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Abstract. Sentiment analysis of the employee reviews is very important
to understand the satisfaction in the company, predict the engagement of
the employees, identify the risk of employee retention and improve gen-
eral productivity of the company. Proper analysis of these reviews may
provide valuable insight into the satisfaction and moral levels among em-
ployees, and identify the potential areas where improvement is possible.
Moreover, employee analysis can help in detecting the risks of employee
retention and drop in satisfaction within the company prior to their es-
calation. Companies can then intervene to mitigate identified problems,
and boost morale among employees. This manuscript suggests applica-
tion of the AdaBoost classification model to execute the classification of
the employee reviews sentiment. To select the appropriate values of the
AdaBoost hyperparameters, an enhanced version of the particle swarm
optimization algorithm was developed and applied. The simulation re-
sults were put into comparisons to the outcomes achieved by several
contenting potent optimizers. The overall findings suggest that the pre-
sented model obtained accuracy of 87.2%. was superior to other regarded
methods, showing considerable potential for further applications in this
domain.

Keywords: Sentiment analysis · Employee reviews · BERT · AdaBoost
· Stochastic optimization · Swarm intelligence · PSO.

1 Introduction

The level of success of an organization heavily depends on the engagement and
happiness of the employees. Working environment where employees are not sat-
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isfied has a direct impact on the productivity and turnover. Otherwise, the or-
ganizations with good culture and healthy working environment attract a lot of
potential candidates. Good company culture relies on the continuous learning
and allowing the employees to self-improve, grow and advance in their careers,
making the organization interesting for the potential workers [47].

In order to create a healthy work space, it is required to identify the employee
dissatisfaction. Appropriate sentiment analysis of employee reviews can aid in
discovering the potential domains where there is room for the improvement.
Positive sentiment in reviews typically indicate a healthy working conditions,
where workers are satisfied, valued and motivated. On the other hand, negative
sentiments can expose underlying problems like poor management, poor commu-
nication or bad working conditions. These may allow the organization to react
and implement proactive measurements that will tackle the concerns, increase
morale of the employees, and prevent talented people to leave [15].

Machine learning (ML) methods are vital in sentiment analysis of employee
reviews, as they allow sophisticated mechanisms that can help in gaining insight
from large amount of text data. For example, ML can aid in data preprocessing,
by means like tokenization, stemming or lemmatization that convert text into
more suitable forms for analysis. Additionally, ML methods can perform feature
extraction, like word frequency, or even complex linguistic attributes capturing
the fine shades of sentiment. Finally, ML models can be deployed to perform
sentiment classification of the reviews, where they classify these reviews as pos-
itive, neutral or negative sentiment. These models can then perform sentiment
analysis in real-time, by continuous assessment of incoming data, and alarming
the HR department to handle identified problems and enhance satisfaction.

The choice of ML model is crucial to obtain the highest possible accuracy.
Another vital task is the choice of appropriate values of the selected model’s
hyperparameters. As these models have huge search spaces for the values of
these parameters, this task is regarded as NP-hard by its nature. Stochastic al-
gorithms, and especially the subgroup of metaheuristics algorithms are regarded
as an excellent choice to deal with the complexity of this task. However, the
no free lunch (NFL) [55] theorem argues that there is no universal optimizer
capable to deliver superior outcomes on all optimization problems, which means
that optimal algorithm does not exist [49]. This research utilizes an enhanced
variant of particle swarm optimization (PSO) metaheuristics [35] to select the
optimal collection of hyperparameters’ values for the AdaBoost classifier for the
sentiment classification challenge. BERT method is also employed to assist with
the text representation.

2 Related works

The employed technologies for the presented research are given in this section,
including the background on BERT, AdaBoost classifier and metaheuristics op-
timizers.
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2.1 BERT

Bidirectional Encoder Representations from Transformers (known as BERT)
[19], is based on the attention mechanism to perform text interpretation. De-
veloped by the Google scientists, it lays foundations to numerous contemporary
NLP applications, like speech recognition, search and translation. Its architecture
consists of transformers, that allow focusing on various segments of input data
during processing. Since transformers are capable of processing several parts of
the sentence in parallel (multiple attention), data processing is very efficient.

BERT is also bidirectional, as it considers both preceding and succeeding
words during encoding, opposite to traditional approaches that consider the
text just in one direction (from left to right). This ability of bidirectional text
understanding allows BERT to capture the context of sentences, improving its
performance in discerning sentiments. Using BERT for sentiment analysis for
the employee reviews enables organizations to attain precise insights into the
sentiment of the employees.

2.2 AdaBoost

Over the past decade, a consistent rise in the adoption of different machine
learning approaches may be observed. Numerous models have made consid-
erable contributions with respect to their application areas and particular in-
stances. Among these, AdaBoost (Adaptive Boosting) represents a pivotal tool
that serves as a bridge over several optimization methods. Its primary goal is
merging of weak algorithms into a cohesive set, consequently producing a robust
algorithm. Initially created in 1995 by Freund and Schapire [20], AdaBoost’s us-
age continues to expand steadily in present times. Weak classifiers’ performance
marginally exceeds random guess method. Over each round, AdaBoost incorpo-
rates weak classifiers into the final model, tuning their weights with respect to
their individual accuracies to attain balance.

If there is a misclassification, classification weight is reduced, and vice versa,
correct classification is given the increase of weight. Weak classifiers’ errors are
determined as follows:

εt =

∑N
i=1 wi,t · I(ht(xi) 6= yi)∑N

i=1 wi,t

(1)

above, εt represents the weak classifier’s weighted error of the t-th iteration,
N corresponds to the total amount of training samples, and wi,t is the weight
assigned to the i-th instance during t-th round. The estimate of the weak classifier
for the i-th entry during t-th iteration is given by ht(xi). The real label of the
i-th instance is indicated by the variable yi. In this context, function I(·) yields
0 if the conditional statement within parentheses is false, and 1 if it is true.

Once the weights have been established, novel classifiers are obtained, fol-
lowed by a repetition of adjusting the weights step. Achieving accurate classify-
ing capability necessitates a substantial ensemble of classifiers. A linear model
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comprises a fusion of sub-classifiers along with their outcomes. The formula for
computing the weight of every classifier in the ensemble is as follows:

αt =
1

2
ln

(
1− εt
εt

)
(2)

The weight (αt) varies for each weak classifier within the entire collection, repre-
senting the contribution of that particular weak classifier to the ensemble model.
It relies on the weighted error (εt). These weights are adjusted by the subsequent
equation:

wi,t+1 = wi,t · exp (−αt · yi · ht(xi)) (3)

in this context, yi denotes the true label of the i-th instance, ht(xi) signifies the
forecast outcome of the i-th instance by the weak learner’s t-th iteration. Finally,
wi,t represents the weight assigned to the i-th instance during t-th iteration.

AdaBoost holds considerable importance in the machine learning domain. Its
strengths lie in effective reducing bias and variance, that fosters the development
of robust models. However, its drawback is found in its susceptibility to data with
noise and outliers, requiring careful consideration of its applicability in particular
scenarios.

2.3 Metaheuristics optimizers

Inspired by organisms flourishing in large swarms and employing collective be-
havioral patterns, swarm intelligence algorithms demonstrate considerable effec-
tiveness when individual efforts alone are not sufficient to accomplish the given
task. This methodology has garnered considerable success in resolving NP-hard
problems.

Methods that belong to the swarm intelligence family have shown remark-
able proficiency in resolving a wide array of real-life issues. Notable instances of
their usage include medical applications [34, 57, 9, 29, 36, 28, 61], and detecting
the scams with credit cards [25, 39]. Furthermore, swarm techniques attained
considerable success in cloud computing domain [42, 7], plant classification[13],
forecasting the green energy production process and delivery to consumers [53,
4], broad array of economic tasks [30, 50, 52, 11, 46, 40], improvement of the audit
opinion [54], detection of defects in software modules [63], feature selection [5, 16,
26, 60], different sections of computer security [59, 1, 48, 32, 45, 14, 31, 10], Mon-
itoring the environment and tracking pollution, [33, 27, 6, 37], different areas of
wireless sensor networks and IoT tuning [58, 3] and general tuning of a variety
of ML structures [8, 51, 12, 21, 44, 62, 2, 22, 17].

3 Methods

Within this section, baseline variant of PSO is explained, followed by the iden-
tified limitations of the algorithm, and suggested modifications.
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3.1 Particle swarm optimization algorithm

The baseline PSO is one of the oldest metaheuristics, developed and proposed
in 1995 [35], and drawing inspiration by the flocking behavior demonstrated
by birds and fish. Particles form the population and correspond to the search
agents. PSO has been successfully used to address both discrete and continuous
optimization tasks.

The inner-workings of the baseline method are defined as follows. Each par-
ticle is given an initial velocity, and over iterations, the individuals change their
locations aiming to find a better one. Particle’s speed is described by the weight
coefficient, comprised of the old velocity, the best attained so far, accompanied
by the best attained by the particles in the neighborhood as described by Eq. 4.{−→vi ← −→vi +−→U (0, φ1)

⊗
(−→pi −−→xi) +

−→
U (0, φ2)

⊗
(−→pg −−→xi)

−→xi ← −→xi +−→vi ,
(4)

where
⊗

denotes the component-wise multiplication, the components of vi are
ranging between [−Vmax,+Vmax], while the vector marked

−→
U (0, φ1) denotes each

solution arbitrarily produced with a univorm distribution ranging in [0, φi]. The
best solution of the individual i is denoted by pi, and the global best solution is
given by pg. Each individual particle correspond to the potential solution within
D-dimensional space, with the location described by Eq. 5, the best location
attained so far before position updating given by Eq. 6, and the velocity set
defined by Eq. 7.

Xi = (xi1, xi2, ..., xiD) (5)
Pi = (pi1, pi2, ..., piD) (6)

Vi = (vi1, vi2, ..., viD) (7)
The optimal solutions, both globally (pi) and within the group (pg), are ac-

knowledged. The particle considers both pieces of information when determining
its next move based on the current distance between its position and pi and pg.
By employing the inertia weight method, it can be mathematically described as
shown in Eq 8.

vid =W ∗ vid + c1 ∗ r1 ∗ (Pid −Xid) + c2 ∗ r2 ∗ (Pgd −Xid) (8)

The Eq. 8 illustrates the inertia factors’ relative impact, labeled as w, while
c1 and c2 are utilized for cognitive and social components. Here, r1 and r2
denote arbitrary values, while the particle’s velocity and its present location are
respectively provided by vid and xid. Furthermore, pid and pgd correspond to pi
and pg, respectively.

Inertia factor itself is described by the Eq. 9. The starting weight is given by
wmax, and the final weight is marked as wmin. Maximum count of iterations in
the run is given by T , while the ongoing iteration is denoted as t.

w = wmax −
wmax − wmin

T
· t (9)
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3.2 Accelerated Guided best PSO

Despite being one of the first metaheuristics, PSO is still heavily in use, as it
is known of its powerful optimization capabilities. However, as any other meta-
heuristics, it has some known limitations, exposed with extensive simulations on
the benchmark functions. These drawbacks include tendency to get stuck in the
areas with local optima in case of problems with a high count of dimensions, and
slow converging velocity in certain runs.

This manuscript proposes a couple of alterations to the baseline method, to
specifically tackle the constraints described above. First modification is based
on the quasi-reflection-based learning procedure (QRL) which is incoproprated
in the initialization stage of the metaheuristics. This mechanism is renowned of
its capability to enhance the covering of the search realm [43]. The procedure is
applied to each component j of the particle Xj , by synthesizing a quasi-reflexive-
opposite parameter denoted as Xqr

j in the following way:

Xqr
j = rand

(
lbj + ubj

2
, xj

)
(10)

above, rand is an arbitrary value within
[
lbj + ubj

2
, xj

]
. The tweaked PSO ini-

tialization procedure begins by synthetizing NP/2 individuals by employing the
QRL mechanism, without rising the complexity of the method in FFEs (fitness
function evaluation). This procedure is listed within Algorithm 1.

Algorithm 1 QRL init stage
Turn 1: Formulate an initial populace, denoted as Pinit, by applying the conventional PSO initialization mecha-
nism to synthesize NP/2 individuals in Eq. (??)
Turn 2: Project the QRL population Pqr starting from Pinit with help of the Eq. (10)
Turn 3: Finalize the overal starting populace P by fusing Pinit and Pqr (P ∪ Pqr)
Turn 4: Establish the fitness value of each particle inside P
Turn 5: Organize all solutions within set P based on their respective fitness scores.

Following the initialization phase, throughout the entire run of the altered
metaheuristics, the poorest individual is removed in each round and substituted
by the QRL opposite of the top-performing particle (guided best approach). The
proposed modification doesn’t elevate the complexity of the baseline algorithm
computed in FFEs, as the fitness values of particles are not assessed.

Additional modification integrated into PSO draws inspiration from GA [38].
As the algorithm progresses and convergence nears, emphasis should be placed
on refining the best individuals discovered thus far. Acceleration occurs during
the final maxiter/2 rounds by replacing the particle with the second poorest
fitness value with a novel particle produced as a hybrid of the pair of best
particles. This synthesis employs a uniform crossover operator with a per-gene
crossover probability set to pc = 0.1. This adjustment improves exploitation,
thereby accelerating the metaheuristics. Once again, this change doesn’t entail
additional fitness value computations, therefore keeping the complexity in terms
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of FFEs. Finally, the complexity of the altered PSO remains identical to the
baseline PSO. This adapted variant of PSO is dubbed Accelerated Guided best
Adaptive PSO (AGbAPSO), with the pseudocode presented in Algorithm 2.

Algorithm 2 AGbAPSO pseudocode
Generate starting populace P by QRL mechanism shown in Algorithm 1
while (t < T ) do

Arrange individuals P according to their fitness values
for every individual X within P do

Use PSO search
Create novel particle as QRL opposite of the currently best particle
Substitute the worst particle in P with new particle

if (t >
max_iter

2
) then

Synthesize novel particle as the hybrid of the best two particles, using the uniform crossover operator
with pc = 0.1
Substitute the second-poorest particle by this fresh hybrid solution

end if
end for

end while
return The best individual from P

4 Experimental setup

Dataset for the employee reviews sentiment classification employed in the exper-
iments presented in this paper is publicly accessible at https://www.kaggle.
com/datasets/davidgauthier/glassdoor-job-reviews. It is comprised of job
descriptions and ranks from different industries in the United Kingdom, cover-
ing different criteria like income, work-life trade-off, culture etc. The reviews
are labeled as positive, mild, negative or no opinion. Dataset was partitioned
into 70% utilized for training, and remaining 30% saved for testing purposes.
Classification was executed by AdaBoost, where the hyperparameters opted for
tuning, accompanied by their appropriate search limits were count of estimators
[10, 50], depth [1, 10] and learning rate [0.1, 2].

The AdaBoost classifier has been optimized by the described AGbAPSO
metaheuristics. The simulations were implemented in Python, making use of the
standard collection of ML libraries, such as scikit-learn, scipy, pandas, numpy
and seaborn. To evaluate the results attained by suggested AdaBoost tuned
by AGbAPSO (shortly labeled AB-AGbAPSO) were put into comparisons to
the outcomes of potent optimizers like baseline PSO, GA [38], FA [56], RFO
[41], COA [24] and COLSHADE [23]. Each metaheuristics was allocated with
populace size of 6, 8 rounds per execution, and 30 individual runs.

As the Glassdoor dataset is imbalanced, Cohen’s kappa measure κ was chosen
as the objective function for maximization [18], described as:

κ =
ko − ke
1− ke

= 1− 1− ko
1− ke

(11)

above, observed and expected outcomes vectors are marked as ko and ke. Co-
hen’s κ considers the class imbalance, therefore it is able to deliver more robust
forecasts in comparison to accuracy, that can be deceiving under this circum-
stances.
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5 Simulation outcomes

Tables 1 and 2 summarize the experimental outcomes with respect to the Co-
hen’s kappa (fitness function) and error rate (selected as indicator function). The
superior results for each category is presented in bold text. The most supreme
AdaBoost configuration was synthesized by the introduced AGbPSO algorithm,
that obtained the best outcome for the best result (for both fitness and indica-
tor). The stochastic behavior of metaheurisics methods is visible by observing
other categories, where other algorithms performed better. For instance, ele-
mentary PSO attained the best score of the mean and median values of κ, and
COLSHADE had the best scores for the worst metric, std and variance.

Table 1. Objective function overall outcomes for sentiment classifiers.

Method Best Worst Mean Median Std Var
AB-AGbPSO 0.744904 0.718571 0.732307 0.733681 0.008678 7.53e-05
AB-PSO 0.743398 0.727532 0.736786 0.736970 0.004774 2.28e-05
AB-GA 0.742902 0.730489 0.735677 0.734434 0.004529 2.05e-05
AB-FA 0.743398 0.698131 0.730701 0.735435 0.014882 2.21e-03
AB-RFO 0.744403 0.712147 0.731566 0.734921 0.010038 1.01e-04
AB-COA 0.743446 0.728896 0.735612 0.735951 0.004446 1.98e-05
AB-COLSHADE 0.742358 0.731449 0.736754 0.736925 0.003904 1.52e-05

Table 2. Indicator function overall outcomes for sentiment classifiers.

Method Best Worst Mean Median Std Var
AB-AGbPSO 0.127490 0.140687 0.133798 0.133093 0.004348 1.89e-05
AB-PSO 0.127988 0.136703 0.132885 0.132844 0.002874 8.26e-06
AB-GA 0.128486 0.134711 0.132097 0.132719 0.002267 5.14e-06
AB-FA 0.128237 0.150896 0.134587 0.132221 0.007452 5.55e-05
AB-RFO 0.127739 0.143924 0.134172 0.132470 0.005039 2.54e-05
AB-COA 0.128237 0.135458 0.132138 0.131972 0.002212 4.89e-06
AB-COLSHADE 0.128735 0.134213 0.131557 0.131474 0.001964 3.86e-06

Violin plot of the Cohen’s κ and box plots of the error rate over 30 individual
executions are presented in Fig. 1. Additionally, Fig. 2 gives insights into the
convergence plots of the fitness (κ) and error rate for the best execution of
all considered metaheuristics. It is clearly visible that the AGbPSO achieves
supreme converging capability by avoiding local optima, that may affect the
results by premature converging to unfavourable regions, which is evident by
other methods (most obviously RFO and COA).

Detailed analysis of the outcomes achieved by the best-performing AdaBoost
classifiers synthesized by each algorithm observed in the comparative analysis
are provided in Table 3. Introduced AB-AGbPSO exhibited supreme outcomes,
attaing the best scores for the majority of the regarded metrics, most notably the
accuracy of 87.25%. Nevertheless, it should be mentioned that other metaheuris-
tics also achieved respectable accuracy levels. To further facilitate the replication
studies, the determined set of AdaBoost parameters of each metaheuristics is
given in Table 4.

Finally, PR curve (prec-recall) and confusion matrix of AB-AGbPSO clas-
sifier are provided in Fig. 3. To conclude the general experimental results, it
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Fig. 1. Distributions for objective and indicator functions.

Fig. 2. Convergence plots for objective and indicator functions.

Table 3. Detailed metrics comparisons between best-performing sentiment classifiers.

Method Metric Satisfied Dissatisfied Accuracy Macro avg. Weighted avg.
AB-AGbPSO precision 0.874104 0.870999 0.872510 0.872552 0.872525

recall 0.865248 0.879530 0.872510 0.872389 0.872510
f1-score 0.869654 0.875244 0.872510 0.872449 0.872496

AB-PSO precision 0.874295 0.869376 0.871763 0.871835 0.871794
recall 0.863222 0.880020 0.871763 0.871621 0.871763
f1-score 0.868723 0.874665 0.871763 0.871694 0.871744

AB-GA precision 0.873846 0.869313 0.871514 0.871579 0.871541
recall 0.863222 0.879530 0.871514 0.871376 0.871514
f1-score 0.868502 0.874391 0.871514 0.871446 0.871496

AB-FA precision 0.874295 0.869376 0.871763 0.871835 0.871794
recall 0.863222 0.880020 0.871763 0.871621 0.871763
f1-score 0.868723 0.874665 0.871763 0.871694 0.871744

AB-RFO precision 0.874040 0.870577 0.872261 0.872308 0.872279
recall 0.864742 0.879530 0.872261 0.872136 0.872261
f1-score 0.869366 0.875030 0.872261 0.872198 0.872246

AB-COA precision 0.870117 0.873350 0.871763 0.871733 0.871761
recall 0.868794 0.874633 0.871763 0.871714 0.871763
f1-score 0.869455 0.873991 0.871763 0.871723 0.871761

AB-COLSHADE precision 0.877657 0.865357 0.871265 0.871507 0.871403
recall 0.857649 0.884427 0.871265 0.871038 0.871265
f1-score 0.867538 0.874788 0.871265 0.871163 0.871224
support 1974 2042
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Fig. 3. AGbPSO optimized sentiment classifier PR curve and confusion matrix.

Table 4. Best constructed Arabist classifier parameters selected by optimizers.

Methods Number of estimators Depth Learning rate
AB-AGbPSO 5 5 0.396655
AB-PSO 5 5 0.294675
AB-GA 5 5 0.421371
AB-FA 5 5 0.422030
AB-RFO 5 5 0.399369
AB-COA 5 5 0.454070
AB-COLSHADE 5 5 0.401295

should be mentioned that AB-AGbPSO could be an excellent solution to clas-
sify employee reviews. Additionally, the competitor algorithms have also attained
respectable performance levels for this particular task.

6 Conclusion

This paper investigated the capability of AdaBoost classifier optimized by meta-
heuristics optimizers to handle employee reviews sentiment classification task.
Appropriate classification of these reviews can help in evaluating the employee
satisfaction within the organization, and identify the potential risks where the
organization should intervene. AdaBoost classifier was tuned by an altered ver-
sion of PSO algorithm, and the outcomes were put into comparisons to the
AdaBoost tuned by other potent optimizers. Proposed AB-AGbPSO syntesized
the top-performing mode, that achieved the accuracy of 87.25%.

The constraints of this research are correlated to the extremely high hardware
requirements for the experiments, which resulted in reduced count of individuals
and iterations per execution, and also limited number of contending algorithms.
Additionally, search areas for the hyperparameters were also been limited. These
constraints should be addressed in the future, if supplementary computing power
is available.
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