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Abstract. To enhance the efficiency of additive manufacturing production, this 

paper establishes a Mixed Integer Linear Programming (MILP) model with the 

objective of minimizing the maximum completion time in an equivalent parallel 

additive manufacturing machine environment. The problem is tackled using a 

particle swarm algorithm, and the results are compared with those obtained from 

a solver to validate the superiority of the algorithm. 
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1 Introduction 

Additive Manufacturing (AM), also known as 3D printing technology, has garnered 

widespread attention and research in recent years. Unlike traditional subtractive manu-

facturing methods, AM constructs objects layer by layer through the addition of mate-

rials, fundamentally altering traditional production approaches. This paper will specif-

ically focus on Selective Laser Melting (SLM) technology within the PBF framework. 

The principle of the SLM process is as follows: Initially, a scraper evenly distributes a 

layer of powder onto the build platform. Subsequently, a laser selectively melts the 

powder layer in specified areas to construct the part's structure. Finally, the build plat-

form descends, and a new powder layer is applied. 

AM scheduling primarily involves two interconnected sequential processes: part 

grouping and job scheduling. Part grouping aggregates parts into a cohesive job, while 

job scheduling arranges these jobs on AM machines. Given the high cost and processing 

time associated with SLM machines, effective planning and scheduling are critical for 

maximizing their utilization. Scheduling for SLM systems includes: (i) assigning or-

dered parts to SLM machines, (ii) grouping parts into jobs, and (iii) scheduling jobs on 

relevant machines in an optimal manner. 

In summary, the study of AM scheduling issues holds significant importance for 

enhancing enterprise competitiveness and driving the development and progression of 

the entire AM domain. 
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2 Literature Review 

Although research on production planning and scheduling in additive manufacturing 
(AM) plays a crucial role in optimizing the operation of this revolutionary technology, 
it is still in its early stages of development. Li et al. (2017)[1] mentioned that prior to 
their work, no research had been conducted to address production planning issues in 
additive manufacturing technology. The authors introduced and defined the production 
planning problem for additive manufacturing machines. 

It wasn't until 2015 that a paper first combined scheduling with AM nesting meth-
ods[2]. From 2016 onwards, the number of papers related to scheduling has increased 
dramatically. Lee et al.[3] proposed a two-stage metaheuristic algorithm to minimize the 
maximum completion time. Kucukkoc (2019)[4] presented an MILP formulation for 
minimizing completion time objectives while considering various machine configura-
tions, such as single machines, parallel identical machines, and parallel non-identical 
machines. Griffiths et al.[5] solved the combination problem of finding the optimal build 
orientation and packing of irregularly shaped parts across the same SLM machines, 
using total build cost as the objective function. Chergui et al. (2018)[6] aimed to com-
plete different orders before their due dates while minimizing total tardiness and max-
imizing machine utilization using a custom heuristic based on the earliest due date 
(EDD) rule. Altekin and Bukchin (2021)[7] proposed a dual-objective MILP for mini-
mizing cost and manufacturing lead time based on DMLS, analyzing the trade-offs be-
tween objectives. 

Overall, research on the scheduling problem of additive manufacturing is still in its 
infancy, and it is a complex and challenging area of research that is critical to the field. 

3 Problem Definition 

3.1 Model Establishment 

In the context of this problem, a manufacturer needs to use a set of identical additive 
manufacturing machines to produce parts for orders from multiple customers. Each or-
der specifies the order ID, due date, and part requirements. The part requirements in-
clude various types of parts, each with corresponding specifications and dimensions, 
including height(ℎ ), area(𝑎 ), volume(𝑣 ), and material type(𝑡 ).The set of all parts is 
denoted by I. Parts must be manufactured using specified materials, and the set of ma-
terials is denoted by K. There are parallel machines denoted by M, each with the same 
manufacturing platform parameters, namely height(MH) and area(MA). Due to the 
characteristics of additive manufacturing machines, multiple parts can be printed sim-
ultaneously in one production run, so the number of jobs formed in the end is less than 
or equal to the number of parts in the order. 

In addition, machines have production parameters: 𝑉𝑇  is the time required for cre-
ating material type k per volume unit.  HT is the time required for spreading powder 
per height. The setup between two consecutive jobs processed on the same machine 
may involve a change in material, necessitating consideration of sequence-dependent 
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material changeover time. This refers to the time required for a complete powder 
change when switching from material(k) to material(k'), denoted as 𝑆𝐸𝑇 . Note that 
this changeover time includes the base setup time, i.e., the time required for initializa-
tion and cleaning before/after each job when no material change is performed. Addi-
tionally, there is preparation time(𝑃𝑟𝑒 ) based on the material of the job when the ma-
chine is idle and the first job is assigned.  

3.2 MILP Model 

𝑋 , 𝑌  are binary variables. If part i is assigned to job j on machine m, then 𝑋  
equals 1; otherwise, it is 0. If job j on machine m is manufactured using material k, then 
𝑌  equals 1; otherwise, it is 0. A job is considered to be utilized if at least one part is 
assigned to it. The number of job batches is less than or equal to the number of parts. 

The maximum completion time is denoted by 𝐶 max 𝐶𝑇  and the objective 
is to minimize the maximum completion time, which is represented by equation (1): 

 𝑚𝑖𝑛𝑍 max 
∈

𝐶𝑇  (1) 

Equation (2) ensures that each part is assigned to a job on a machine: 

 ∑ ∑ 𝑋 1, ∀𝑖 ∈ 𝐼∈  ∈  (2) 

In this paper, the two-dimensional nesting problem is reduced to a one-dimensional 
boxing problem, where the basic idea is that the sum of the areas of the parts does not 
exceed the floor space capacity of the machine platform, i.e. equation (3): 

 ∑ 𝑋 𝑎 𝑀𝐴, ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀∈  (3) 

Equation (4) implies that jobs must be formed consecutively, ensuring that parts 
cannot be allocated to unused batches and that batch j+1 can only be processed if batch 
j is processed first: 

 ∑ 𝑋 𝐺 ∗ ∑ 𝑋 , ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝐽∈∈  (4) 

Equation (5) (6) ensure that parts belonging to the same material are all assigned to 
the same lot: 

 𝑌 ∗ 𝐺 ∑ 𝑋 , ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾∀ ∈ |  (5) 

 𝑌 ∑ 𝑋 , ∀𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽∈  (6) 

The equation (7) ensures that each formed job has at most one material type: 

 ∑ 𝑌 1, ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝐽∈  (7) 

Equation (8) prevents parts with different types of materials from being assigned to 
the same job: 
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 ∑ 𝑋 𝐺 ∗ 1 𝑋 , ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼|𝑡 𝑘∀ ∈ |  (8) 

Equation (9) is used to compute the production time of a job (j ∈ J) on a machine 
m: 

 𝑃𝑇 𝑉𝑇 ∑ 𝑣∈ 𝑋 𝐻𝑇𝑚𝑎𝑥
∈

ℎ 𝑋  (9) 

As shown in the equation, it consists of two parts: 1. material forming time based on 
the total volume of the part, and 2. powder layering time based on the maximum height 
of the part.  

The completion time of the first job on machine m can be expressed as equation (10) 

 𝐶𝑇 𝑃𝑇 𝑃𝑟𝑒 𝐺 ∗ 1 𝑌 ∀𝑚 ∈ 𝑀, 𝑗 1, 𝑘, ∈ 𝐾 (10) 

The completion time of operations on machine m other than the first one can be 
expressed by equation (11): 

 𝐶𝑇 𝐶𝑇 𝑃𝑇 𝑆𝐸𝑇 𝐺 ∗ 𝑌 𝑌 2 ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝐽\
1 , 𝑘, 𝑘 ∈ 𝐾  (11) 

The completion time of the part is equal to the completion time of the job to which 
the part is assigned, shown as equation (12): 

 𝐶 𝐶𝑇 𝐺 ∗ 𝑋 1 , ∀𝑚 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑖 ∈ 𝐼 (12) 

Also the completion time of the order is equal to the completion time of the largest 
part in the order. The variable definition fields are as equation (13): 

 𝑋 , 𝑌 ∈ 0,1 , 𝐶𝑇 , 𝑃𝑇 0 (13) 

3.3 Algorithm Solving 

Particle Swarm Optimization (PSO) is a population intelligence based optimization al-
gorithm where each particle has a position and velocity. The particles find the best so-
lution in the solution space by updating their position and velocity. 

In this paper, one-dimensional coding is used. Each particle dimension is equal to 
the number of parts, where the order of the size of the elements is the corresponding 
part number. Suppose there are 10 parts, the area of the machine building platform is 
900, the corresponding material is [1,2,1,1,1,1,2,2,2,2,1,2,1], and the area is 
[100,300,500,350,250,600,550,450,300,350]. The particle generated by random num-
bers is [0.93 0.17 0.79 0.32 0.54 0.01 0.84 0.55 0.25 0.17], and after decoding the part 
number is obtained as [10, 2, 8, 5, 6, 1, 9, 7, 4, 3]. Next the material constraints and 
area constraints group the parts in indexed order to form jobs. Firstly, job 1 is formed 
and part 10 is assigned to this job. Since the material type of part 2 is different from 
that of part 10, part 2 is not scheduled; since part 8 is of the same material as that of 
part 10 and the sum of the areas of the two is 450+350=800<900, part 8 is assigned to 
job 1. The same judgment is made for the following parts, and there is no part that can 
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satisfy the constraints, so job 1 is assigned. Assignment is complete, remove part 8 and 
part 10 from the parts list. create a successor and do the same until all parts have been 
assigned. The resulting jobs are: Job 1: parts 10 and 8; Job 2: 2, 6; Job 3: 5,1,4; Job 4: 
9,7; Job 5: 3. 

4 Tests and Results 

For the test instances, eight configurations are given in this paper as shown Table 1. 
Design of problem instances, which are designed according to four classifications: the 
number of orders(O), the number of parts contained in each order(P), the number of 
machines(M), and the number of materials(K). The part data is from the open dataset 
in the literature, and the machine data is randomly generated based on reasonable real-
istic data. For each configuration, five test files are randomly generated under it to ver-
ify the effectiveness of the algorithm by comparing the computational results of the 
solver and the algorithm.  

Table 1. Design of problem instances 

 Config1 Config2 Config3 Config4 Config5 Config6 Config7 Config8 

O 5 5 10 10 15 15 15 20 

P 4 5 4 5 4 5 6 6 

M 2 2 2 2 2 2 5 5 

K 2 2 2 2 2 2 3 3 

The MILP model and algorithm were implemented in the gurobi solver and Pycharm 
respectively, and all experiments were done on a 2.40GHz Intel Core i5-9300H CPU 
with the MILP runtime set to 3600s, and a comparison of the test results is shown in 
the table 2 below. It is worth noting that of all the test instances, only configuration 1 
had 4 files MILP solved for the optimal solution, and the rest of the instances ran until 
the end of the time as of. In terms of running time, the algorithms all took significantly 
less time to solve than the solver did. In terms of solution results, the performance of 
the algorithms is compared by calculating gap = 𝐶 𝐶 /𝐶 , where and 
represent the objective function values obtained by the algorithm and the solver solu-
tion, respectively, with smaller values of gap indicating better algorithmic solutions. 
From the results, for the solution of this problem, the use of particle swarm algorithm 
has good results. 

Table 2. Results of the computational study 

configurations gap PSO time/s 

Config1 8% 3 

Config2 2% 3 

Config3 2% 5 

Config4 6% 8 
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Config5 2% 11 

Config6 3% 14 

Config7 -6% 17 

Config8 -1% 25 

5 Conclusions 

In this paper, based on extensive reading of the literature of previous years, with the 
objective of minimizing the maximum completion time, an additive manufacturing en-
vironment consisting of parallel SLM machines is considered, and a particle swarm 
algorithm is used to solve the production scheduling problem where there are multiple 
print materials for the ordered parts, and good results are obtained in the comparison of 
the solvers. In the subsequent research should be more in-depth, improve the algorithm 
to get better results, at the same time, for large-scale problems need to use multiple 
algorithms to solve and compare. 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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