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Abstract. In this paper, application of deep learning techniques and their inter-

pretability analysis are explored in transient stability assessment of power sys-

tems. With the continuous expansion and increasing complexity of power system 

scales, traditional stability assessment methods are facing new challenges. Due 

to their outstanding data processing and learning capabilities, deep learning tech-

niques are able to provide new insights for improving the accuracy and efficiency 

of transient stability assessment. By elaborating on the application process of 

deep learning models in power system stability assessment, which includes 

model selection, training and optimization strategies, this study demonstrates the 

advantages of deep learning in handling complex system data. Furthermore, this 

work emphasizes the importance of model interpretability, analyzes several 

mainstream interpretability methods, and explores their potential applications in 

power system stability assessment, highlighting the crucial role of enhancing 

model transparency in understanding prediction results, boosting decision-mak-

ers' confidence, and optimizing system design. Finally, a summary of the research 

findings on deep learning-based transient stability assessment methods for power 

systems is presented, and future research directions are outlined, indicating that 

integrating deep learning and interpretability analysis is able to support reasona-

ble decision making for the safe operation of power systems. 
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1 INTRODUCTION 

The "14th Five-Year" energy system plan aims to modernize power systems for large-

scale renewable energy integration, emphasizing safe operations, digital advancement, 

and innovative technologies. It promotes grid reforms, enhances intelligence, and  
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adapts to centralized and distributed renewables. Key focuses include better power 
source coordination, expanded energy storage, and increased grid flexibility. As the 
economy grows and electricity demand rises, the integration of large-scale renewable 
energy and the expansion of electronic devices have significantly increased the com-
plexity of power grids. This complexity, combined with advances in communication 
technology, has made power systems into highly complex systems with multifaceted 
information interactions. Traditional stability prediction methods, based on mechanistic 
models, struggle to accommodate the increasing randomness and intricacy of modern 
power systems, leading to a need for more effective predictive methods. These methods 
are crucial for assisting operators in making informed control decisions and enhancing 
grid stability [1]. 

Deep learning has revolutionized various industries by addressing complex, multi-
dimensional data challenges, particularly in power system informatization. Traditional 
methods fall short in managing the data-intensive demands of today’s power systems, 
making deep learning combined with big data a pivotal area of research for assessing 
transient stability. Despite its advantages, deep learning’s "black box" nature poses 
challenges like model opacity and sample imbalance, complicating its application in 
power system stability. 

This paper explores transient stability in power systems, starting with an introduction 
to key deep learning architectures—Convolutional Neural Networks (CNNs), Deep Be-
lief Networks (DBNs), and Deep Reinforcement Learning (DRL)—and their roles in 
stability assessment. It then discusses interpretability analysis, differentiating between 
inherently interpretable models and model-agnostic post-hoc methods, highlighting 
their applications and potential in transient stability assessments. The paper concludes 
by summarizing the benefits of these interpretability methods, emphasizing enhanced 
model transparency and improved decision-making, essential for meeting the chal-
lenges of new energy systems and complex power grids. 

2 RESEARCH ON POWER SYSTEM TRANSIENT 
STABILITY ASSESSMENT METHODS BASED ON 
DEEP LEARNING 

2.1 Research on Transient Stability Assessment Methods Based on 
Convolutional Neural Networks 

The basic concept of Convolutional Neural Networks.  
CNNs [2] are deep neural networks characterized by their convolutional structure, 

reducing memory usage. Key operations include local receptive fields, weight sharing, 
and pooling layers, effectively mitigating overfitting. In CNNs, convolutional and pool-
ing layers alternate in hidden layers, facilitating feature extraction. Weight parameters 
are adjusted layer by layer through gradient descent, enhancing accuracy via iterative 
training. The final output layer employs the Softmax activation function for classifica-
tion. CNNs optimize structure by exploiting features like local receptive fields and 
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shared weights, fully utilizing data locality. Feature extraction layer parameters are 
learned from training data, eliminating manual extraction and establishing input-feature 
classification correlations. 

The application of Convolutional Neural Networks in transient stability assess-
ment 

Literature [3] demonstrates the use of voltage trajectories as CNN input for assessing 
transient stability. Literature [4] explores feature selection for stability using trajectory 
clusters, Relief, and mRMR methods, establishing a dynamic CNN-based model with 
time windows and credibility metrics.  

2.2 Research on Transient Stability Assessment Methods Based on 
Deep Belief Networks 

The basic concept of Deep Belief Networks 
Deep Belief Networks (DBN) [5], deep learning models built on probabilistic graph-

ical models with layers of Restricted Boltzmann Machines (RBMs), are widely used in 
computer vision, natural language processing, and bioinformatics for their robust fea-
ture learning and generation capabilities. A Deep Belief Network typically consists of 
an input layer, several hidden layers, and an output layer, with each hidden layer made 
up of an RBM. An RBM includes a visible layer and a hidden layer, forming a two-
layer neural network that models the relationship between the visible and hidden layers 
through a probabilistic distribution. The structure of an RBM, as shown in figure 1, 
includes n hidden units ℎ and n visible units v, where both ℎ and v are binary variables 
(taking values 0 or 1). There are direct weight connections between visible and hidden 
units, but no connections within the same layer. 

 
Fig. 1. Restricted Boltzmann Machine (RBM) 
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The application of Deep Belief Networks in transient stability assessment 
Due to the powerful feature extraction capabilities and generalization ability of Deep 

Belief Networks, they have been widely applied in the assessment of transient stability 
in power systems [6]. Literature [7] proposes the integration of the NSGA-II algorithm 
with intelligent optimization and Deep Belief Networks, significantly enhancing the 
speed of transient stability assessment and the accuracy of preventive control strategies.  

2.3 The challenges and solutions of Deep Learning in the application of 
transient stability in power systems 

Deep learning is highly effective in pattern recognition for transient stability assess-
ments in power systems but faces challenges such as needing large volumes of high-
quality data, which are scarce, and the models' "black box" nature that reduces trans-
parency and interpretability. Additionally, issues with generalization, overfitting, and 
real-time computational demands complicate its use. To address these, we suggest aug-
menting training datasets with synthetic data and simulations, developing interpretable 
AI for better transparency, and improving model robustness with techniques like regu-
larization and cross-validation. Optimizing computational infrastructure and imple-
menting hardware acceleration are recommended for efficient real-time processing. 
Continuous learning and adaptive strategies will keep the models updated with system 
changes, enhancing deep learning's reliability and supporting improved decision-mak-
ing in power systems. 

2.4 Conclusion 

Additionally, deep learning models leveraging Graph Convolutional Networks (GCN) 
and Graph Attention Networks (GAN)  process electrical grid topology data and en-
hance stability factor recognition, respectively. These models boost assessment speed, 
accuracy, and handle complex power system models, including those with renewable 
energy sources, by autonomously learning features from data. Consequently, they re-
duce reliance on expert knowledge and improve generalization capabilities. Deep learn-
ing's potential and advantages in power system transient stability assessment suggest 
broad future implementation, offering robust technical support for safe and stable 
power system operation. As technology advances, deep learning's role in this field is 
expected to grow significantly. 
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3 INTERPRETABILITY METHOD ANALYSIS AND 
ITS POTENTIAL APPLICATIONS IN POWER 
SYSTEM TRANSIENT STABILITY ASSESSMENT 

3.1  Inherently Interpretable Model Analysis and Its Application in 
Power System Transient Stability 

Decision Trees. 

The basic concepts of Decision Trees 
Decision tree models [8] are structured for classification and regression tasks, or-

ganizing decision rules in a tree format. Nodes, branches, and leaves test features, show 
outcomes, and represent classes or values, respectively. Building these trees involves 
selecting optimal features and values for splitting, while managing growth and pruning 
to improve generalizability and prevent overfitting. Metrics like information gain, gain 
ratio, and Gini impurity guide splitting decisions, with a focus on entropy or dataset 
purity. Although interpretable and computationally efficient, decision trees may overfit 
and struggle with continuous variables. Enhanced by ensemble methods like random 
forests and gradient boosting, decision trees remain popular due to their transparent 
decision-making process. 

The application of Decision Trees in power system transient stability 
In literature [9], Decision trees find application in fault diagnosis within power sys-

tems, analyzing historical fault data to identify characteristic parameter combinations 
during faults. They aid operations and maintenance by pinpointing specific circuits or 
components implicated in transformer failures. Decision trees' interpretability lies in 
their clear decision paths, enabling personnel to comprehend the reasoning behind each 
prediction. 

Generalized Additive Models (GAMs) 

The basic concepts of Generalized Additive Models  
Generalized Additive Models (GAMs) [10] are flexible statistical tools that explore 

non-linear relationships in data by using smooth functions instead of linear influences, 
uncovering hidden patterns without predefined variable relationships. Suitable for di-
verse fields like environmental science, finance, and healthcare, GAMs handle both 
continuous and categorical variables. While they offer interpretability since each model 
component is treated separately, challenges remain in choosing suitable smoothing 
functions and managing computational complexity. Despite these hurdles, GAMs are 
popular in various research areas for their ability to handle complex relationships and 
have demonstrated significant value in numerous studies. 
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The application of Generalized Additive Models in power system transient stability 
In power systems, GAMs can be used to capture the non-linear relationships between 

load demand and factors such as time and weather conditions [11]. For example, they 
can reveal how to most effectively allocate electrical resources under specific weather 
conditions. The interpretability of GAMs is particularly beneficial for analysis and 
planning, as the model can provide intuitive understanding of which factors have sig-
nificant impacts on the power system under specific conditions. The results of the 
model help improve the performance of the electrical grid and provide decision support 
for future infrastructure upgrades. 

3.2 Post-hoc Interpretability Method Analysis and Its Application in 
Power System Transient Stability 

Local Interpretable Model-Agnostic Explanations (LIME) 

The basic concepts of Local Interpretable Model-agnostic Explanations  
LIME, introduced by Ribeiro et al. in 2016 [12], enhances interpretability of com-

plex machine learning models by generating a simpler, local model that approximates 
a complex model's behavior for individual predictions. It identifies key influencing fea-
tures, useful in areas like medical diagnosis and financial risk assessment. However, 
LIME's local explanations may not fully capture the global behavior of the model, and 
explanations can vary with perturbations. Selecting effective local models and visual-
izing explanations are crucial for LIME's implementation. 

The application of Local Interpretable Model-agnostic Explanations in power system 
transient stability 

In literature [13], researchers used XGBoost to develop a transient stability predic-
tion model by analyzing generator data during power system faults, applying the LIME 
method to explain contributions of individual features to predictions.This interpretabil-
ity aids operational personnel in understanding and addressing issues based on the 
model’s insights. 

SHapley Additive exPlanations(SHAP) 

The basic concepts of SHapley Additive exPlanations 
SHAP, developed by Lundberg and Lee in 2017 [14], applies Shapley values from 

cooperative game theory to interpret model predictions by quantifying each feature's 
contribution. Originally for fair payoff allocation, SHAP treats each feature as a coop-
erative participant, calculating its impact on the prediction. By comparing predictions 
with and without each feature across all combinations, SHAP derives the feature's av-
erage impact. Widely used in healthcare, finance, and marketing, SHAP explains model 
decisions, like disease diagnosis or loan approval. However, it grapples with computa-
tional complexity and clarity for non-experts. 
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The application of SHapley Additive exPlanations in power system transient stability 
SHAP has excelled in power systems as a supervised learning method. For instance, 

in literature [15], it's applied for attribution analysis in transient voltage stability assess-
ment. By averaging Shapley values, this approach ranks feature importance, clarifying 
each feature's contribution to predictions. This quantification demonstrates SHAP's ef-
fectiveness in improving accuracy and interpretability in power system tasks. 

3.3 Conclusion 

The application of deep learning in power systems has enhanced the ability to handle 
complex data and make precise predictions, but it has also created a need for model 
interpretability. By incorporating interpretability methods such as LIME, Grad-CAM, 
and SHAP, model transparency can be enhanced, providing visualization and under-
standing of the decision-making process, thereby increasing user trust in model predic-
tions. Although current interpretability methods still have limitations, they have made 
significant progress in understanding and explaining deep learning models, especially 
in critical areas such as the identification of power system states. 

4 CONCLUSION AND OUTLOOK 

This paper provides a review of current transient stability assessment methods in power 
systems using deep learning, emphasizing the importance of interpretability. It covers 
various deep learning networks and their applications in this domain. Interpretability 
methods, categorized into inherently interpretable models and post-training methods, 
are discussed, highlighting their roles in enhancing model credibility and supporting 
grid control decisions. Future research in explainable AI is anticipated to advance in-
telligence in power systems. 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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