
Hybrid Model Optimization With Modified

Metaheuristics for Parkinson’s Disease Detection

Vladimir Markovic1*†, Angelina Njegus2†, Luka Jovanovic1†,
Tamara Zivkovic2†, Dejan Jovanovic3†, Djordje Mladenovic3†

1*Faculti of Informatics and Computing, Singidunum University,
Danijelova 32, Belgrade, 11000, Serbia.

2School of Electrical Engineering, University of Belgrade, Bulevar kralja
Aleksandra 73, Belgrade, 11000, Belgrade, Serbia.

3College of Academic Studies “Dositej”, Bulevar Vojvode Putnika 7,
Belgrade, 11000, Belgrade, Serbia.

*Corresponding author(s). E-mail(s): vladimir.markovic.19@singimail.rs;
Contributing authors: anjegus@singidunum.ac.rs;

ljovanovic@singidunum.ac.rs; zt125040p@student.etf.bg.ac.rs;
dejanjovanovic@akademijadositej.edu.rs;

djordjemladenovic@akademijadositej.edu.rs;
†These authors contributed equally to this work.

Abstract

Parkinson’s disease, a progressive neurological disorder primarily affecting elderly
males, stems from dysregulation within the extrapyramidal tracts, notably the
substantia nigra, lentiform nucleus, caudate nucleus, and ruber nucleus. This con-
dition manifests as heightened cholinergic activity in the brain, correlating with
cognitive decline, gait disturbances, sleep disorders, psychiatric symptoms, and
olfactory dysfunction. Early detection is crucial for enhancing patient progno-
sis. Although neurological damage cannot be reversed, treatment can mitigate
progression. However, patients often delay seeking treatment until symptoms
significantly impair daily functioning, underscoring the importance of early detec-
tion. This study investigates the fusion of long short-term memory and extreme
gradient boosting classifiers to develop an early detection system utilizing non-
invasive shoe-mounted sensor data for observing patient gait. A tailored optimizer
is introduced to enhance classification accuracy, achieving a notable accuracy of
0.896370, surpassing other contemporary optimizers in identical conditions.
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1 Introduction

Parkinsons disease is a progressive illness of the nervous system, most often affecting
older male individuals. Its roots lay in the disorder of extrapyramidal tracts, more
specifically bodies in the brain known as substantia nigra, lentiform nucleus, caudate
nucleus, and ruber nucleus [1]. A reduced concentration of dopamine, as well as a lower
concentration of serotonin and norepinephrine are noted in these areas in patients
with the disease [2]. This, in turn, results in higher cholinergic activity of the brain,
which is further connected to the decline in cognitive ability of the patients, issues
with gait and freezing of gait (FOG), sleeping disorders, psychiatric symptoms of the
disease as well as olfactory difficulties [3]. In addition to these abnormalities in the
brain structure, Lewy bodies and senile plaques are also often found in the patients
brains [4], both connected to dementia, which Parkinson’s may or may not lead to.

Patients with Parkinson’s are recognizable for the following manifested symptoms:
rigor (extrapyramidal type hipertonia) with muscles overly stiff and tight, a lack of
willing and spontaneous emotional expressions in face and body movement, tremor of
extremities showing when a person is resting [5]. The individuals movement is slowed
(bradykinesis) and extremly basic (hipokisesis), while their speech sounds monotonous,
slurred, slow (bradylalia, bradyphasia, bradyphrasia). Their walking is slow and hap-
pens in small steps, while it can sometimes completely freeze, with the patient unable
to will their legs to move, a symptom know as Gait freezing. Beyond the age and gen-
der factors, genetic predispositions are another crucial risk factor for the disease, as
well as exposure to certain kinds of toxins [6].

While a cure for this illness is yet to be found, certain measures can be taken to
allow for better everyday life and longer life expectancy of the people affected. These
measures include medication that helps balance out the dopamine and acetylcholine
levels in the body, which in turn helps reduce the symptoms of the disease. Other
measures regard the lifestyle changes that can be made to accommodate patients and
slow down the progression of the illness. In order for these measures to have an optimal
effect, the disease should be detected as early as possible.

As the disease most often affects older people, and the symptoms begin very slowly,
the disease is hard to detect and diagnose in early stages. The symptoms not only
begin slowly and are easily confused with the natural process of aging, meaning the
patients do not seek medical aid until a later stage, but are also overlapping with other
neurodegenerative disorders. Tests and biomarkers can not provide definitive diagnosis
on their own, while the waiting lists for scans remain long and difficult to access,
resulting in a need for holistic diagnosis process and extremely skilled professionals.
Considering the high demands for accurate classification, the clinical diagnostic process
leaves much to be desired. Mistakes happen even when the illness has fully manifested,
let alone in the earlier stages [6].
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Advances in the field of technology have resulted in wearable devices that can help
measure and track the motor symptoms. Such devices are helpful not only for monitor-
ing patients well-being, but also serve the purpose of data gathering, aiding in research
of the disease. However, the data collected this way is immense, and sorting through it
and analysing it by hand would be very time-consuming and tedious. Instead, machine
learning (ML) can be used to make the process more manageable. ML models show
greatest results when presented with large databases, presenting their capability to
gleam patterns in the information a human brain may miss due to cognitive biases. By
employing artificial intelligence algorithms for data processing, medical professionals
gain another perspective and tool in understanding the given medical condition [7].
Still, in order to properly train these algorithms, the knowledge and expertise of said
professionals is necessary to diagnose and define the diseases the algorithm is helping
research.

Another factor in getting a high-accuracy model is selecting the appropriate param-
eters to guide the learning process. For this work metaheuristic optimization will
be used. The present research has a goal of exploring the potential of combining a
modified version of the sinh cosh optimizer (SCHO) [8] with Long Short term mem-
ory (LSTM) [9] networks with their final layer classified by the extreme gradient
Boosting (XGBoost) [10] algorithms in order to detect signs of Parkinson’s disease
from data collected from shoe mounted sensors. The main contributions of this work
can be summarized as:

• A poprosal for a hybrid LSTM-XGBoost classified applied to PD detection
• The introduction of a modified metaheursitic optimizer based on the SCHO
• The introduction of a combined approach for PD detection based on shoe mounted
sensor data collected in a non invasive manner for mpatioents

The remainder of this work obeys the following structure: Section 2 covers pre-
ceding works. Section 3 provides a detail description of the proposed methodology.
In Section 4 describes the simualtion configuration followed by the attained results in
Section 5. In Section 6 the work is concluded.

2 Literature overview

The time constraints that occur during patient visits in healthcare settings mean
making a complex diagnosis such as this harder. A quicker and more efficient approach
could be achieved by integrating artificial intelligence (AI) into the diagnosis process
in order to create an automated and dependable method for detecting anomalies in
the patients results as an aid to the doctors diagnosis.

In recent years, the pervasive availability of computational devices has ushered in a
transformative era for the practicality and applicability of Artificial Intelligence (AI).
The field of medicine, in particular, has reaped substantial benefits, witnessing a surge
in works that apply sophisticated algorithms for diagnosis and detection to ultimately
enhance patient outcomes [11, 12]. Beyond diagnostic applications [13], AI techniques
have proven instrumental in filtering noise from complex data samples [14], obtaining
information that might otherwise be challenging to acquire.
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Parkinson’s diagnostics have also been tackled with AI, showing vast potential [15–
18]. Thus, the novelty of this work is not necessarily in the idea of AI implementation,
but in the presentation of a practical model tailored to the problem, as high accuracy
in the field of medicine can make a world of difference.

In order to reach the highest accuracy of a model for the given task, the hyperpa-
rameters must be selected carefully. While this can be done by hand, and traditionally
has been, with the growing complexity of the issues addressed grows the complexity of
the task of hyperparameter selection. One solution for this is the use of metaheuristic
algorithms, which have the power to take into account varying continuous and dis-
crete factors. A tailored approach to each issue is favoured in order to get the optimal
accuracy from the model. Metastatic algorithms have showcased impressive capabil-
ities when addressing challenges form several fields. Some notable examples include
medicine [19–23], and credit card frauds identification [24, 25].

Moreover, swarm algorithms showcase interesting results when combined in to
hybrid approaches. Some examples include optimization problems [26, 27], plant
classification[28], predicting green energy production [29, 30], economic problems [31–
36], enhancing the audit opinion [37], defect identification in software testing [38],
feature selection [39–42], computer security, phishing and intrusion detection [43–50],
environmental monitoring and pollutants tracking [51–53], as well as improving wire-
less sensor networks optimization [54–56] and general optimization of machine learning
models [57–64].

2.1 Overview of Long-short term memory

A recurrent neural network (RNN) based algorithm called Long-short term memory
(LSTM) was developed to overcome the inadequacies of standard RNNs by efficiently
capturing long-term reliance in sequential input [65]. Compared to RNNs, LSTMs
avoid the problem of vanishing and exploding gradients because of these updated;
instead, it learns long-term dependencies by preserving a memory state that keeps
data for extended periods of time [66]. Because of this characteristic, LSTM networks
function especially well for assignments involving time-series data, speech recognition,
natural language processing (NLP), and other sequential data issues.

LSTMs have four layers to their gating system, making them able to retain a higher
quality of data than RNNs. This approach improves optimization, helps with creating
a dynamic and personalized selection, and eliminates cell inputs to enable long-term
memory keeping.

The cell state serves as storage, preserving important info. The forget gate is
made up of a sigmoid function seen in (Eq.(1))) that determines which information is
significant and should remain in the cell state.

ft = σ(Wfxt + Ufht−1 + bf ) (1)

ft signifies the forget gate, xt refers to the inputs at the t time, ht−1 denotes the
formerly hidden state, Wf and Uf denote the input weight coefficients, and bf is
the bias vector. The input gate sigmoid function (it) is responsible for selecting the
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incoming information to be stored in the cell state, as per Eq. (2).

it = σ(Wixt + Uiht−1 + bi) (2)

Here, bi defines the bias, while Wi and Ui denote the complementary weight factors.
Using the tanh layer, a set of extra choices is generated in accordance with Eq. (3).

C̃t = tanh(Wcxt + Ucht−1 + bc) (3)

accounting for the bias bc and the weight variables Wc, Uc. The previous cell state
Ct−1 is removed from storage to make room for the addition of new data to the
updated cell state Ct by using an element-wise product ⊙ with the forget gate ft.
Next, the potential values C̃t that arise from multiplying them with the input gate it
are combined using Eq. (4).

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (4)

Before the new concealed state is created in the tanh layer using (Eq. (6)), the first
sigmoid output ot is sent on in a format that has been constructed by the following
equation (Eq. (5)) based on the cell state.

ot = σ(Woxt + Uoht−1 + bo) (5)

ht = ot ⊙ tanh(Ct) (6)

Wo and Uo are the weight factors, bo defines the bias parameter.

2.2 Overview of XGBoost

The XGBoost [10], a well-known member of the ensemble learning family, employs
a decision tree-based learning technique to combine forecasts from multiple inferior
learners. The trees make use of a gradient boosting framework to correct for stage-prior
errors. XGBoost achieves great efficacy because of the parallel processing choices and
regularization features. Combining regularization and gradient boosting techniques
improves model creation capabilities in addition to optimization. The intricate rela-
tionship between the input and target patterns is the basis of the model’s prediction.
The XGBoost model’s goal function is improved by incrementally training the model.
Due of its extensive parameter usage, XGBoost is difficult to tune, therefore the trial-
and-error method is insufficient. Certain scenarios require a very strong model due
to their tremendous complexity. A good model needs to be quick, accurate, and able
to generalize. Training iteratively yields the best results. Eq. 7 shows the objective
function of XGBoosts.

obj(Θ) = L(θ) + Ω(Θ), (7)

L(Theta) represents the loss function, Omega(Theta) is utilized for the regularization
term, and Theta indicates all of the XGBoost hyperparameters. Omega(Theta) also

106             V. Markovic et al.



controls the complexity of the model, and the loss function is determined by the specific
situation being studied.

L(Θ) =
∑

i (yi − ŷi)
2, (8)

in the equation yi marks the predicted value, and the forecast target in all iterations
i is ŷi.

L(Θ) =
∑

i[ yi ln (1 + e−ŷi) + (1− yi) ln (1 + eŷi)]. (9)

The presented process is used for differentiation between real and expected values,
while lowering the total loss function aids the classification capabilities of the model.

3 Methodology

3.1 Original SCHO optimizer

The recently proposed SCHO metaheuristics [8] are based on mathematical qualities,
as they draw inspiration from the characteristics of basic hyperbolic functions, sinh
and cosh. Two features that sinh and cosh display are used by the algorithm. A steering
threshold is used to differentiate between the stages of exploration and exploitation
based on the first attribute of cosh consistently having a value greater than one.
Second, the exploration and exploitation processes are both enhanced by the sinh
property of the closeness to 0 inside the interval [−1, 1].

The initialization of the algorithm, based on population-centric approaches, is illus-
trated in Equation 10, demonstrating an initial population represented by considerable
chaos.

A =

[
a1,1...a1,j ...a1,D
a1,2...a2,j ...a2,D
aN,1...aN,j ...aN,D

]
(10)

where P represents the population of solutions, and each agent’s location Ai,j is
calculated with respect to Equation 11. The parameters D and N represent the
dimensionality and the number of agents.

a = rnd(N,D)× (ub, lb) + lb (11)

here, rnd is a random number, and ub and lb define the upper and lower bounds of
the search realm.

After the initialization stage, the method must strike a balance among exploration
and exploitation, directing the individuals towards promising areas of the search space.
Exploration is divided to a pair of stages, and the balance is controlled by Equation 12:

S = floor(
T

ct
) (12)

above T denotes maximal quantity of iterations, while ct is a control value, established
through empirical experiments to value 3.6.

During exploration stage, individuals update their positions as according to Eq 13:

At+1
(i,j) =

{
A

(j)
best + r1 ×W1 ×At

(i,j) r2 > 0.5

A
(j)
best − r1 ×W1 ×At

(i,j) r2 < 0.5
(13)
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where, t annotates the current round, At+1(i, j) corresponds to the j-th dimension
of the i-th solution, while A(j)best describes the best solution inside j-th dimension.
Arbitrary numbers inside limits [0, 1] are selected and assigned to r1 and r2. The
parameter W1 denotes a weighted coefficient of a particular solution obtained in the
following way:

W1 = r3 × b1 × (coshr4 + µ× sinhr4 − 1) (14)

where b1 will be decreased over the iterations, and r3 and r4 are random numbers
from range [0, 1]. Moreover, a sensitivity parameter marked as µ is also utilized.

Exploration stage makes use of the second strategy involving the usage of Eq 15

At+1
(i,j) =

{
A

(j)
best + |ϵ×W2 ×A

(j)
best −A

(t)
i,j | r5 > 0.5

A
(j)
best − |ϵ×W2 ×A

(j)
best −A

(t)
i,j | r5 < 0.5

(15)

here, ϵ is preset to value 0.003 with respect to [8]. The weight parameter W2 may be
obtained through:

W2 = r6 × b2 (16)

here r6 denotes an arbitrary value taken from [0, 1], and b2 is a slowly reducing value.
Exploitation plays a crucial role during the optimization, as individuals converge

towards promising spaces inside the search region, closing to the optimum. Once more,
this metaheuristics utilizes a pair of strategies. Equation 17 is employed in the initial
stage.

At+1
(i,j) =

{
A

(j)
best + r7 ×W3 ×At

(i,j) r8 > 0.5

A
(j)
best − r7 ×W3 ×At

(i,j) r8 < 0.5
(17)

where the parameters r7 and r8 are chosen inside [0, 1], and W3 is defined in the
following manner:

W3 = r9 × b1 × (coshr10 + µ× sinhr10) (18)

here r9 and r10 represent random values from range [0, 1].
The second procedure depends of the Eq 19:

At+1
(i,j) = At

(i,j) + r11 ×
singr12
coshr12

∣∣W2 ×At
best −At

i,j

∣∣ (19)

here r11 and r12 are again randomly taken from the interval [0, 1].

3.2 Modified SCHO

Despite the admirable performance of the original SCHO algorithm, as a recently
introduced optimizer, performance improvements might be further improved though
hybridization. The potential of modifications is yet to be explored in literature. This
work incorporates two mechanisms to boost performance. Initially, population diver-
sity is boosted by incorporating quasi reflexive learning (QRL) [67] in to the original
algorithms initialization procedure. Initial 50% of agents are generated using standard
SCHO procedures. The latter half of agents are placed in the solution space as per
Eq 20.

108             V. Markovic et al.



Aqr
z = rand

(
lbz + ubz

2
, az

)
(20)

where lb and ub denote lower and upper bounds of the search space and rad denotes
a random value within the given interval.

As exploration is initially boosted by the introduced approach, exploitation
improvements are needed in later iterations. An adaptive parameter ψ is used to to
alternate between the default search mechanism of the SCHO algorithm and a mecha-
nism borrowed form the firefly algorithm (FA) [68]. The mechanisms is mathematically
formulates as per ??

Xi(t+ 1) = Xi(t) + β e−γ r2ij (Xj(t) − Xi(t)) + α ϵi(t), (21)

where β0 represents the attractiveness at r = 0. However, Eq. (21) is commonly
swapped for Eq. (22) to improve computational performance.

β(r) =
β0

(1 + γ × r2)
(22)

in this equation, Xi(t) denotes the current position of agent i at iteration t, and rij
represents the position of agent j at the same iteration t. The parameter β indicates
the separation between agents indexed as i and j, serving as a measure of their mutual
attraction. Termed the agent attraction coefficient, β governs their interaction. Addi-
tionally, γ signifies the light absorption coefficient, α regulates the level of randomness,
and ϵi(t) represents a stochastic vector

The apatite parameter is used to switch between the search mechanisms. A random
value is generated in range [0, 1]. Should this value exceed psi the FA is used. Otherwise
SCHO search is applied. The initial value of ψ is set to 0.96 and in each iteration
is it decremented by 0.4 as such exploration is encouraged in early, and exploitation
in later stages of the optimization. The modified algorithm is dubbed the Modified
SCHO and the pseudocode is presented in Alg 1.

Algorithm 1 MSCHO pseudocode.
Define ψ = 0.94
Initialize 50% of solutions
Apply QRL to the population
while do

Assess populataion using indicator and objective fucntions
Generate random value R from [0, 1]
if R > ψ then

Guide population updates using FA algorithm
else

Guide population updates using SCHO algorithm
Update ψ = ψ − 0.4

Return best solution

4 Experimental Configuration

To validate the introduced approach several optimizers are tested alongside the
introduced modified algorithm in a comparative analysis under identical conditions.
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Table 1 Objective function overall outcomes for PD detection.

Method Best Worst Mean Median Std Var

XG-MSCHO 0.792746 0.785259 0.789483 0.789541 0.002183 4.76E-06
XG-SCHO 0.788470 0.778079 0.784708 0.785262 0.002868 8.23E-06
XG-GA 0.786786 0.769365 0.780465 0.781286 0.004798 2.30E-05
XG-ABC 0.783429 0.766468 0.777411 0.778689 0.005048 2.55E-05
XG-BA 0.786941 0.772264 0.782908 0.783653 0.004291 1.84E-05
XG-SSA 0.786790 0.780219 0.783198 0.783120 0.002357 5.56E-06
XG-HHO 0.785410 0.779302 0.782395 0.782434 0.001721 2.96E-06
XG-WOA 0.787247 0.777768 0.782145 0.783119 0.002979 8.87E-06

Table 2 Indicator function overall outcomes for PD detection.

Method Best Worst Mean Median Std Var

XG-MSCHO 0.103630 0.107375 0.105264 0.105235 0.001092 1.19E-06
XG-SCHO 0.105770 0.110967 0.107653 0.107375 0.001434 2.06E-06
XG-GA 0.106611 0.115323 0.109773 0.109362 0.002399 5.76E-06
XG-ABC 0.108292 0.116775 0.111301 0.110661 0.002525 6.38E-06
XG-BA 0.106534 0.113871 0.108550 0.108177 0.002145 4.60E-06
XG-SSA 0.106611 0.109897 0.108407 0.108445 0.001179 1.39E-06
XG-HHO 0.107298 0.110355 0.108808 0.108787 0.000861 7.41E-07
XG-WOA 0.106381 0.111120 0.108932 0.108445 0.001490 2.22E-06

Algorithms included in the evaluation include the original SCHO algorithm as well as
other popular optimizers such as the GA [69] ABC [70] BA [71] SSA [72] HHO [73]
WOA [74]. Each algorithms is implemented under identical conditions with a pop-
ulation size of eight agents. The iteration limit is set to 10 iterations. Finally all
algorithms are independently implemented for this research with the default param-
eter taken form the source works that introduced them. Experiments are conducted
thought 30 independent runs.

The first layer of the optimization users the introduced optimizer to select LSTM
parameters and attain an accuracy of 50% when handling classifications. The final layer
of the LSTM consisting of 10 outputs is then used as the input of XGBoost to handle
final classification. This reduces computational times and increases overall accuracy of
the model. XGBoost parameters are optimized by metaheuristics and the final models
vaulted using standard classification metrics as well as Cohen’s kappa. Cohen’s kappa
is used as the indicator function while error rate (calculated as (1−Accuracy)). To test
the introduced methodology, a publicly available PD dataset is used [75] last accessed
05.04.2024 1. The initial 70% is relegated to model training, while the latter 30% for
testing.

5 Results

Objective function outcomes are provided in Table 1 followed by indicator function
outcomes in Table 2. The introduced optimizer produced models that outperform
competing optimizers demonstrating the best outcomes across the best, mean, median
as well as worst case executions. However, the HHO demonstrates the highest rate of
stability, despite not showcasing the best outcomes. Further insight in to algorithm
behaviour can be discerned in Figure 1 and Figure 2.

When considering distribution plots of the attained outcomes for both the indi-
cator and objective functions it can be observed that the solution attained by the
introduced optimizer outperform competing algorithms. The introduced algorithm

1https://pubmed.ncbi.nlm.nih.gov/16176368/
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showcases grater stability then the original while also demonstrates overall better out-
comes. The same can be observed in terms of indicator function. While the HHO
showcases the best stability overall, mediocre outcomes can be observed compared to
other optimizers.

Detailed metric comparisons are provided between the best constructed models in
Table 3. A clear dominance can be observed for the introduced algorithm attaining
the best outcomes across mos metrics, while matching performance in others. Further
details on the best model can be observed in Figure 3 where the confusion matrix and
PR curves for the best model are presented.

Finally, the parameter selections made for the best models are provided in Table 4.

6 Conclusion

Parkinsons disease is a progressive illness of the nervous system, most often affecting
older male individuals. Its roots lay in the disorder of extrapyramidal tracts, more
specifically bodies in the brain known as substantia nigra, lentiform nucleus, caudate
nucleus, and ruber nucleus. The condiction results in higher cholinergic activity of the
brain, which is further connected to the decline in cognitive ability of the patients,
issues with gait, sleeping disorders, psychiatric symptoms of the disease as well as
olfactory difficulties. Early detection is vital for improving patient outcomes. While
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Table 3 Detailed metric comparisons of the best performing models generated by
each optimizer.

Method Metric Normal PD Accuracy Macro avg. Weighted avg.

XG-MSCHO precision 0.889911 0.903006 0.896370 0.896458 0.896474
recall 0.904091 0.888686 0.896370 0.896388 0.896370
f1-score 0.896945 0.895789 0.896370 0.896367 0.896365

XG-SCHO precision 0.885243 0.903588 0.894230 0.894416 0.894438
recall 0.905316 0.883196 0.894230 0.894256 0.894230
f1-score 0.895167 0.893276 0.894230 0.894222 0.894219

XG-GA precision 0.887029 0.899923 0.893389 0.893476 0.893491
recall 0.901027 0.885788 0.893389 0.893407 0.893389
f1-score 0.893973 0.892800 0.893389 0.893386 0.893385

XG-ABC precision 0.881002 0.902963 0.891708 0.891982 0.892008
recall 0.905163 0.878317 0.891708 0.891740 0.891708
f1-score 0.892919 0.890469 0.891708 0.891694 0.891691

XG-BA precision 0.885071 0.902181 0.893466 0.893626 0.893646
recall 0.903784 0.883196 0.893466 0.893490 0.893466
f1-score 0.894330 0.892587 0.893466 0.893459 0.893457

XG-SSA precision 0.883787 0.903422 0.893389 0.893605 0.893628
recall 0.905316 0.881519 0.893389 0.893418 0.893389
f1-score 0.894422 0.892336 0.893389 0.893379 0.893377

XG-HHO precision 0.886525 0.899040 0.892702 0.892782 0.892797
recall 0.900107 0.885331 0.892702 0.892719 0.892702
f1-score 0.893264 0.892133 0.892702 0.892699 0.892697

XG-WOA precision 0.884990 0.902587 0.893619 0.893789 0.893810
recall 0.904244 0.883044 0.893619 0.893644 0.893619
f1-score 0.894513 0.892708 0.893619 0.893611 0.893609

support 6527 6558
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Fig. 3 Best MSCHO constructed model PR curve and confusion matrix.

there is no effective way for revering the neurological damage, treatment can slow down
progression. However, patients often only seek treatment once symptoms significantly
worsen and impair everyday function. Therefore early detection is vital. This work
explores combining LSTM with XGBoost classifiers in order to form a early detection
system form observing patient gait data form a non-invasive shoe mounted sensor.
A modified optimizer is introduced to improve classification outcomes that attained
an accuracy of 0.896370 outperforming other contemporary optimizers tested under
identical conditions.

Future works will focus on addressing some of the limitations of this study. The
limited availability of computational resources constrains the number of optimizes
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Table 4 Parameter selections made by each optimizer for the respective best
performing models.

Method Learning Rate Min Child W. Subsample Col by Tree Max depth Gamma

XG-MSCHO 0.541410 1.000000 0.706146 1.000000 10 0.344000
XG-SCHO 0.481746 2.342235 0.956147 0.958426 10 0.315849
XG-GA 0.767225 3.064870 0.867326 1.000000 10 0.033604
XG-ABC 0.428181 4.666781 0.739713 1.000000 10 0.498486
XG-BA 0.520161 6.153415 1.000000 0.886067 10 0.443784
XG-SSA 0.525032 7.702807 0.800874 1.000000 10 0.463654
XG-HHO 0.705189 2.202930 0.876996 1.000000 10 0.000000
XG-WOA 0.631316 1.000000 1.000000 1.000000 10 0.551453

that can be evaluated in a single work. Additionally, smaller population sizes and lim-
ited number of iterations is considered during the optimization. Additionally, further
applications of the introduced model will be explored in other fields.
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[16] Bernardo, L.S., Damaševičius, R., Ling, S.H., Albuquerque, V.H.C., Tavares,
J.M.R.S.: Modified squeezenet architecture for parkinson’s disease detection
based on keypress data. Biomedicines 10(11) (2022) https://doi.org/10.3390/
biomedicines10112746

[17] Hashim, F.A., Neggaz, N., Mostafa, R.R., Abualigah, L., Damasevicius, R.,
Hussien, A.G.: Dimensionality reduction approach based on modified hunger
games search: case study on parkinson’s disease phonation. Neural Com-
puting and Applications 35(29), 21979–22005 (2023) https://doi.org/10.1007/
s00521-023-08936-9
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