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Abstract. To improve the ability of the knowledge graph completion model to 

predict long-tail entities and keep its prediction indices for popular entities, this 

paper proposes a knowledge graph completion model based on co-knowledge 

distillation. Overall, the model consists of three parts as shown below. In detail, 

the first part is the neighborhood-information-based transformer model (NT), 

which aims to learn the general representation of the current knowledge graph. 

In this regard, NT takes the first-order subgraph of the knowledge graph as input 

to learn the representation of entities from neighboring nodes, subsequently 

learning the task target of link prediction through masking training. The second 

part is the relational-path-based bidirectional encoder representations from trans-

formers (BERT) model, hereinafter the PB model, which expands the retrieval 

range for long-tail entity information by learning multiple relational paths of tri-

ples, thereby improving the characterization ability of long-tail entities. Lastly, 

the proposed model enables the two foregoing models to learn from each other 

in a lightweight co-knowledge distillation way, so that their prediction ability for 

popular entities and long-tail entities can be improved simultaneously. 

Keywords:Transformer; Knowledge Graph; Bidirectional Encoder 

Representation from Transformers 
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Knowledge graph completion (KGC) exposes two crucial defects, one of which is that 
the existing completion algorithms generally fail to take long-tail entities into consid-
eration. In other terms, the model can solely learn a limited degree of feature infor-
mation for nodes with few connected edges. Another defect can be summarized as the 
dependence of numerous models on inductive learning algorithms. Hence, in cases 
where the data of the test set and the data of the training set are different in distribution, 
the model is typically difficult to exert a relatively excellent effect. Recently, extensive 
research has revealed that the transformer is superior to other models in the fields of 
natural language processing and graph structure data. Leveraging the stacking of self-
attention mechanisms, the transformer can mine some laws that are difficult to perceive 
by human beings in massive data, with minimal consideration for the inherent distribu-
tional characteristics of the data. At this point, bidirectional encoder representation 
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from transformers (BERT), built upon the transformer encoder as its primary architec-
ture, can obtain information beyond the confines of the training dataset through pre-
training. Given this, this paper designs a KGC algorithm of two-way distillation (i.e., 
con-distillation) based on the transformer and BERT models. Among them, the trans-
former model primarily learns the neighborhood information of entities, thereby cap-
turing the direct semantics of triples, whereas the BERT model learns the semantic 
representation and relationship path information of entities, employing the advantages 
of the pre-training model to mine the semantic information of long-tailed entities. 
Simply put, both of them are capable of learning from each other through con-distilla-
tion, thus enhancing their respective characterization ability. 

2 RELATED RESEARCH 

The knowledge graph embedding (KGE) serves as a primary method to achieve the 
KGC at present. By embedding the entities and relationships within the knowledge 
graph triplet into the vector space 𝑅 , it can be utilized to investigate the relationships 
between vectors belonging to the same triplet. Regarding the KGC, the KGE-related 
research focus can be summarized as which vector embedding method can fulfill the 
matching of the same entity in different triples. In this connection, the reliability of the 
prediction vector is evaluated by the score function, which is generally the operational 
expression of the embedding vector of the triple entities ℎ and 𝑡 as well as relationship 
𝑟, with the specific calculation method determined by the embedding space and the 
model selected. Additionally, the long tail effect on data sets is also prevalent in the 
field of machine learning. Consequently, these samples with few features are usually 
difficult to be captured by the model. Moreover, the accumulation of such samples 
greatly interferes with the effect of the model. The KGC is facing such a challenge. 
GMatching [1] marks the initial work to address the related problems of one-time KGC. 
First of all, a neighbor encoder is proposed to generate better entity embedding by lev-
eraging local graph structure. Likewise, FSRL [2] adopted the same idea, extending 
GMatching to small sample data. Furthermore, based on the heterogeneous graph struc-
ture and attention mechanism, a relation-aware heterogeneous neighbor encoder is in-
troduced to enhance entity embedding, facilitating the model to encode the different 
influences of diverse neighbors on task relationships. FAAN [3] proposed an adaptive 
attention neighbor encoder to model the entity embedding with one-hop entity neigh-
bors, following TransE to model task relations embedding as transformations between 
head and tail entity embeddings. Moreover, GEN [4] studied an off-map KGC scenario 
to predict the relationship between invisible entities. REFORM [5] proposed an error 
perception module to control the negative impact exerted by errors on KGC. Slightly 
different from the original KGC, it predicts and queries the missing relationship cate-
gories of entity pairs from a minority of relationship categories. 

Besides, a plurality of scholars employ language models to investigate the capture 
of long-tail entities. InductiveE [3], for instance, proposed a common-sense KG link 
prediction method, which can address invisible entities by using text entity descriptions, 
thereby realizing inductive learning by directly constructing representations from entity 
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descriptions. KG-BERT [6] was developed to tackle this challenge. By transforming the 
three head entities, relation and tail entities into text sequences, it further takes triple 
prediction as a downstream text classification task. Notably, BERT[9] [10]  can be fine-
tuned according to a given training triplet. On the same note, BERTRL [7] proposed a 
method with triple prediction as the downstream text classification task of BERT, 
which uses a single triple and possible paths connecting two entities to fine-tune BERT, 
thus realizing explicit reasoning. 

3 MODEL DESIGN 

To improve the ability to predict the missing tail entities, this research designed the 
overall model framework as outlined in Figure 1. Specifically, the first part is based on 
Transformer, while the second part is based on BERT’s missing entity prediction 
model. Through extracting the related paths of target entities, a group of related long 
paths is further determined. 

 

Fig. 1. General Framework of Con-distillation 

3.1 Embedded Model Based on Neighborhood Information 

Transformer has made great progress within the KGC field. Currently, a mainstream 
method to address KGC-related problems with the transformer is to treat graph data as 
a token sequence with position coding, thereby masking the influence of other neigh-
boring entities. Regarding link prediction, however, the neighboring entities of one 
node usually contain the prediction of the important information of the next node, pro-
vided that the relationship between entities should be taken into account. Hence, a KGC 
model based on neighborhood information, namely the neighborhood-information-
based transformer model (NT model), is proposed with neighborhood subgraphs as the 
input of the transformer. Figure 2 depicts the transformer encoder of the NT model, 
which primarily comprises a multi-head attention layer as well as a mixture-of-expert 
(MoE) [8] feedforward neural network (FNN) layer controlled by sparse gates. With the 
collected subgraph around the central node as input, this network randomly hides a 
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peripheral node or relation in each iteration, which is replaced by [MASK], subse-
quently training the target and peripheral triples simultaneously. For the convenience 
of the transformer to fully mine the information of the relation 𝑟, this research adopts a 
method similar to KGE to embed the relation 𝑟 and entity in the same dimension 𝑑 
when processing the input of the NT model, both of which are denoted as 𝑥 . Concur-
rently, a certain dimension is selected as a mark bit to distinguish entities from relations. 
Through multi-layer perceptron, the subgraph generates a set of embedded vectors, thus 
calculating the attention coefficient within the multi-head attention structure, as shown 
in Equations (1): 

 Attention softmax 𝑄 𝐾/ 𝑑 𝑉 (1) 

where 𝑄 𝐱 𝐖 ; 𝐾, 𝑉 ∥ ∈𝒩 𝐱 𝐖 ,𝐖 ; attention matrix 𝐖 , , ∈
ℝ ; ∥ stands for join operation; 𝑑 𝑑/𝐻; and, 𝐻 denotes the number of heads of 
self-attention. 

In this foundation, the vector 𝑥  output by the 𝑛-th attention network is input into 
the FNN, which is employed to calculate the projected attention-weighted output of the 
matrix, as shown in Equations (2): 

 FFN 𝜎 𝐱𝐖 𝐛 𝐖 𝐛  (2) 

 

Fig. 2. Internal Structure of NT-Transformer 

The training of NT consists of two parts, one of which is the learning of neighbor-
hood subgraphs, while the other is the link prediction. As shown in Figure 3, which 
illustrates the training framework of the NT model, this model is based on the idea of 
recursive entity reconstruction, enabling the model to observe more predictions while 
maintaining robustness to the incompleteness and sparsity of graphs. With the predic-
tion of triple (h, r, ?) as an example, this research randomly selects triples in the training 
set and replaces entity t with a placeholder [MASK] to determine the representation of 
t from the incomplete triples (h, r,[MASK]), intending to enable the model to acquire 
the ability to predict missing entities during the training process. By inputting the ran-
domly initialized input embedding E , E , E MASK  into the Transformer, the output 
representation of [MASK] is further given by as shown in Equations (3): 
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 𝐸 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝐸 , 𝐸 , 𝐸 MASK  (3) 

 

Fig. 3. Architecture of KGC Model Based on Neighborhood Information 

3.2 KGC Model Based on Relational Paths 

 

Fig. 4. Training Principle of PB Model 

Figure 4 depicts the training principle of BERT model based on relational paths. This 
research adopts the method of sampling to obtain the multi-segment path 𝑝𝑎𝑡ℎ ,?,  
from the head entity h to the tail entity t within the knowledge graph. To extend the 
prediction to entities, this research regards the relation r across entities as entities. In 
this case, the triplet is represented as 𝑒 , 𝑒 , 𝑒 . When the path is used as the input of 
the model, the path can be expressed as 𝑒 , 𝑒 , . . . , 𝑒 . 

PB model employs the form of the relational path in terms of prompt message. In 
other words, regarding each entity or relation, it obtains a fixed-length path 𝑝𝑎𝑡ℎ ,  
by random walk sampling, thereby realizing the advanced training of the prompt path. 
Given that link prediction encompasses the prediction of entities and relations, the PB 
model adopts the following path selection strategies when addressing the foregoing two 
problems: 

For one thing, regarding entity prediction, taking （h, r, ?） as an example, the PB 
model initiates random walk sampling from the current entity h until the maximum path 
length. In cases where the path arrives at r, the sampling is terminated in advance. 

For another, regarding relation prediction, the PB model implements bidirectional 
random walk sampling from h and t until 1/2 of the maximum path length. In cases of 
two nodes encountering, the sampling is terminated in advance. 
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Given that each path is input as linear knowledge in this research, each pair of target 
paths and prompt path acquires a separate score. It is therefore imperative to aggregate 
all instances within a group. As such, the prediction of missing entities can be deter-
mined as shown in Equations (4): 

 E max BERT 𝑝𝑎𝑡ℎ ,  (4) 

where 𝐵𝐸𝑅𝑇 denotes the whole process of prediction of [MASK] by the BERT 
model, encompassing word vector embedding using pre-trained parameters as well as 
the transformer encoder. To obtain the predicted entity, the name of the entity needs to 
be added to the BERT vocabulary as a new marker. Given the absence of external 
knowledge, the random initial embedding of new markers greatly affects the training 
effect, leading to a rather slow model convergence. Consequently, this paper applies 
the method proposed by Lv et al., which obtains the ranking of candidate entities from 
other models and inputs the top 𝑋 entities into the proposed model, thereby recalculat-
ing the score and reordering. The PB model framework is shown in Figure 5. Eventu-
ally, the loss function ℒPath of the PB model is defined as shown in Equations (5): 

 ℒPath ∑ CrossEntropy 𝐏 , 𝐋 CrossEntropy 𝐏 , 𝐋, , ∈𝒯  (5) 

where 𝐏  and 𝐿  represent the logit and label of the entity, whereas 𝐏  and 𝐿  re-
spectively represent the predicted logit and label of the predicted entity.  

 

Fig. 5. Framework of PB Model 

3.3 Co-knowledge Distillation 

Upon obtaining the predicted logits 𝐏  and 𝐏  of the two models, this research ar-
ranges all entities from high to low according to 𝐏  in the case of NT as a teacher 
model, selecting the half with the higher score as the entity. Following this, the logits 
of prediction entities selected from 𝐏  and 𝐏  are denoted by 𝐏  and 𝐏  respec-
tively. Notably, the decoupling loss functions of 𝐏  and 𝐏  are determined as shown 
in Equations (6): 

 ℒ 𝐏 , 𝐏 𝛼KL 𝐏 ∥ 𝐏 𝛽KL 𝐏 ∥ 𝐏  (6) 

where 𝐏  and 𝐏  respectively denote the binary classification probability of the 
target entity by the student and teacher models; 𝐏  and 𝐏  denote the probability of 
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excluding the target entity from 𝐏  and 𝐏 , respectively; and, 𝛼, coupled with 𝛽, rep-
resents the hyperparameters of DKD. In the case where PB serves as a teacher model, 
the same method can be utilized to determine 𝐏  and 𝐏 . The total loss function of 
the two models is the sum of the distillation part and cross-entropy, as shown in Equa-
tions (7): 

 
ℒPB Aℒ P , P 1 A CrossEntropy 𝐏 , 𝐋

ℒNT Bℒ 𝐏 , 𝐏 1 B CrossEntropy 𝐏 , 𝐋
 (7) 

where A and B represent the parameters used by the two models to balance their re-
spective terms, thereby realizing the joint optimization of the two models. To put it 
another way, each batch is input into two models simultaneously, with their losses being 
calculated and updated as per the same data. The pseudo-code of the algorithm during 
the model training process is presented as follows: 

Algorithm 1: Pseudo-code for training NT-PB algorithm 

Input: Triple set 𝒮(ℎ,𝑟,𝑡), entity adjacency matrix ℳ𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟, sampling path set 
𝒮𝑝𝑎𝑡ℎ;  
Output: List of candidate entities missing triplet ℒ 𝑖𝑠. 
1: Initializing network parameters and entity embedding; 
2: Adding the missing marker [MASK] and segmentation marker to the training set; 
3: for 𝑒𝑝𝑜𝑐ℎ ← 1 to 𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ do; 
4: for 𝑠𝑡𝑒𝑝 ← 1 to 𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 do; 
5: Extracting a batch of training batches 𝑏𝑎𝑡𝑐ℎ; 
6: for (ℎ, 𝑟, [𝑀𝐴𝑆𝐾]) in 𝑏𝑎𝑡𝑐ℎ do; 
7: Calculating the logits and losses of NT according to Equation (3.13); 
8: Calculating the logits and losses of PB according to Equation (3.15); 
9: Calculating the total loss according to Equation (3.17); 
10: end for; 
11: Updating model parameters by gradient descent method; 
12: end for; 
13: Validating the validation set; 
14: if fitting with the validation set then; 
15: break; 
16: end if; 
17: end for. 

Ultimately, the mutual learning between NT and PB is realized by the con-distilla-
tion module. Given that NT is prone to obtain the structural information in KG, this 
research takes NT as the teacher model and PB as the student model in the first stage 
of training, so that PB can quickly acquire the structural knowledge that BERT is dif-
ficult to learn. Subsequently, in the case that the loss of the PB model tends to be stable, 
the roles of the two models are further reversed. In other words, NT is selected as the 
student model and PB as the teacher model, enabling NT to learn more about the rep-
resentation of long-tail entities. 
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4 EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 Evaluation Indices 

Major evaluation indices of link prediction encompass the mean ranking (MR), mean 
reciprocal ranking (MRR), and hit@n. Here, MR represents the average of the rankings 
of all correctly predicted examples, which is determined as shown in Equations (8): 

 𝑀𝑅
| |
∑ 𝑟𝑎𝑛𝑘| |  (8) 

where |S| represents the total number of predicted triples, while 𝑟𝑎𝑛𝑘  represents the 
ranking of the predicted sequence where the correct answer of a triplet is located. A 
higher ranking of correct prediction implies a smaller MR value. Consequently, a 
smaller MR value indicates a higher accuracy of the prediction results of the model. 

MRR serves as an internationally common mechanism for evaluating search algo-
rithms, which primarily matches the results according to the search ranking with scores 
of 1, 1/2, ..., 1/n. Drawing upon this idea, the KGC model takes the average of the 
reciprocal of all correct examples. In this regard, MRR is given by as shown in Equa-
tions (9): 

 𝑀𝑅𝑅
| |
∑| |  (9) 

The symbols involved in the above equation are the same as those in the equation 
for calculating MR. Given that the ranking is reciprocal, a larger value of this index 
indicates a superior evaluation effect. 

In addition, hits@n represents the average proportion of triples ranked below the 
threshold 𝑛 in link prediction, which is given by as shown in Equations (10): 

 ℎ𝑖𝑡𝑠@𝑛
| |
∑ 𝕀 𝑟𝑎𝑛𝑘 𝑛| |  (10) 

Typically, n is taken as 1, 3, or 10. In the above equation, 𝕀 denotes the index func-
tion. The function value is 1 if the condition is true; otherwise, it is 0. A larger value of 
this index indicates a superior evaluation effect. 

4.2 Datasets 

In terms of general link prediction tasks, most researchers select FB15K-237 and 
WN18rr datasets, which are subsets extracted from the knowledge graphs Freebase and 
WordNet respectively, removing the redundancy relations of the original version. Their 
triple entities are all identified by the entity ID, which has no practical significance. 
Moreover, the implementation of KGE tasks usually does not need to determine the 
specific data meaning. NELL is a system that constantly extracts facts from the net-
work. Likewise, NELL-995 is a subset of the dataset constructed by NELL’s high con-
fidence facts, which is characterized by relatively sparse relations and is helpful to val-
idate the prediction ability of the model for long-tail entities. 
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This research employed the subsets generated by FB15K-237, WN18rr, and NELL-
995 realized by Teru et al. to implement further experiments. Each subset consisted of 
the Train-Graph and the Ind-Test-Graph. The former was used for training, while the 
latter provided an incomplete graph for relation prediction. Of note, the Train-Graph 
encompasses all relations present in the Ind-Test-Graph, with non-overlapping entity 
sets. Detailed information regarding the datasets is illustrated in Table 1. 

Table 1. Statistical Information of Datasets 

Datasets Subsets Quantity of relations Quantity of nodes Quantity of links 

FB15k-237 

Train 180 1594 5223 

Train-1000 180 923 1027 

Train-2000 180 1280 2008 

 Train 88 2564 10063 
NELL-995 Train-1000 88 1086 1020 

 Train-2000 88 2173 2011 

WN18RR 

Train 9 2564 6670 

Train-1000 9 893 1001 

Train-2000 9 1970 2002 

4.3 Link Prediction 

Table 2 presents the experimental results of link prediction of the model under FB15k-
237 and WN18RR datasets. As can be seen from Table 2, the overall level of NT model 
indices on the FB15k-237 dataset is equivalent to HittER, the most advanced KGE 
model at present. The foregoing two models, based on the transformer architecture, 
both utilized neighborhood information. The NT model exhibited poor performance on 
the WN18RR dataset, which was slightly inferior to HittER and ATTH. The prelimi-
nary analysis of this research indicates that this phenomenon can be attributed to the 
more hierarchical structure of the WN18RR dataset, while HittER benefits from its hi-
erarchical structure to capture such patterns. Furthermore, ATTH’s score function is 
based on hyperbolic space, which possesses natural advantages in hierarchical data 
mining. 

Table 2. Experimental Results of FB15k-237 and WN18rr 

Models 

FB15k237 WN18rr 

MR MRR 
hits@

1 
hits@

10 
MR MRR 

hits@
1 

hits@
10 

TransE 357 0.294 - 0.465 3384 0.226 - 0.501 
RotatE 177 0.338 0.241 0.533 3340 0.476 0.428 0.571 

ComplEx 339 0.247 0.158 0.428 5261 0.440 0.410 0.510 
CompGCN 244 0.325 0.237 0.501 4187 0.430 0.400 0.520 

ATTH 187 0.344 0.209 0.529 4655 0.471 0.383 0.545 
HIttER 184 0.349 0.279 0.560 4830 0.465 0.415 0.568 
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KG_BERT 164 0.261 0.261 0.539 3434 0.437 0.455 0.580 
𝑁𝑇𝑐𝑜−𝑑𝑖𝑠𝑡𝑖
𝑙𝑙𝑎𝑡𝑖𝑜𝑛 

188 0.278 0.278 0.550 3809 0.490 0.450 0.581 

𝑃𝐵𝑐𝑜−𝑑𝑖𝑠𝑡𝑖
𝑙𝑙𝑎𝑡𝑖𝑜𝑛 

176 0.285 0.285 0.571 3881 0.500 0.475 0.586 

PB model demonstrated excellent performance in this experiment. In comparison 
with the KG-BERT model, which is also a pre-training model, the indices of the PB 
model were improved by 32% (MRR), 28% (hits@1), and 37%(hits@10), respectively. 
Given the limited additional prompt messages provided by the KG-BERT model, it can 
be considered that the additional information is of great significance in improving the 
effect of the pre-training model. Furthermore, the experimental results in Table 2 reveal 
that the PB model possesses obvious advantages over other typical KGE models. This 
may be attributed to the prompting function of the relational path and the rich 
knowledge contained in the pre-training model. Moreover, the introduction of con-dis-
tillation enables the PB model to learn additional domain information from NT. 

This experiment investigated the training efficiency of several models. Given the 
difference in loss function selected by each model, this experiment mainly selected 
hit@1 as the reference index. Figure 6 depicts the change trend of hit@1 values of 
several models with iteration times under the same environment. As can be seen intui-
tively from Figure 6, several KGE models are superior to the pre-training model in 
terms of training duration and convergence speed. Particularly, the training speed of the 
proposed model significantly outperforms other pre-training models. 

 

Fig. 6. Comparison of Training Time of Different Models 

This research further analyzes the correlation between the prediction results of NT 
and PB models. By extracting the correctly predicted entities of the two models from 
the FB15K-237 dataset, this research investigated the coincidence degree of the two 
models within the prediction results, thereby exploring the necessity of conducting 
knowledge distillation between the two models. The specific experimental results are 
depicted in Figure 7. 
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Fig. 7. Analysis and Statistics of the Coincidence Degree of Prediction Results of NT and PB 
Models 

This experiment determined the coincidence degree regarding the hits@10 value of 
each entity of the two models under the conditions of canceling and adding the con-
distillation module. More specifically, the NT model correctly predicted 21,438 enti-
ties, whereas the PB model correctly predicted 21,929 entities without employing the 
con-distillation module. Among them, as illustrated in the orange area in Figure 7, the 
total number of overlapping entities is 17,682, indicating that the two models learn fea-
tures that the other may not learn. It implies that the two models are complementary to 
each other to some extent. 

In the case of introducing the con-distillation module, on the other hand, the NT 
model correctly predicted 22,709 entities, while the PB model correctly predicted 
23,071 entities, with a total of 20,038 overlapping entities. Furthermore, the hits@10 
values of the two models were significantly improved, with the proportion of overlap-
ping parts increasing from 68.8% to 75.5%. This demonstrates that the introduction of 
a con-distillation module enables an effective knowledge transfer between the two 
models. 

 

Fig. 8. Group-based Comparison of the Values of Hits@1 of Diverse Models 

In addition, Figure 8 presents the analysis of the results of this research on long-tail 
and popular entities. This research divides the entities of the FB15K-237 dataset into 
several groups as per the number of edges of each entity. Specifically, the effect of the 
PB model far exceeds that of the NT model regarding the prediction of long-tail entities. 
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By contrast, the effect of the NT model is slightly superior to that of the PB model 
regarding the prediction of popular entities. Despite the close scores of the two models 
on the prediction of popular entities, the large number of triples related to popular en-
tities leads to the complementarity that cannot be ignored. Moreover, numerous triples 
can solely be correctly predicted by the NT model. Simply put, the foregoing analysis 
validates the complementarity of NT and PB models regarding the prediction of popular 
and long-tail entities. 

5 CONCLUSIONS 

Regarding neighborhood-information-based knowledge graph completion, this re-
search proposes an NT model for reconstructing and predicting missing entities based 
on relational neighbors of incomplete triples. The proposed model takes advantage of 
the transformer’s self-attention mechanism to realize the simultaneous training of the 
prediction of missing entities or relations as well as neighborhood entity information. 
Meanwhile, an expert network with sparse gate control is introduced to reduce the pa-
rameters of the proposed model. Moreover, regarding the KG embedding based on re-
lational paths, this research employs entity names and relational paths to detect entities, 
thereby generating the representation of missing entities by using BERT’s robust pre-
training background. 
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