testing. Data acquisition was carried out at 

three different locations with distinctive local physical conditions. Figure 1 shows the 

research location, these locations were chosen according to different morphological 

conditions, i.e. a plateau (L1), a valley (L2), and a landslide-prone area (L3). The ac-

quisition of ground vibration signal data was conducted using the microtremor method 

with a triaxial seismometer developed in the laboratory (SeismoLog devices). The used 

geophone type was the ST 4.5 N with a natural frequency of 4.5 Hz. The seismometer 

possesses a sensitivity of approximately 0.28 V/cm/s. Measurements are carried out 50 

times sparsely distributed at each location with sampling time of 10 minutes. 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. The physical conditions of the research locations. (a) A plateau (L1), (b) A valley (L2), 

and (c) A landslide prone area (L3). 

The data acquired using the SeismoLog device comprises three components that are 

mutually perpendicular. These components consist of two horizontal elements, X (east-

west) and Y (north-south), as well as one vertical component, Z (up-down). To facilitate 

data transfer and processing, the acquisition data was stored in the JSON file format. 

JSON file format is easily readable and accessible by Python scripts due to its open 
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source [13]. The acquired data includes various measurement parameters, such as the 

data acquisition time, channel-00 signal data (horizontal component X), channel-01 

signal data (horizontal component Y), and channel-02 signal data (vertical component 

Z). Table 1 illustrates the data format (.JSON) utilized by the SeismoLog instrument. 

Table 1. The recorded data result (.JSON) in the acquisition process. 

Field Number of Data/Second Data Type 

Time 594 array 

Channel-00 (X) 594 array 

Channel-01 (Y) 594 array 

Channel-02 (Z) 594 array 

config - JSON Object 

 

In this research, the identification of geological conditions was conducted using a 

machine learning method known as Convolutional Neural Network (CNN). This 

method was chosen for its effectiveness in extracting features from spatial data. Data 

fed into the CNN method is typically in the form of digital images. Therefore, a data 

preprocessing process is needed to transform the raw data, which initially comes in 

JSON format, into images in the form of spectrograms. 

Data related to ground vibrations must also pass through several stages in signal 

preparation to eliminate interference signals and adapt the dataset to the required pa-

rameters. This process was carried out using the Python programming language with 

the assistance of commonly used signal processing libraries, namely Numerical Python 

(NumPy) and Scientific Python (SciPy). The preprocessing was divided into four 

stages: filtering, acquisition data sampling, spectrogram creation, and data augmenta-

tion. 

The filtering stage aims to eliminate unwanted noise, such as vehicle activity and 

tree roots. The filtering method used was the Butterworth low-pass filter. Research that 

demonstrating that the Butterworth filter produces an almost flat passband amplitude 

response without ripples, making it relatively superior compared to other filters, such 

as Chebyshev and Elliptic [14]. This filter allows low-frequency signals to pass through 

with a cutoff frequency of 20 Hz. This is because the dominant frequency at the meas-

urement point is less than 20 Hz, so signals above this cutoff frequency are considered 

as the interference. The number of data points in each JSON file varies, typically around 

355,000 data points. This variation is due to differences in the natural frequencies dur-

ing acquisition. To address this issue, an acquisition data sampling process was carried 

out. The purpose of this acquisition data sampling process was to prevent data imbal-

ance. 

Spectrograms were created using data from the X, Y, and Z components at each 

location. The spectrograms underwent a data augmentation process to increase the 

quantity of datasets that will be used during model training. Data augmentation can 

enhance the accuracy of the trained CNN model because the model gains additional 

data, enabling it to generalize better [15]. This results in a dataset of spectrograms con-

sisting of 50 for each component at each location. Data augmentation was performed 
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by dividing the spectrograms into time segments of 300s, 150s, 100s, 75s, and 60s. As 

a result, each original spectrogram data generated 31 spectrogram data points. In this 

way from 50 spectrogram data points acquired from every location we obtained 1,550 

smaller spectrogram data chunks for each component. 

Table 2. The distribution of training and test data for the component, vertical, and horizontal 

models. 

Model Component Vertical Horizontal 

Label HOR VER L1 L2 L3 L1 L2 L3 

Training Data 3.720 3.720 1.240 1.240 1.240 2.480 2.480 2.480 

Test Data 930 930 310 310 310 620 620 620 

 

In this research, the model was built using the MobileNetV2 architecture, which di-

vides the process into depthwise convolution and pointwise convolution. MobileNetV2 

introduces two new features: linear bottlenecks and shortcut connections between bot-

tlenecks. The MobileNetV2 architecture was chosen for its relatively fast training du-

ration and high accuracy [16]. In total, three models are created in this research: the 

component model, the horizontal model, and the vertical model. The component model 

was responsible for identifying the components from the input data, while the horizon-

tal and vertical models are responsible for identifying the geological locations from the 

input data. 

Table 2 explains the labels for each model, as well as the training and testing datasets 

that each model will utilize. The dataset distribution was divided into 80% for training 

and 20% for testing, selected randomly. Previous study elucidates that the 80%-20% 

dataset distribution generally yields better accuracy compared to the 60%-40% and 

70%-30% distributions [17]. 

The hyperparameters used in this study encompass the number of epochs, set at 20, 

a learning rate of 0.001, and a batch size of 128. Hyperparameter tuning focuses on 

ensuring that the model does not experience underfitting or overfitting to the training 

dataset, while also learning the data structure [18]. The selection of the number of 

epochs and learning rate was based on research [19], which achieved an accuracy rate 

of 98.18%. Furthermore, the models underwent testing using batch sizes of 8, 16, 32, 

64, and 128, with the results indicating that a batch size of 128 yielded the highest 

accuracy and the shortest training duration. The optimization technique employed was 

Adam. Adam optimization was chosen due to its ability to expedite the training process 

towards convergence [20]. To gauge the disparity between the values predicted by the 

model and the actual values in the label data, a loss function in the form of CrossEn-

tropyLoss was employed. The primary objective of model training was to minimize the 

loss value, enabling the model to furnish precise predictions in line with the actual data. 
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Fig. 2. Flowchart of the identification program for testing the Component Model, Horizontal 

Model, and Vertical Model. 

The model testing was performed by creating a confusion matrix using the testing 

dataset. This confusion matrix serves to assess the comparison between the model's 

predictions, resulting from the training process, and the actual data in the labels. The 

confusion matrix can indicate the model's performance in classifying correct values in 

the predicted classes. Previous study utilized a confusion matrix to evaluate the perfor-

mance of the trained model, achieving an accuracy rate of 86.2% [21]. In addition to 

using the confusion matrix, testing was also conducted by developing a program capa-

ble of processing input data into outputs that represent the identification of geological 

conditions. The algorithm for this program can be seen in Figure 2. 

Based on this algorithm, the program will be able to identify whether the input con-

sists of horizontal or vertical component data using the component model. When the 

input has a horizontal component, the program will proceed with the identification pro-

cess using the horizontal model to determine the geological location, which could be 

L1, L2, or L3. However, if the input was a vertical component, the program will con-

tinue the identification process using the vertical model to determine the same geolog-

ical locations: L1, L2, or L3. This program was implemented in the form of a script 

using the Python programming language with a (.py) format, enabling it to be executed 

directly from the command line in the console. The data input into the program was in 

(.JSON) file format because the program was designed to integrate with the Seismo-

Log seismometer, allowing input data to be processed to generate component and loca-

tion predictions. 
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3 Result and Discussion 

The raw data that has undergone preprocessing results in spectrogram data. These spec-

trograms are generated using three components: X, Y, and Z. This data was then utilized 

to build the CNN model. Figure 3 shows the spectrograms for each component from 

location L2. Each spectrogram exhibits distinct characteristic patterns, primarily due to 

variations in local frequency and magnitude values recorded by the geophone sensors. 

 

(a) (b) (c) 

Fig. 3. Spectrogram at location L2. (a) Component X, (b) Component Y, and (c) Component Z 

Based on the training results shown in Table 3, it can be observed that the training 

duration for the component model was 27 minutes and 38 seconds, for the horizontal 

model was 28 minutes and 59 seconds, and for the vertical model was 13 minutes and 

27 seconds. Meanwhile, the accuracy of the component model reaches 87.8%, the hor-

izontal model achieves 90.8%, and the vertical model attains 95.3%. These training 

results indicate that accuracy is not significantly influenced by the training duration, as 

the vertical model, with the shortest training duration among the three models, has the 

highest accuracy. 

The differences in training duration and accuracy are attributed to variations in the 

datasets used to train each model. The component and horizontal models have more 

diverse input datasets. The component model covers three different locations for each 

label, while the horizontal model encompasses components X and Y for each label. On 

the other hand, the vertical model has a more homogeneous dataset since each label 

consists only of component Z. 

Table 3. The training results of the model with MobileNetV2 architecture. 

Model Batch size epoch 
Learning 

rate 
Duration Accuracy 

Component 128 20 0.001 
27 minutes 

38 seconds 

87.84% 

Horizontal 128 20 0.001 
28 minutes 

59 seconds 
90.80% 

Vertical 128 20 0.001 
13 minutes 

27 seconds 
95.26% 
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The results of model training can also be analyzed by examining the differences be-

tween the loss curve and accuracy curve on the training dataset and the testing dataset. 

Loss and accuracy curves are two important indicators commonly used to monitor and 

analyze a model's performance in machine learning. The loss curve illustrates how well 

or poorly the model manages prediction errors at each training epoch. Meanwhile, the 

accuracy curve measures how accurately the model can make predictions on the train-

ing dataset. 

 

(a) 

 

(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4. Results of the loss and accuracy curves on the training and testing data. (a,b) Loss curve 

and accuracy curve graphs for the component model. (c,d) Loss curve and accuracy curve graphs 

for the horizontal model. (e,f) Loss curve and accuracy curve graphs for the vertical model. 

These loss and accuracy curves are highly significant as they help us understand the 

behavior of the model throughout the training process. By analyzing these curves, we 

can determine whether the model is experiencing overfitting (overly adapting to the 

training data and failing to generalize to the testing data) or underfitting (insufficiently 

adapting to the training data). Additionally, we can identify when the model reaches a 
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stable level of performance. The information obtained from the analysis of loss and 

accuracy curves is valuable for optimizing and improving models during the training 

phase [22]. 

The results of the loss and accuracy curves during the training of the component 

model (Figure 4a, 4b), horizontal model (Figure 4c, 4d), and vertical model (Figure 4e, 

4f) generally show that the loss values fluctuate with each epoch, but the accuracy val-

ues tend to converge as the epochs progress. Additionally, the loss values for the train-

ing dataset are lower than those for the test dataset, and the accuracy values for the 

training dataset are higher than those for the test dataset. 

Based on these results, it can be concluded that all three models are experiencing 

overfitting. Overfitting occurs when a model becomes overly tailored to the training 

data, resulting in good performance on the training data but poor performance on un-

seen test data or data it has not encountered before. This can be observed from the 

differences between the accuracy and loss values for the training and test datasets. 

Higher accuracy on the training dataset suggests that the model has "memorized" the 

training data but fails to generalize to the test data. 

To address overfitting, several steps can be taken, including the use of regularization 

techniques like dropout or the addition of more diverse training data [23]. By doing so, 

the model can better generalize to previously unseen data and achieve improved overall 

performance. 

 

(a) 

 

(b) 

 
(c) 

Fig. 5. Confusion matrices based on test data. (a) Component Model, (b) Horizontal Model, and 

(c) Vertical Model. 
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In this study, model testing was conducted using two methods: confusion matrices 

and an identification program. Confusion matrices are used to observe the comparison 

between the model's predictions from training and the actual data in the labels. The 

identification program assesses the model's performance in identifying geological lo-

cations. 

The results of the confusion matrix are presented in Figure 5. In the component 

model (Figure 5a), it can be observed that the model was able to correctly identify the 

HOR label with an accuracy of 85% and the VER label with an accuracy of 90%. In the 

horizontal model (Figure 5b), the confusion matrix results show that the model was 

able to correctly identify the L1 label with an accuracy of 89%, correctly identify the 

L2 label with an accuracy of 91%, and correctly identify the L3 label with an accuracy 

of 93%. Meanwhile, in the vertical model (Figure 5c), the confusion matrix results show 

that the model was able to correctly identify the L1 label with an accuracy of 95%, 

correctly identify the L2 label with an accuracy of 97%, and correctly identify the L3 

label with an accuracy of 96%. Based on the results of these three confusion matrices, 

it can be observed that all three models are able to identify geological conditions with 

an accuracy rate of over 85%. The vertical model has the highest success rate in per-

forming identifications among the three models. 

Table 4. The classification results with input data at the L1. 

Input 

Data 

Component Geological Classification 

Horizontal Vertical L1 L2 L3 

Component X 99.99% 0.003% 99.99% 0.0023% 0.0000004% 

Component Y 97.54% 2.44% 99.83% 0.12% 0.006% 

Component Z 0.00% 100% 99.99% 0.0001% 0.000001% 

 

The identification program was tested 9 times under various conditions. The input 

data consisted of components X, Y, and Z from the locations L1, L2, and L3. The results 

of the testing of the identification program using input data at the L1 location are shown 

in Table 4. When the input data was component X, the program predicts that the input 

is a horizontal component with a confidence level of 99% and identifies it as L1 with a 

confidence level of 99%. When the input was component Y, the program predicts that 

the input is a horizontal component with a confidence level of 97% and identifies it as 

L1 with a confidence level of 99%. Meanwhile, when the input data was component Z, 

the program predicts that the input is a vertical component with a confidence level of 

100% and identifies it as L1 with a confidence level of 99%. 

Table 5. The classification results with input data at the L2 location. 

Input 

Data 

Component Geological Classification 

Horizontal Vertical L1 L2 L3 

Component X 98.75% 1.02% 2.68% 79.07% 20.92% 

Component Y 99.98% 0.01% 2.84% 99.66% 0.33% 

Component Z 0.0001% 99.99% 0.18% 99.66% 22.93% 
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The results of the identification program with input data at the L2 are shown in Table 

5. When the input data was component X, the program predicts that the input is a hori-

zontal component with a confidence level of 98% and identifies it as L2 with a confi-

dence level of 79%. When the input was component Y, the program predicts that the 

input is a horizontal component with a confidence level of 99% and identifies it as L2 

with a confidence level of 99%. Meanwhile, when the input data was component Z, the 

program predicts that the input is a vertical component with a confidence level of 99% 

and identifies it as L2 with a confidence level of 99%.  

Table 6. The classification results with input data at the L3 location. 

Input 

Data 

Component Geological Classification 

Horizontal Vertical L1 L2 L3 

Component X 99.99% 0.0006% 0.00000007% 0.00002% 99.99% 

Component Y 99.95% 0.04% 0.00000007% 0.0001% 99.99% 

Component Z 0.50% 99.48% 2.07% 0.38% 97.44% 

 

The results of the testing of the identification program using input data at the L3 

location are shown in Table 6. When the input data was component X, the program 

predicts that the input is a horizontal component with a confidence level of 99% and 

identifies it as L3 with a confidence level of 99%. When the input was component Y, 

the program predicts that the input is a horizontal component with a confidence level 

of 99% and identifies it as L3 with a confidence level of 99%. Meanwhile, when the 

input data was component Z, the program predicts that the input is a vertical component 

with a confidence level of 99% and identifies it as L3 with a confidence level of 97%. 

4 Conclusion 

Based on the results of training the models using the MobileNetV2 architecture, it 

can be concluded that the component model has an accuracy of 87.8%, the horizontal 

model has an accuracy of 90.8%, and the vertical model has an accuracy of 95.3%. 

There are differences in accuracy values and training duration among these three mod-

els. These differences can be attributed to variations in the datasets used to train each 

model, where the dataset for the component and horizontal models is more diverse, 

while the dataset for the vertical model is more uniform. The testing results using the 

confusion matrix show that the program was capable of classification with an accuracy 

rate of more than 85%. The testing results using the program with input data from three 

different locations, each of which has three different components, demonstrate that the 

program was able to provide correct predictions 9 out of 9 times. Based on these results, 

it can be concluded that the program has successfully identified geological locations 

from the ground vibration signals. 
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