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Abstract. As the frequency of extreme climate events escalates, the financial 

systems face significant challenges. This paper empirically examines the effects 

of extreme climate on the volatility of agricultural product futures prices by con-

structing a network of agricultural product futures. The findings reveal three key 

impacts: First, extreme climate conditions increase the uncertainty in agricultural 

product futures supply and investor market expectations, significantly affecting 

the volatility of futures prices. Second, extreme climate enhance the volatility of 

agricultural product futures prices by increasing network clustering. Third, the 

effects of extreme climate on the volatility of agricultural product futures prices 

are significant in autumn due to seasonal heterogeneity. This paper unveils the 

mechanisms through which extreme climate impacts agricultural product futures 

price volatility, offering insights and policy recommendations to relevant sectors 

for mitigating the effects of extreme climate on the agricultural futures market. 

Keywords: Agricultural Product Futures; Extreme Climate; Shannon Entropy; 

Network Clustering; Seasonal Heterogeneity 

1 Introduction 

Extreme climate change is considered one of the most significant challenges of the 21st 

century. The report released by the United Nations Intergovernmental Panel on Climate 

Change (IPCC) in 2022 notes that, under the influence of extreme climate changes, 

"China will be among the regions most affected." Currently, China's agricultural market 

has been severely affected by multiple climatic disasters. In 2021 alone, the "extraor-

dinary heavy rainfall" in Henan affected an area of 1,021.4 thousand hectares, with 

179.8 thousand hectares experiencing total crop failure. The frequent occurrence of ex-

treme climate events poses severe challenges to natural ecosystems, public health, and 

economic development, while also exacerbating the uncertainty in the financial system, 

threatening financial stability, and hindering economic progress (FSB 2020) [1]. 

The construction of complex networks and the measurement of financial market sys-

tem stability using network entropy have gained widespread attention among scholars.  
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Wang et al. (2023) [2] utilized transfer entropy to calculate the correlation network ma-
trix of interbank risk contagion, demonstrating that interbank systemic risks signifi-
cantly increased following the outbreak of the pandemic. In the futures market, Niu and 
Hu (2021) [3] combined transfer entropy with the data decomposition technique 
CEEMDAN, confirming the presence of highly active assets that produce stronger 
spillover and contagion effects during the market information overflow process. 

The agricultural futures market, one of the earliest futures markets, plays a pivotal 
role in society (Ahumada & Cornejo, 2016) [4]. Predicting the prices of agricultural 
product futures not only helps investors achieve considerable returns but also plays a 
critical role in devising hedging strategies (Luo et al., 2022) [5]. Beckmann and Czudaj 
(2014) [6] utilized the GARCH-in-mean VAR model and discovered that speculative 
influences on one market could spread to others, increasing the volatility of agricultural 
product futures markets. Degiannakis et al. (2022) [7] argue that studying the behavior 
of agricultural product prices and their volatility is crucial, as it assists policy bodies in 
preparing for periods of high price volatility or in designing preventative policies. Few 
scholars have explored the impact of agricultural product futures price volatility from 
the perspective of complex networks. 

Extreme climate events, which deviate significantly from the average climate state 
and statistically represent low-probability occurrences. These events have a substantial 
impact on society and the environment. They have profound effects on the global econ-
omy. Sampson (2017) [8] showed that increases in the intensity and frequency of ex-
treme climate events directly cause reductions in crop yields, endangering food secu-
rity. According to Monasterolo (2020) [9], climate change is now considered a signifi-
cant source of risk for financial systems. Zhou et al. (2023) [10] noted that natural disas-
ters and climate change risks generally diminish the profitability and risk-sharing ca-
pacity of insurance companies, the stability of banks and credit supply, and the returns 
and stability of stock and bond markets. Despite extensive literature on the impact of 
extreme climate on financial stability, the influence of extreme climate on the volatility 
of agricultural product futures prices has not yet been adequately addressed. 

To explore how extreme climate affects the volatility of agricultural product futures 
prices, this paper utilizes data from 2016 to 2022 on 18 major agricultural products. By 
constructing a network of agricultural product futures, this study investigates the impact 
of extreme climate on the volatility of these prices. The marginal contributions of this 
paper are primarily threefold. Firstly, by employing network entropy to depict the vol-
atility of agricultural product futures prices, this paper provides novel theoretical sup-
port for assessing such volatility. Secondly, this paper examines how extreme climate 
influences the network of agricultural product futures, thereby affecting their price vol-
atility, offering new theoretical insights into the mechanisms by which extreme climate 
impacts this volatility. Thirdly, the paper focuses on exploring the heterogeneity char-
acteristics of different seasonal markets during extreme climate events. This analysis is 
instrumental in guiding policies to guard against seasonal fluctuations in futures prices. 

The structure of this paper is as follows. Section II will engage in theoretical analysis 
and research hypotheses. Section III will design empirical research. Section IV analyzes 
the empirical results. Section V conducts further analyses. Section VI summarizes the 
paper and offers policy recommendations. 
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2 Theoretical Analysis and Research Hypotheses 

Based on market supply and demand theory, the volatility of commodity prices is in-
fluenced by the supply-demand dynamics. The occurrence of extreme climate events 
can lead to a reduction in agricultural output, subsequently affecting the supply-demand 
balance and triggering fluctuations in agricultural markets and prices (Chatzopoulos et 
al., 2020) [11]. The Expectational Hypothesis Theory suggests that more frequent ex-
treme climate events severely impact investors' market expectations and investment 
strategies, intensifying the volatility of futures prices (Peri, 2017) [12]. Based on this, we 
propose the following research hypothesis: 

H1: Extreme climate events increase the price volatility of agricultural product fu-
tures within the correlation network. 

Systemic Risk Theory emphasizes that in the agricultural product futures market, 
extreme climate events can cause supply chain disruptions, affecting multiple related 
markets and products (Hui-Min LI et al., 2021) [13]. Such impacts can alter the close 
connections between different agricultural products within the futures correlation net-
work, exacerbating the risk exposure of these relationships and increasing overall mar-
ket volatility. Behavioral finance posits that extreme climate events trigger panic and 
irrational reactions among market participants (Guo et al., 2023) [14], particularly in 
highly concentrated networks where the contagion effects of emotions and behaviors 
are more pronounced, leading to excessive price reactions and high volatility. Thus, we 
propose the following research hypothesis: 

H2: Extreme climate events enhance the price volatility of agricultural product fu-
tures by altering network clustering. 

Seasonal Cycle Theory asserts that seasonality is a critical factor in the agricultural 
product futures market, as the growth cycles, planting, and harvesting periods directly 
impact prices. Agricultural production experiences varying fluctuations across the sea-
sons of spring planting, summer growth, autumn harvesting, and winter storage. The 
occurrence of extreme climate events in different seasons affects the supply and de-
mand of agricultural products to varying degrees, often more frequently in specific sea-
sons, thus leading to seasonal heterogeneity in price volatility (Ceglar & Toreti, 2021) 
[15]. Based on this, we propose the following research hypothesis: 

H3: There is seasonal heterogeneity in the impact of extreme climate on the volatility 
of agricultural product futures prices. 

3 Empirical Study Design 

3.1 Agricultural Product Futures Correlation Network Model 

In the agricultural product futures network, nodes represent each type of agricultural 
product futures, while edges denote the correlation degree of price volatility between 
two agricultural products. Let N denote the number of agricultural product futures, T  
the study period, t the time span between two adjacent agricultural product futures 
networks, and denotes the length of the price time series used to construct an 
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agricultural product futures network. Using the sample data from day  1, , the first 

agricultural product futures network is constructed where the daily return series of ag-

ricultural product futures i and j are  1iY and   1 , 1,2 ,jY i j N  respectively, 

constructing ]/[( )M INT T t t     agricultural product futures networks (where 

X denotes the integer part of  INT X ) .The m-th network is denoted as 

, , 1, 2,) ,(mG V E m M  , and the correlation coefficient of prices in the m-th network 

for agricultural product futures is calculated as Eq (1). 
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The return series is calculated using logarithmic returns like Eq (2). ( )t

i mp  repre-

sents the closing price of agricultural product futures i on day t . 
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Subsequently, ( )
ij

m  is transformed into the corresponding distance metric 

ij(m)d like Eq (3); then the appropriate transformations are made to construct m-th ag-

ricultural product futures networks ( , )mG V E  that reflect the complex price fluctua-

tion correlation patterns of N agricultural product futures from 
],[1 ( 1) ( 1)tm m t      days like Eq (4). 

 ( ) 2(1 ( ))ij ijm = - mρd  (3) 

 ( ) ( ( ))ijij m =exp - mw d  (4) 

Network topology features include the clustering coefficient. Drawing on prior re-
search (Liu et al., 2022) [16], the clustering coefficient for weighted networks are con-
structed as Eq (5): 
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Network entropy describes the level of system stability, where higher network en-
tropy indicates stronger stability of the agricultural product futures correlation network 
system. A random matrix is obtained through the following formula Eq (6): 
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Random matrix  ijp m  i row can serve as a transition probability distribution. Us-

ing Shannon entropy formula, the Shannon entropy itHSS of a firm i in the agricul-

tural product futures network m , as Eq (7): 
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
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3.2 Baseline Regression Model 

The frequent occurrence of extreme climate events poses significant shocks to the fi-
nancial system. This study aims to analyze the intrinsic connection between extreme 
climate events and the volatility of agricultural product futures prices, delving into how 
extreme climates influence this volatility. To test the empirical hypotheses, the follow-
ing baseline regression model is constructed: 

 , 0 1 , , ,i t i t i t i t i tSAF Cl Control              (8) 

Here, i represents a specific agricultural product future, t denotes the period, cover-
ing 28 quarters from Q1 2016 to Q4 2022. The dependent variable SAFi,t  is the price 
volatility of the i-th agricultural product futures in period t, and the independent varia-
ble Clii,t is the number of times the i-th product was impacted by extreme climate events 
during t. Controli,t  includes both micro and macroeconomic control variables that 
could influence the volatility of agricultural product futures prices, γi and δt  represent 
individual fixed effects for agricultural product futures and year fixed effects, respec-
tively, and εi,t is the random error term. 

Drawing from previous literature settings and data availability (K Anderson & A 
Strutt, 2014) [17], the following control variables were selected: micro-level controls 
include the logarithm of open contracts volume (lnOCV) reflecting market participants' 
expectations and attitudes, and the logarithm of trading volume (lnVOL) indicating 
market activity; macro-level controls include the logarithm of Gross Domestic Product 
(lnGDP) representing overall economic conditions, population total in logarithm 
(lnPop), inflation rate (IR), and average exchange rate (AER). 

3.3 Data Sources and Descriptive Statistics 

This study bases its analysis on data for Chinese agricultural product futures prices up 
to Q4 2022. It excludes data from non-trading days and agricultural products with se-
vere data omissions due to suspensions. Eighteen types of agricultural product futures 
were retained. Price-related data for these futures were sourced from the Dalian Com-
modity Exchange and the Zhengzhou Commodity Exchange. Extreme climate data was 
obtained from monthly alert reports issued by the China Meteorological Administration 
National Warning Release System. Control variables were sourced from the National 
Bureau of Statistics, the OECD database, and the World Bank. Descriptive statistics for 
each variable are reported in Table 1. 
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Table 1. Descriptive Statistics 

Variables Obs. Mean Std. Min Max 

SAFi,t 504 2.7851 0.0208 2.6540 2.8904 
Clii，t 504 10.5266 0.9271 9.0512 11.8824 

lnOCV 504 11.4164 2.6902 1.6045 14.7583 
lnVOL 504 11.0798 3.1755 1.7736 14.7779 
lnGDP 504 12.3234 0.1754 11.9939 12.6617 
lnPop 504 11.8528 0.0060 11.8390 11.8584 

IR 504 1.9948 0.9896 -0.1090 4.9566 
AER 504 6.7164 0.2344 6.3474 7.1296 

4 Baseline Regression Analysis 

4.1 Baseline Regression Analysis 

Following the model settings described earlier, the baseline regression results are 
shown in Table 2. Column (1) presents the results of regressing agricultural product 
futures price volatility on extreme climate events. The coefficient estimate for Cli is 
significant at the 5% level, indicating a positive impact of extreme climate on the vol-
atility of agricultural product futures prices. Columns (2) and (3) include results with 
micro-level and macro-level control variables added, respectively, and column (4) 
shows the results with both micro and macro control variables included. The inclusion 
of control variables increases the goodness of fit and enhances the explanatory power 
of the regression model, confirming the effectiveness and appropriateness of incorpo-
rating these variables. After adding control variables, the coefficient of Cli is signifi-
cantly positive at the 10% level in all three cases, affirming that extreme climate en-
hances the volatility of prices within the agricultural product futures correlation net-
work. Thus, H1 is validated. 

Table 2. Baseline Regression Results 

 SAF SAF SAF SAF 

 (1) (2) (3) (4) 

Cli 0.0024** 0.0014* 0.0018* 0.0013* 
 (0.0010) (0.0008) (0.0009) (0.0008) 

lnVOL  0.0022*  0.0023* 
  (0.1258)  (0.0013) 

lnOCV  -0.0026**  -0.0262** 
  (0.0013)  (0.0013) 

lnGDP   0.0307*** 0.0042 
   (0.011) (0.0064) 

lnPop   -0.6370** -0.1733 
   (0.2605) (0.1909) 

IR   0.0020 0.0018* 
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   (0.0011) (0.0009) 
AER   0.0058 -0.0025 

   (0.0049) (0.0030) 
Cons 2.7600 2.7745*** 9.8945*** 4.7897** 

 (0.0154) (0.0092) (2.9442) (2.194) 
N 504 504 504 504 
R2 0.0523 0.2408 0.1175 0.2479 

(Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.) 

4.2 Robustness Test 

The study conducts robustness tests by replacing the dependent variable and altering 
the computation method of the core explanatory variable, with specific data obtained 
from the formulas mentioned earlier. The regression results are displayed in Table 3. 
Initially, the dependent variable was replaced with Renyi entropy to measure the vola-
tility of agricultural product futures prices. Column (1) shows the results without con-
trol variables, and column (2) includes control variables. The results indicate that the 
core explanatory variable Cli is significant at the 1% level without control variables 
and at the 5% level with control variables, demonstrating the robustness of the baseline 
regression results. Subsequently, the explanatory variable was replaced for further ro-
bustness tests. Given the significant and widespread impact of extreme precipitation on 
the growth of agricultural products within the context of extreme climate events, the 
study substitutes the core explanatory variable with the occurrence of extreme precipi-
tation events. Column (3) presents the results without control variables, and column (4) 
includes control variables. The coefficient for EP is significant at the 10% level, con-
firming the robustness of the baseline regression results and further validating H1. 

Table 3. Robustness Test Results 

 SAFR SAFR SAF SAF 
 (1) (2) (3) (4) 

EP   0.0011* 0.0009* 
   (0.0007) (0.0005) 

Cli 0.0047*** 0.0029**   
 (0.0018) (0.0013)   

Controls NO YES NO YES 
Individual Fixed YES YES YES YES 

N 504 504 504 504 
R2 0.1243 0.3033 0.0806 0.2479 

(Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.) 

132             Z. Lian et al.



5 Further Analysis 

5.1 Mechanism Analysis 

This paper considers the clustering coefficient as a mediating variable to test the impact 
mechanism of extreme climate on the volatility of agricultural product futures prices. 
Following the two-step method used by Semrau and Sigmund (2012) [18], the mediating 
effect model is constructed as follows: 

 
0i,t 1 , , ,i t i t i t i tC Cli Control            (9) 

 
0i,t 1 , , ,i t i t i t i tSAF C Control            (10) 

In equations (9) and (10), Ci,t represents the clustering coefficient of agricultural 
product futures i in period t. We focus on the significance of the coefficients in equa-
tions (9) and (10). When both β1 and θ1 are significant, a positive mediation effect is 
indicated. Column (1) in Table 4 shows the results of regressing the clustering coeffi-
cient C on the number of extreme climate events Cli, and column (2) shows the results 
of regressing the volatility of agricultural product futures prices SAF on the clustering 
coefficient C. In the regression of C on Cli, the coefficient of Cli is significant at the 
1% level, indicating a positive impact of extreme climate on the clustering coefficient. 
In the regression of SAF on C, the coefficient of C is significant at the 10% level, sug-
gesting that the clustering coefficient positively affects the volatility of agricultural 
product futures prices. Thus, H2 is confirmed. 

The results demonstrate that extreme climate positively influences the volatility of 
agricultural product futures prices by increasing network clustering. A network with 
high clustering indicates significant complex interconnections among agricultural prod-
uct futures within it. In such a correlation network, agricultural product futures as nodes 
are densely connected with other futures. These connections represent the volatility 
correlations among agricultural product futures. When network clustering is enhanced, 
these connections become tighter, and even minor fluctuations in any agricultural prod-
uct futures can quickly propagate through the network, impacting other related futures. 
Due to the tight interconnections among agricultural product futures, volatility can 
spread more rapidly in a highly clustered network. The volatility can disperse through-
out the entire network, enhancing the volatility of agricultural product futures prices.  

Table 4. Mechanism Analysis Results 

 C SAF 

 (1) (2) 

C  0.1823* 

  (0.1097) 

Cli 0.0042***  

 (0.0007)  
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Controls YES YES 

Individual Fixed YES YES 

N 504 504 

R2 0.3864 0.2616 

(Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.) 

5.2 Heterogeneity Analysis 

This paper further explores the impact of extreme climate on the price volatility of ag-
ricultural product futures across different seasons. Autumn is the main season for the 
maturity and harvest of most crops; extreme climate events during this season can lead 
to significant reductions in agricultural output, thereby affecting market supply. Ac-
cordingly, the 18 types of agricultural product futures analyzed in this study are cate-
gorized into two groups based on the harvest season: autumn and summer. Twelve are 
classified as autumn agricultural product futures, four as summer, and products like 
eggs and palm oil are available throughout the year. This classification allows for base-
line regression analysis of price volatility for these three categories in response to ex-
treme climate events. 

The regression results are presented in Table 5, where column (1) represents autumn 
agricultural product futures, column (2) represents summer agricultural product futures, 
and column (3) represents year-round agricultural product futures. The coefficient of 
Cli in column (1) is significant at the 10% level, indicating that extreme climate events 
have a more pronounced effect on the price volatility of autumn agricultural product 
futures compared to those of summer and year-round. Specifically, while extreme cli-
mate events also occur in summer, this season is not the primary harvest period for most 
crops. Consequently, the impact of such events on market supply and market expecta-
tions is relatively minor, and these futures tend to occupy more peripheral positions 
within the correlation network, with less pronounced clustering effects. Therefore, the 
volatility of summer agricultural product futures prices is less significantly affected by 
extreme climate events. In contrast, most agricultural products mature and are harvested 
in autumn, forming tight connections within the correlation network. Autumn often 
witnesses a higher frequency of extreme climate conditions, leading to drastic reduc-
tions in crop yields, directly impacting market supply and, consequently, triggering 
price volatility. Thus, the impact of extreme climate on autumn agricultural product 
futures prices is notably more significant. 

Table 5. Heterogeneity Analysis Results 

 Aut Sum All 

 (1) (2) (3) 

Cli 0.0015* 0.0010 0.0006 

 (0.0009) (0.0020) (0.0017) 

Controls YES YES YES 
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Individual Fixed YES YES YES 

N 333 107 56 

R2 0.2270 0.2343 0.2310 

(Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.) 

6 Conclusions and Policy Recommendations 

In recent years, as the frequency of extreme climate events has continuously risen, re-
searchers have begun to explore their impact on the volatility of agricultural product 
futures prices. Utilizing quarterly data from 2016 to 2022 for 18 types of agricultural 
product futures from the Zhengzhou Commodity Exchange and the Dalian Commodity 
Exchange, this paper constructed a correlation network of agricultural product futures 
to empirically test the impact of extreme climate on price volatility. The empirical re-
sults demonstrate that: firstly, extreme climate increases the uncertainty of agricultural 
product futures supply and investor expectations, significantly affecting the volatility 
of these prices. Secondly, extreme climate enhances the volatility of agricultural prod-
uct futures prices by increasing network clustering. Thirdly, due to seasonality, extreme 
climate has a significant impact on the volatility of autumn agricultural product futures 
prices. 

To control and reduce the impact of extreme climate events on the volatility of agri-
cultural product futures prices, the following policy recommendations are proposed. 
Firstly, governments and relevant financial institutions should collaborate to establish 
a climate risk management framework that includes real-time monitoring and early 
warning of different extreme climate events. This would enable farmers and investors 
to make more rational production and risk management decisions, thereby reducing the 
impact of extreme climate on the volatility of agricultural product futures prices. Sec-
ondly, policymakers should improve information disclosure standards to enhance mar-
ket transparency and reduce issues of information asymmetry, thus increasing the ef-
fectiveness and stability of the agricultural product futures market. Thirdly, promote 
the development of agricultural insurance by encouraging insurance companies to de-
velop agricultural insurance products related to extreme climate. Offering differentiated 
risk protection services for different seasons can enhance the sustainability of agricul-
tural production and minimize the volatility of agricultural product futures prices. 
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