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Abstract. The reduced costs associated with deploying and utilizing
Unmanned Aerial Vehicles (UAVs) have spurred their widespread adop-
tion across various industries, including aerial photography, information
gathering, and search and rescue operations. However, this rapid up-
take has also raised concerns regarding safety and privacy, particularly
due to instances of misuse and potential hazards posed by convertible
drone technology. Addressing these concerns, this study investigates the
application of emerging Artificial Intelligence (AI) techniques in com-
puter vision for the detection and classification of ISM band transmis-
sions, distinguishing between conventional Bluetooth signals and those
used for drone control. Several YOLOvV8 architectures, optimized for
lighter hardware, are evaluated using a publicly available ISM band
visual dataset. Results demonstrate that even lighter models, such as
nano and small architectures, can achieve significant precision rates, with
the best-performing models reaching a peak precision of 90%. However,
medium-sized architectures are recommended for optimal performance.

Keywords: Unmanned Aerial Vehicles - Signals Intelligence - YOLOvS8
- Computer vision - Radio frequency spectrum

1 Introduction

The last decade has brought us an increasing use of drones, from filming for film
and television, commercial and artistic photography. Agriculture in the form of
crop monitoring, object surveillance and even in rescues due to their ability to
access any point and visualize it with cameras, of all types of delivery, their use
is constantly increasing [19]. This opens up the other side, the availability and
ease of handling, allows the drone to be used by anyone and anywhere, which
brings with it various risks for security and privacy.
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In the past, it was necessary to hire a helicopter or an airplane to take
pictures and photographs from the sky [21], today these small devices do it,
with perhaps even better results [25]. Monitoring and control of hard-to-reach
areas with drones is also facilitated, as well as rescuing people, searching large
territories and even delivery in all locations, possibilities and needs are increasing
daily. Although there are a large number of benefits, on the other hand, the issue
of safety is raised.

Institutions and places with high new security are primarily under attack
there, so detection and control is one of the areas that is necessary [27]. Li-
censing is one of the types of control that should be present, but an automated
system for detecting drones is also necessary. One of the possible ways, which is
offered as a drone detection system, is the monitoring of the Industrial, Scientific,
and Medical (ISM) radio frequency spectrum [18], which can be used to detect
the presence of drones. They have the ability to identify the control units that
make the drones fly. And with the technique itself like goniometry, it is easy to
locate the very position from where the drone is controlled. This ISM spectrum
monitoring system works on a specialized and expensive technique, which is an
obstacle to any wider application.

Looking for cheaper solutions, computer vision with its trained recognition
models could certainly take the stage. The idea is to apply these models for
the analysis of spectrum visualization [8, ?], this would aim to detect drones in
approximately real time, and the price would certainly be more affordable for
wider use. With low training costs, it opens the door to this concept, which
would aim to have easier and more effective control in protecting privacy and
security in times where drones play an increasingly prominent role.

The latest version of the object detection algorithm You Only Look Once
(YOLOVS8) [10] was used in this paper. YOLO is already known for its speed
and efficiency, but also very easy to use, a few lines of code are enough to start
training a model. This work is based on three YOLOvS8 architectures - nano,
small and medium.

The contributions of this work may be summarized as:

— A proposal for a computer vision system based approach for ISM band mon-
itoring

— The use of transfer learning models for drone control signal detection in
spectrograms

— The exploration of several YOLOv8 model architectures for this increasingly
pressing security issue.

The remainder of this work is structured as per the following: Section 2
demonstrates preceding works that helped inspired and support this research.
In Section 3 the concepts behind the methodology are introduced. Section 4 and
Section 5 define experimental parameters and showcase the attained outcomes
respectively. Section 6 provides a conclusion to the work.
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2 Related Works

The constant increase in the use of unmanned aerial vehicles (UAVs), better
known as drones, the wide range of their capabilities and uses have also opened
numerous security challenges. Scientists all over the world are searching for the
best solutions for their detection. First of all, we should refer to radio goniometry
and doppler radio goniometry. By combining these techniques, enviable results
were achieved in the detection of drones.

The scientific paper [3], presents a method for drone identification using
identification marks in radio frequency (RF) signals. In order to estimate the
position of the drone, this technique is based on the extraction of telemetry data
through the decoding of ID packets in real time. All this results in detecting the
position, height and speed of the drone. This system with an error ranging from
15 to 35 meters at a distance of up to 1.3 - 3.7 km for the detection of certain
models of drones accurately estimates the position and speed in a 2D view.

This study [4], used the technique "You Only Look Once" (YOLOvV5) [31]
algorithm, for drone detection. Leightweight models have shown impressive ob-
ject detection results [12]. The study was based on drone and bird photos from
different angles and heights, achieved good results in recognition FPS of 20.5
and 19.0, and the mAP was 74.36 percent. I another work [30], a wide range of
technology for the detection, classification and tracking of drones is covered, the
emphasis is on machine learning (ML). ML is said to be able to perform pattern
recognition using modalities, which humans cannot fully perceive.

Theorem "no free lunch" (NFL) [34], i.e. there is no special algorithm that can
be universal for all types of problems. One algorithm may be good for one type of
problem while for another concept it may give less good results. It is important
to understand the nature of the problem, i.e. the type of data, optimization
objectives and constraints, before choosing a particular algorithm.

Metaheuristic algorithms in the optimization of drone detection, in addition
to genetic algorithm [20], simulated annealing [1], or some others. It is possible to
additionally optimize detector parameters and improve detection precision. Some
of the metaheuristic algorithms, it is possible is to automatically adjust detection
thresholds or filtering parameters, which would result in a lower number of false
negatives and false positives. Because of all this, metaheuristics will play a key
role in improving algorithm performance [15, 11, 14].

Hybridization is a popular approach for modifying and improving the per-
formance of metastatic optimizes. Hybrid optimizers have seen several imple-
mentations in recent works with some notable examples include financial and
cyptocurrency forecasting [28,24,29]. Additional implementations include mar-
itime safety [23], medical [13] and other applications [16, 14].

The gap in current scientific research indicates a space in research with cur-
rently the latest model of computer vision YOLOvS8. Furthermore, leightweight
architectures have the potential to improve drone detection capabilities, primar-
ily for future research in this rapidly developing field.
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3 Methods

3.1 Yolo Models

YOLO object detection models (you only look once), have a wide application in
various industries and everyday situations, areas where it is already present are
agriculture, health, security, surveillance, vehicle autonomy, but in some areas
YOLO has yet to take its place and it is up to the scientific community to open
the door to these changes. YOLO stands out with its ability to quickly and
accurately detect objects in the image and is the best in the field where time
plays a major role.

YOLO differs from traditional methods because it looks at the image as a
whole, then predicts bounding boxes and class probabilities for all objects at
once. This process takes place by dividing the image into a grid of cells, in which
each cell predicts the bounding boxes, but also the probabilities of each object
within it [26].

The evolution of the YOLO model went through several iterations from
YOLOv1 to YOLOVS8, each of which brought some improvements. YOLOvS is
the last of the series of learned models and stands out for its speed and accuracy
compared to the others. Innovations are present in the field of network architec-
ture, optimization and advanced learning techniques, all with the aim of better
accuracy and efficiency of object detection [5].

Advanced techniques used to improve object detection such as non-maximum
suppression (NMS), eliminate overlapping box boundaries, then anchor boxes
are used to improve the prediction of bounding boxes, but also multi-scale train-
ing, detection of objects of different sizes, by training on images that differ in
scale [17].

The application of the YOLO model due to its efficiency and speed is ubig-
uitous, but where it could have its limitations is in the detection of very small
or densely grouped objects, but also in the detection of objects outside the data
set on which they were trained [26].

3.2 Transfer learning

The concept of transfer learning is a learning process that can be transferred from
one task to another, this approach is called transfer learning [32], it gives the
opportunity to learn faster, more efficiently and easier, using knowledge that is
already acquired in some fields [9]. For years, the scientific community has worked
on various open source projects, refining complex models, gigantic amounts of
data for generic randoms. The application is wide ranging from object detection
in video, object detection in images, transcription of audio recordings, sentiment
analysis for text. The training of data from scratch is sometimes expensive and
unnecessary, that’s why transfer learning made it easier to start training the
model. Also by using a well-tested and well-established model the overall model
will be improved. But even if we do not have enough data for the problem we are
working on, the use of a pre-trained model can benefit us. [2] Transfer learning
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problems can be divided into three groups, i.e., transductive, inductive, and
unsupervised transfer learning [22|. Learning in which the data is labeled, and
it is used when it is necessary that the task it was solving in the target domain is
different from the task in the source domain is called Inductive transfer learning,
often the tasks can be similar if the model was trained to recognize cars, and
now it needs to recognize trucks. Transductive learning is based on the fact
that the source and target tasks are the same, but the domains themselves are
different. This indicates that there is a lot of data in the source domain, but
not in the target domain. While learning in which neither the source nor the
target domains have labeled data is called unsupervised transfer learning. This
is definitely more demanding learning, because the model has to use knowledge
without clear instructions.

Transfer learning settings themselves are divided into two categories, namely
homogeneous and heterogeneous based on different characteristics. Homogeneous
transfer learning [33], the source and target domains share the same feature and
label space, however the distribution itself differs. This indicates that the image
of the car may be the same but may differ in the lighting of the image, the task
is identical but the context has changed. Heterogeneous transfer learning when
feature or label spaces differ from the target domain. If in one task we analyzed
pictures, and in another we want to analyze text or if the categories themselves
are different. [7].

4 Experiemntal Setup

This work explores the feasibility of applying three different YOLOvS8 architec-
tures to signals intelligence in the ISM band. The focus on this research is on
lighter architectures that allow for real time use with minimal investments after
model training. A publicly available dataset [6] is utilized last accessed on the
20.03.2024 . The dataset consists of images of ISM band spectrograms with two
classes labeling Bluetooth transmissions and drone control signals. Samples of
inputs can be seen in Figure 1.

Fig. 1. Image samples containing drone control and Bluetooth signals.

! https://universe.roboflow.com/intelligent-digital-communications/ism-band-packet-
detection
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Nano, small and medium models are trained and evaluated using standard
metrics for classification including precision, recall, mAP50 and mAP50-95 pro-
videdd in the following equations:

True Positives

Precision = 1
True Positives + False Positives (1)

Recall True Positives (2)
ecall =
True Positives + False Negatives

1 n
mAP@50 = ~ >~ AP (3)
" i=1
I (50—95)
AP@50-95 = = Y AP 4
m - g ; (4)

where n denotes the number of classes, mAP@50 is the Average Precision for
class i at a threshold of 0.5, and mAP@50-95 is the average precision for class
1 averaged over thresholds from 0.5 to 0.95. Additional details are provided on
model performance in the form of confusion matricides and precision-recall (PR)
curves.

5 Simulation Outcomes

The following section presents and discusses outcomes of three simulations car-
ried out in this work. Simulations with nano, small and medium models are
provided alongside discussions of the results. Finally samples of the best pre-
forming models classifications are presented.

5.1 Nano architecture outcomes

Table 1 displays the performance of the YOLOv8 nano model across training
epochs. After completing 15 epochs, the model achieved a precision of 0.78010, a
recall of 0.68754, a mAP50 of 0.76277, and a mAP50-95 of 0.50337. These results
indicate that while the model has shown respectable performance, it appears to
face challenges in further enhancement with improvements slowly stagnating
after the 13-th iteration. Expanding the architecture might yield more favorable
outcomes. However, architecture expansion can increase computational demands
for both training and deployment.

A confusion matrix for the nano model is provided alongside the PR curve
in Figure 2. The model has a decent rate of detection of drone signals however
it strucles with Bluetooth classfications. Several bluetooth signals fade in to the
background. This is less pronounced with drone control signals with only 19%
being missed as background images.

The limited image resolution used for the pre-trained model reduces detec-
tion. This can further be tackled by introducing additional empty background
images into the training dataset to improve differentiation objects form the back-
ground.
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Table 1. Nano architecture training outcomes.

Epoch precision recall mAP:50 mAP:50-95

1 .00000  .00000 .00000 .00000
2 .00008  .00588 .00004 .00000
3 .00008  .00588 .00004 .00000
4 61114 .13529 .09682 .03730
5 33796 37286 .28145 .10642
6 24796 34960 .22849 .06983
7 .34304  .38750 .30296 .12652
8 57537 57861 .58786 .28208
9 .66859  .62865 .65499 .34239
10 68475  .61278 .64927 .33806
11 69965 61176 .63782 .36585
12 .64585  .63824 .64497 .38231
13 75679 71898 .75508 .45075
14 78603  .68937 .75866 .49284
15 .78010  .68754 .76277 .50337

Precision-Recall Curve

—— bluetooth 0.624 Contusion Matrix Normalized

drone 0.901
L = all classes 0.762 mAP@0.5 £
L H
0.8 H

Precision

06 7
Recall o e arone weskvhtootn  backgroung

Fig. 2. Nano model PR curve and confusion matrix.
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5.2 Small architecture outcomes

Table 2 displays the performance of the YOLOvS8 small model across training
epochs. After completing 15 epochs, the model achieved a precision of 0.77935, a
recall of 0.78717, a mAP50 of 0.81828, and a mAP50-95 of 0.61030. While a small
drop in percussion can be seen in comparison to the nano model peak precision
during training is 0.86641, while recall maP50 and mAp50-95 scores show a
clear improvement using the small model. The expanded architecture showcases
improved outcomes. However, the longer training times should be noted due to
the larger number of parameters that need to be adjusted to facilitate model
training.

Table 2. Small architecture training outcomes.

Epoch precision recall mAP:50 mAP:50-95
.65854 51732 .55754 .31696
149968  .50260 .38507 .20677
69921 57253 .61679 .41097
39534 53621 42343 .22106
58687 .44960 .40474 22121
62514 .72364 .65028 .40157
78430 71170 .75559 .49192
.64943 70742 .76834 .50319
9 72814 75423 .79483  .54489
10 86641  .72326 .82267 .58346
11 .66184  .73095 .73726 .52853
12 81709  .72874 .79995 .57388
13 .82942 75570 .80526 .57693
14 .80028  .75289 .80490 .58795
15 77935 78717 .81828 .61030

O ~J O T W

A confusion matrix for the small model is provided alongside the PR curve
in Figure 3. A reduced precision for drone detection is observed with an 82%
correct classifications, however, Bluetooth detection has improved.

5.3 Medium architecture outcomes

Table 2 displays the performance of the YOLOv8 medium model across training
epochs. After completing 15 epochs, the model achieved a precision of 0.90404, a
recall of 0.71210, a mAP50 of 0.83716 , and a mAP50-95 of 0.61398. The medium
model attained overall the best outcomes compared to the other models. This
suggest that larger architectures are better suited to addressing this issue. it is
also worth noting that further training might yield additional improvements as
the training outcomes do not suggest stagnation in performance. The PR curves
and confusion matrix for the medium model are provided in Figure 4.

Classification examples of the best performing architecture (medium) are
provided in Figure |reffig:MediumBest
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Precision-Recall Curve

Precision

02 04 06 08

—— bluetooth 0.726
drone 0.910
= all classes 0.818 MAP@0.5

Contusion Matrix Normalized

Fig. 3. Small model PR curve and confusion matrix.

Table 3. Medium architecture training outcomes.

Epoch precision recall mAP:50 mAP:50-95

0~ O UL WN -

.58348
.00301
.35063
.39750
.44546
.46376
.31193
63279
.78555
77791
73074
.87946
.82336
.85876
.90404

.33576
.18443
45281
.59505
43749
.56005
.35020
.61611
67921
.69545
71726
.69409
76455
70747
71210

.38691
.00180
.33018
.44531
27127
49434
27625
.63470
.72866
76697
75974
.80563
.83939
.81666
.83716

.26323
,00066
17783
.25132
.15062
25231
.10748
.40239
.52628
.54995
.52656
.58535
.58598
.58408
.61398

Precision

02 0.4 06 0.8
Recall

—— bluetooth 0.780
drone 0.894
= all classes 0.837 MAP@0.5

Contusion Matrx Normalized

nnnnnnnnnnn

nnnnnnnnnnn

Fig. 4. Medium architecture PR curve and confusion matrix.
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Fig. 5. Sample classifications made by the best performing model (mdeium).

6 Conclusion

The decreasing costs of deployment and use of UAVs have led to increased adop-
tion in many sectors. Aerial photography, information gathering, and search and
rescue have seen numerous benefits from the proliferation of this technology.
However, several concerns have arisen from the rapid adaptation of drones. Con-
vertible drones have been misused in various situations, demonstrating that they
can be a dangerous asset. Efficient detection and tracking have become priorities
for those concerned with safety and privacy. This work explores the application
of emerging AI technologies for computer vision to identify and classify ISM
band transmissions between ordinary Bluetooth and drone control signals. To
facilitate the classification, several YOLOvVS8 architectures are considered, with a
focus on lighter weight (nano, small, and medium) models to enable larger scale
implementations on more moderate hardware. Models are trained and evaluated
on a publicly available ISM band visual dataset under identical conditions. The
best-performing models reached a peak precision of 90%, suggesting that appli-
cation in this form is a viable method for drone control signal detection in the
ISM band. However, at least a medium architecture is required to attain these
results.

Future work will focus on further refining the proposed methodology. Opti-
mization metaheuristics will be utilized to overcome some of the inadequacies of
the default model and further refine outcomes.
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