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Abstract. This paper first introduces the principle of multi-objective linear re-

gression, and studies the Boston housing price data set with regularized multiple 

linear regression. Then this paper combines the knowledge of machine learning 

to build a prediction model. In the final forecast of the Boston house price, it was 

about 78 percent accurate compared to the real house price. 
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1 Introduction 

After fully learning the relevant basic knowledge, the theory of linear regression is 

planned to be put into practice. In this investigation, our goal is to investigate the ap-

plication of approximation on dataset. The main fields of approximation investigated is 

Linear regression with regularization. As linear regression is widely used among dif-

ferent datasets, this work aims to apply Linear Regression to a specific dataset and look 

at different linear regression methods. To generate a linear regression model, 

knowledge of programming and machine learning is applied. Our investigation is im-

portant as Linear Regression is a useful tool in data science which different data col-

lection methods all need Linear Regression to help them approximate data and generate 

a general form that represents the data collected. It is not only useful, but also beneficial 

for our further research as data must be analyzed in order to form conclusion. Because 

of this, this work aims to use this investigation to analyze the data of Boston Housing 

and use this real-life problem to help us investigate deeper into the term of Linear Re-

gression. 
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2 Methodology 

2.1 Linear Regression 

In this investigation, the key area is linear regression. Linear regression is a model 
which shows how the dependent variable changes based on the independent variables. 
The variables involved in this model are independent input variables and dependent 
output variables. In simple linear regression, variables will form linear equations in the 
form of: 

 𝑌 𝐴𝑥 𝐵 (1) 

In this equation, 𝑌 value is the dependent variable which is in the form of a vector. 
𝐵 value is the y intercept and it is also in vector form. On the other hand, 𝑥 value is the 
independent variable and it is in matrix form. It is similar for 𝐴 value which is also a 
matrix. 

Linear regression is able to measure the relationship between two sets of data, but 
the two sets of data do not need to have a clear relationship. Because of this Linear 
regression is useful in different areas of knowledge. Its importance can be illustrated in 
different directions. The most common use of linear regression is to estimate the future 
value or the missing value of a data set. It is also useful when measuring the strength 
of the relationship between two variables by using the R-square value. Besides its im-
portance, linear regression is choosed as the tool to organize data and investigate also 
because it is accurate and easy to understand [1, 2]. 

The R-square value determines the linear regression line. The R-squared value is the 
value that shows the proportion of the variance in the dependent variable that can be 
explained by the independent variable. It is also used to determine how well the data 
point fits the regression line [3]. 

Like all mathematical algorithms, linear regression is formed based on assumptions. 
The first assumption is Linearity. Linearity assumes that the data set is having a linear 
relationship, which means the dependent variable changes constantly with the inde-
pendent variable. The second assumption is normality and homoscedasticity, which 
means the errors are evenly distributed in the data set and have equal variance. The 
third assumption is no endogeneity, which means the independent variables chosen are 
not related to the errors presented. The fourth assumption is no autocorrelation which 
means the errors are not dependent on one another. The last assumption is no multicol-
linearity which means that the change in one variable should not affect the other varia-
ble. In this case, linear regression is an ideal model which can be used to investigate the 
relationship between two variables [1]. 

2.2 Multiple Linear Regression 

Multiple Linear Regression is a statistical methodology that uses multiple variables to 
predict the outcome of a response variable. Multiple linear regression is also known as 
multiple regression and it extends from simple linear regression as it involves multiple 
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variables. For multiple regression, it has a more complex formula than simple linear 
regression. 

The equation is: 

 𝑌 𝛽 𝛽 𝑥 𝛽 𝑥 𝛽 𝑥 . . . . . . 𝛽 𝑥 𝜖 (2) 

In this equation, 𝑖 𝑛 observations. 𝑌  is the dependent variable. 𝑥  represents the 
explanatory variables. 𝛽  represents the y-intercept and 𝛽  represents the slope coeffi-
cient of different explanatory variables. 𝜖 is the error term of this equation. 

To optimize multiple Linear regression, Python is used as a tool to build the model. 
In this work, Python is used to program our data set as code will be more reliable than 
human calculation. Code is planned to be learned from the experts in coding and try to 
change it into a form that is suitable for our data set. 

2.3 Linear Regression with Regularization Term 

Previously, linear regression is briefly introduced. In order to make the analysis of lin-
ear regression more scientific and accurate, lasso regression and ridge regression are 
adopted. They all belong to regularization techniques. The so-called regularization 
technique is to find the balance between model complexity and goodness of fit by add-
ing a penalty term to the Loss function. In short, the purpose of applying lasso regres-
sion and ridge regression tools is to prevent the overfitting of data and ensure the accu-
racy of experimental conclusions. Below, the principles of these two technologies are 
explained separately and apply them in the final experiment through Python. 

2.3.1 Lasso Regression 
Least absolute shrinkage and selection operator regression, also known as Lasso reg-

ularization and L1 regularization, minimizes the number of coefficients that are not 
zero, that is, reduces the model data to make it closer to zero. The penalty term is pro-
portional to the absolute value of the coefficient. In the end, only a portion of the input 
information is used as valid data for linear regression and subsequent data prediction. 
In other words, this approach helps us leave behind more beneficial and critical parts 
for data prediction [4]. 

 𝐽 ∑  𝑦 𝑦 𝜆|𝑤| (3) 

Where: 𝜆  is the regularization parameter controlling the strength of the regulariza-
tion, N is the number of samples, ∑denotes the sum over all observations, w represents 
the weight of the model, 𝑦  is the target value for the i-th sample, 𝑦  is predicted value 
for the i-th sample, and J is an objective function that is tried to minimize [5]. 

Next, the derivation of the cost function for parameter w are provided: 

 𝐽 𝑌 𝑋𝑤 𝑌 𝑋𝑤 𝜆|𝑤| (4) 

 𝐽 𝑌 𝑌 2𝑌 𝑋 𝑤 𝑋 𝑋𝑤 𝜆|𝑤| (5) 
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 2𝑥 𝑦 2𝑥 𝑥𝑤 𝜆𝑠𝑖𝑔𝑛 𝑤  (6) 

 𝑤 𝑋 𝑦 𝑦 𝜆𝑠𝑖𝑔𝑛 𝑤  (7) 

Where: sign(w) = {1, w > 0; 0, w = 0; -1, w < 0}. 
Lasso method overcomes the shortcomings of traditional methods in selecting mod-

els. Therefore, this method has received great attention in the field of statistics [6]. 

2.3.2. Ridge Regression 
Ridge regression, also known as L2 regularization. Ridge regression analysis is a 

biased estimation method specially used for collinear data analysis. It seeks a regression 
process with less effect but more in line with reality at the cost of giving up the unbias 
of least squares and some accuracy [7]. Compared to the former, ridge regression re-
duces the linear regression model slightly differently. It also incorporates the penalty 
term into the Loss function to distribute the coefficient more evenly and reduce the 
amplitude of the coefficient. The difference is that it can reduce the coefficient to 0, 
which is quite effective in preventing overfitting [5]. 

 𝐽 ∑  𝑦 𝑦 𝜆|𝑤|  (8) 

After defining the objective function, this work can continue to discuss the Partial 
derivative of the objective function with respect to the parameter w. 

 𝐽 𝑌 𝑋𝑤 𝑌 𝑋𝑤 𝜆𝑤 𝑤 (9) 

 𝐽 𝑌 𝑌 2𝑌 𝑋 𝑤 𝑋 𝑋𝑤 𝜆𝑤 𝑤 (10) 

 2𝑥 𝑦 2𝑥 𝑥𝑤 2𝜆𝑤 (11) 

 𝜆𝐼 𝑤 𝑋 𝑤 𝑋 𝑌 (12) 

 𝑤 𝑋 𝜆𝐼 𝑋 𝑋 𝑋 𝑌 (13) 

Where: 𝜆 is the regularization parameter controlling the strength of the regulariza-
tion, (expression)^Tis transpose matrix, X is input data in the vector form, Y is in the 
target data in the vector form, I is the identity matrix of size D (dimensionality of data). 
The identity matrix is a square matrix with ones along the main diagonal and zeros 
everywhere else. (AI=IA) Utilized for matrix operations, and J is the objective function 
that is tried to minimize [5]. 

3 Application 

3.1 Datasets 

Two datasets are introduced in this study, namely the statistics of Boston housing prices 
with their related social factors. As the housing price in Boston are investigated, this 
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work handles a large range of variables. While simple linear regression is only focusing 
on one dependent variable and one independent variable, it is not suitable for our in-
vestigation. Multiple regression is needed to process our data. 

3.2 Description of Datasets 

Boston House dataset: The dataset specifically focuses on housing prices in Boston, 
providing valuable information for analysis and modeling in the real estate sector. 

With Boston being a prominent city in the United States, understanding the factors 
that influence housing prices is crucial for homeowners, real estate agents, and analysts. 
This dataset serves as a valuable resource for exploring and investigating these factors. 
It is likely to contain a comprehensive set of features related to the housing market, 
such as the number of rooms, crime rates, accessibility to amenities, and property age, 
among others. 

By utilizing this dataset, researchers, data scientists, and analysts can gain insights 
into the dynamics of Boston's housing market. They can perform various analyses, in-
cluding exploratory data analysis, regression modeling, and predictive analytics, to un-
cover patterns, trends, and correlations between housing features and prices. The da-
taset's size and quality provide a robust foundation for developing machine learning 
models that can predict or estimate house prices based on the given features. 

Researchers and enthusiasts in the field of real estate, urban planning, and data sci-
ence can leverage this dataset to understand the drivers of housing prices in Boston and 
potentially apply the insights gained to other cities with similar dynamics. Overall, this 
dataset offers an excellent opportunity for data-driven exploration and modeling in the 
domain of Boston's housing market. 

3.3 Implementation 

When making a forecast of the Boston housing price problem based on the data set, a 
supervised linear regression model is built because the target variables are continuous. 
When the final regression is performed, the histogram should be a bell curve, with slight 
slants acceptable. 

 

Fig. 1. Data distribution. 
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Figure 1 shows that the running result of the target variable meets the requirements. 
In this data set, each column has the following meanings: 
CRIM - per capita crime rate by town 
ZN - proportion of residential land zoned for lots over 25,000 sq.ft. 
INDUS - proportion of non-retail business acres per town. 
CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise) 
NOX - nitric oxides concentration (parts per 10 million) 
RM - average number of rooms per dwelling 
AGE - proportion of owner-occupied units built prior to 1940 
DIS - weighted distances to five Boston employment centres 
RAD - index of accessibility to radial highways 
TAX - full-value property-tax rate per 10,000 dollars 
PTRATIO - pupil/teacher ratio by town 
B - 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town 
LSTAT - % lower status of the population 
MEDV - Median value of owner-occupied homes in $1000's 
After deleting variables with large missing values and exploring the data, the fol-

lowing two classification factors 'CHAS' and 'RAD' are found and classified the data 
according to this criterion (see Figure 2): 

 

Fig. 2. Data classification. 

The histogram below (Figure 3) shows us the data distribution for a single continu-
ous variable, with the X-axis representing the range of values and the Y-axis represent-
ing the number of values within that range. 
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Fig. 3. The distribution of a single continuous variable. 

Next, outliers that are far from most of the data and will replace the outliers by looking at 
the histogram to find the most logical value. The improved distribution is shown in the figure 4. 

 

Fig. 4. Data distribution after outliers are replaced. 

When the target variable is continuous and the predictor variable is also continuous, 
a scatter plot can be used to visualize the relationship between the two variables and 
use pearson's correlation values to measure the strength of the relationship, as Figures 
5, 6, 7, 8, 9 and 10 shows: 
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Fig. 5. Scatter plot of variable relationship.1 

 

Fig. 6. Scatter plot of variable relationship.2 
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Fig. 7. Scatter plot of variable relationship.3 

 

Fig. 8. Scatter plot of variable relationship.4 
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Fig. 9. Scatter plot of variable relationship.5 

 

Fig. 10. Scatter plot of variable relationship.6 

The scatter plot is used to roughly determine whether two variables are positively 
correlated, negatively correlated, or not directly correlated. Box plots are used to show 
the distribution of data for each category on the x-axis for each successive predictor on 
the y-axis. The continuous variable has no impact on the target variable if the distribu-
tions for each category are similar. As a result, there is no correlation between the var-
iables. On the other hand, if each category's distribution is unique. This implies that 
these factors could be connected to MEDV. 
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Fig. 11. Box plan. 

The ANOVA results support our visual analysis presented above using box plots. 
The Target variable and all category variables are associated. This assumption is based 
on the box plots. final choice 'RAD' and 'CHAS' are categorical columns. (see Figure 
11) 

Choosing the final columns for machine learning based on the tests mentioned 
above. The data is divided into training samples and test samples; the model using the 
entire set of data is not built. To evaluate the model's accuracy, some randomly selected 
data is set aside. The remaining data is referred to as the training data on which the 
model is developed, and this is referred to as the test data. Usually, 70% of the data is 
utilized for training, while 30% is used for testing. 

Then multi-objective linear regression is used to analyze and predict this set of data, 
and obtained the following results (see Table 1): 

Linear Regression () 
R2 Value: 0.6980461431155771 

Table 1. Model Validation and Accuracy Calculations. 

 RM PTRATIO LSTAT RAD CHAS MEDV Predicted MEDV 
0 0.547040 0.425532 0.201711 0.173913 0.0 23.6 27.0 
1 0.612569 0.531915 0.049669 0.130435 1.0 32.4 35.0 
2 0.464074 0.797872 0.450883 0.130435 0.0 13.6 16.0 
3 0.479785 0.702128 0.104581 0.130435 0.0 22.8 25.0 
4 0.524238 0.808511 0.428808 1.000000 0.0 16.1 18.0 
Mean Accuracy on test data: 81.80618534324392 
Median Accuracy on test data: 88.88888888888889 
Accuracy values for 10-fold Cross Validation: 
[88.78472351 90.01462311 82.93367348 82.14573469 86.66783537 88.63411206 
84.88621233 48.83600797 51.6418211 85.29449921] 
Final Average Accuracy of the model: 78.98 
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4 Conclusion 

Multiple linear regression is an important part of multivariate statistical analysis. The 
method has been widely used in the research of society, economy, technology and many 
fields of natural science [8]. Our purpose of this investigation is to discover the appli-
cation of linear regression and apply it to specific data sets. This work has discovered 
the difference between linear regression and multiple linear regression, and choose mul-
tiple linear regression to analyze our data set. In this investigation, the different meth-
odologies of linear regression including Lasso and Ridge linear regression are also in-
vestigated. By investigating these two methods, the approach to understand these meth-
ods is their application in dataset analysis. This work also brings a deeper understanding 
of linear regression and the different kinds of linear regressions and their approaches. 
During the investigation, code is chosen to use with linear programming to analyze our 
data set and applicate linear regression. Some machine learning knowledge is also 
learned [9]. In this investigation, our team worked together to form the report of this 
investigation. It is expected to discover deeper into linear regression and linear pro-
gramming and find out its application in a wider range of real-life situations [10]. 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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