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Abstract. SQL injection attacks are still considerable threat to the
web applications and organizations security in general, giving the at-
tackers the opportunity to cause execution of arbitrary SQL queries sent
through user input fields. Traditional defensive mechanisms to mitigate
these threats often rely on static rules that may not adapt efficiently
to the ever-evolving attack patterns. Recently, machine learning models
are regarded as very promising to detect and prevent these attacks by
enhancing the strenght of data-driven methods. This research proposes
AdaBoost classifier to mitigate SQL threats. An altered variant of whale
optimization algorithm has been introduced and employed to optimize
the hyperparameters of the AdaBoost for this challenging problem. The
outcomes were compared to the scores attained by other powerful opti-
mizers. The suggested method achieved supreme results, with the highest
obtained accuracy of slightly over 98.9%, exhibiting exciting potential in
this field.

Keywords: SQL injection · BERT · AdaBoost · Metaheuristics opti-
mization · Swarm intelligence · WOA.

1 Introduction

Structured Query Language (SQL) is used to work with data in a relational
database management system (RDBMS). Its application is in the handling of
structured data, where there are relationships between variables and entities.
The language was designed by Donald D. Chamberlin and Raymond F. Boyce of
IBM back in the 1970s [19]. It is designed to manipulate the data stored in the
database with an intuitive approach. Its popularity and application to this day
lie in its simplicity and efficiency, which are possible with a single command. It
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has been developed over the years and has been followed by numerous standards
from ANSI and ISO since 1986 and 1987 [23]. It has experienced popularity and
its ubiquity in the management of relational databases, but due to its status it is
prone to certain vulnerabilities, primarily in SQL queries due to backward com-
patibility, which is often a problem in the security of the databases themselves.

Artificial intelligence (AI), with an emphasis on natural language processing
(NLP), can contribute to improving SQL security, primarily on databases, com-
plex query automation, identifying potential security risks in queries, but also
providing an interface for interacting with databases. The integration of AI and
SQL is certainly a challenge that will become more and more common, primar-
ily due to the possibility of automation but also the improvement of security
standards, but there are also numerous challenges [41]. First of all, specific set-
tings of hyperparameters, which are present in deep learning, some of the basic
ones such as learning speed, number of layers of neural networks, batch size,
but also others that have an impact on improving the efficiency of the model
itself. This should be accompanied by extensive testing and the use of advanced
optimization algorithms.

The optimization of hyperparameters can be improved and facilitated by
the application of metaheuristics based on algorithms that draw their inspira-
tion from processes in natural environments, first and foremost genetic algo-
rithm [44], red fox algorithm [45], particle swarm [60] and many others should
be highlighted. The optimization of hyperparameters can be improved and facil-
itated by the application of metaheuristics based on algorithms that draw their
inspiration from processes in natural environments.

Their ability is to efficiently search large solution spaces, which results in
optimal hyperparameter values. Metaheuristic parameters are classified as NP-
hard, finding the optimal solution grows exponentially with its complexity. This
further complicates the integration of AI, but also the existing solutions must not
disrupt the existing SQL communication with the bases, adhering to standards
and protocols. Efficient and effective use of AI in the SQL environments itself is
essential for only safe integration.

2 Related Works

The connection of artificial intelligence (AI), through the fields of natural lan-
guage processing (NLP) or machine learning, as already mentioned, can improve
the security of the system itself, but also automate queries, however, it can also
be used in the identification of potential risks. The biggest challenges are cer-
tainly with the optimization of hyperparameters of deep learning, but also with
the application of the metaheuristic algorithms themselves.

In this scientific paper [1], the SQL vulnerability is described, it is not a new
form of attack, and machine learning algorithms were used to detect sk injection
attacks on websites. A total of seven machine learning algorithms (Naive Bayes,
Neural-Network, SVM, Random-Forest, KNN, and Logistic Regression) were
used, and their learning was based on SQL queries. Naive-Bayes proved to be
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the best solution where the results were 0.99 accuracies, 0.98 precision, 1.00
recall, and a 0.99 f1-score.

The authors of this scientific paper [2], focused on the detection of SQL
injections with the help of a probabilistic neural network (PNN), where a meta-
heuristic algorithm was used to optimize BAT. This study is based on a dataset
of 600 SQL injections and 3500 normal queries. The results of this study are
accuracy 99.19 percent, precision of 0.995 percent, a recall of 0.981 percent, and
an F-Measure of 0.928 percent.

2.1 Bert

Bidirectional Encoder Representations from Transformers, presented in 2018(BERT) [24],
and based on the paper "attention is all you need" [59], relies on the attention
mechanism to interpret text and symbolism of sentences. It was patented by a
team of scientists and researchers from the company Google, and today a large
number of modern NLP applications, which include search, speech recognition
and translation, are based on it.

The architecture and mechanical basis of BERT is based on transformers,
which work according to the system of attention, which gives it the ability to
change the focus on different segments of input data in the processing process
itself. It contributes to the understanding of the meaning of the words in the
sentence. Transformers are based on multiple heads of attention, so they process
parts of the sentence in parallel, which increases the speed and efficiency of
processing.

It has the ability to successfully process natural language in both directions.
It is crucial for a deeper understanding of the language itself. Which is revo-
lutionary because previous models were based on processing language in one
direction. Using the "masked language model" (MLM) concept, training takes
place by randomly hiding words in a sentence and then predicting the hidden
words based on the content. All this helps him learn to understand language
patterns and structures.

Bert has the ability to use the concept of transfer learning, it can be trained
on a large dataset and then adjusted for special tasks. Its application in the field
of NLP is vast, from text classification, text summarization, question answering,
and many others. Because of all that, today BERT is offered as an ideal solution
for many tasks of this type. With its ability to understand and interpret, it
opened a new chapter in the field of intelligent systems that can communicate
and understand human language.

2.2 Ada Boost

In the last decade, we have witnessed a constant growth in the use of machine
learning. There are numerous alogrithms that have disproportionate contribu-
tions depending on the area in which they are used and on which examples.
Where AdaBoost (Adaptive Boosting) stands out as a bridge between numerous
optimization algorithms, its role is to connect weak algorithms into a group,
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resulting in one strong algorithm. It was developed by Freund and Schapire
in 1995, and its application today is constantly increasing. Weak classifiers are
considered to be those whose performance ranks slightly better than random
guessing. Through each iteration, AdaBoost adds weak classifiers to the final
model, where it balances the weight a classifier receives based on its accuracy.

When there is a classification error, the classification weights are decreased,
while good classifications are rewarded with increased weights. This is the equa-
tion for the error of a weak classifier: 1:

εt =

∑N
i=1 wi,t · I(ht(xi) 6= yi)∑N

i=1 wi,t
(1)

where εt is the weighted error of the weak learner t-th is the iteration, N how
many training samples, the weight value i-th instance in the t-th. Assumption
of weak learner i-th case in the t-th round shown by the expression ht(xi). The
actual label of the i-th instance that points to the variable yi. Here, the function
I(·) returns 0 if the case is false, and 1 if the case in the parentheses is true.

When the weights are achieved, we get new classifiers and then the process
of modifying the weights themselves takes place again. For the result of accurate
classifiers, a large group of classifiers is required. A linear model is a combination
of sub-models with their results. The equation for calculating the weight of the
classifier in the ensemble:

αt =
1

2
ln

(
1− εt
εt

)
(2)

Where the weight (αt) changes for each weak student in the total set. It
denotes the contribution of the weak learner, in the mixed exposure model, and
rests on the weighted error(εt). The following equation is used to update the
weights:

wi,t+1 = wi,t · exp (−αt · yi · ht(xi)) (3)

where yi marks the true mark of the i-th instance, ht(xi) represents the predic-
tion result of the weak student i-th instance in the t-th round, and wi,t denotes
the weight, i-th instance in the t-th round.

AdaBoost plays a significant role in the field of machine learning. The ad-
vantages of adaboost are that bias and variance are reduced, which again leads
to robust models. Its disadvantage is sensitivity to noisy data and exceptions,
which can result in its adaptation in certain scenarios.

2.3 Metaheuristics algorithms

Taking inspiration from the organisms that thrive in vast groups and gaining
advantage from collective behavioral patterns, swarm intelligence methods ex-
hibit high efficacy in case a sole individual can not complete the assignment on
its own. The family of swarm techniques achieved significant success for tackling
NP-hard challenges.
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These algorithms have demonstrated excellent capabilities in solving a broad
range of real-life problems. Prominent application examples include medicine [38,
62, 11, 33, 40, 32, 66], and credit card frauds identification [29, 46]. Moreover, swarm
algorithms have proven themselves in cloud computing problems [49, 9], plant
classification[15], predicting green energy production [57, 6], economic problems
[34, 54, 56, 13, 52, 47], enhancing the audit opinion [58], defect identification in
software testing [68], feature selection [7, 18, 30, 65], computer security, phish-
ing and intrusion detection [64, 3, 53, 36, 51, 16, 35, 12], environmental monitoring
and pollutants tracking [37, 31, 8, 42], as well as improving wireless sensor net-
works optimization [63, 5] and general optimization of machine learning models
[10, 55, 14, 25, 50, 67, 4, 26, 20].

3 Methods

3.1 Whale Optimization Algorithm

The whale optimization algorithm (WOA) is a metaheuristic optimization method
that was proposed in 2016[43]. It is based on the social conduct of hump-back
whales. WOA leverages a hunting method described as the bubble-net strategy,
which is modeled after how whales hunt, to solve optimization problems. Since
its launch, several challenges have been used to evaluate its optimizing skills.
When hunting, humpback whales collaborate by employing the bubble-net tech-
nique. The whales swim underneath their pray fish, releasing bubbles as they go
and swimming in circles that approach the surface of the water. Consequently,
the prey gets trapped in the bubble ring and is forced to rise to the surface,
which restricts its ability to escape [43].

Whales use the net of bubbles assault technique and imitate circling move-
ments to surround their prey. On the other hand, exploration simulates a pseudo-
random hunt for possible targets. WOA operates as a population-based algo-
rithm, where the most promising solution (i.e., the option with the highest fit-
ness) represents the prey and the rest possibilities in the population represent
individual whales. Every contender looks around throughout exploitation, pro-
gressing to the best available option. Subsequently, upon obtaining the fitness
values of the solutions, the solutions adjust their locations based on the prevail-
ing optimal choice. Eqs. (4) and (5) illustrate this:

~D = | ~C · ~X∗(t)− ~X(t)| (4)

~X(t+ 1) = ~X∗(t)− ~A · ~D, (5)

Here, ~X(t) and ~X∗(t) denote conceivable results ~A and ~C imply the coefficient
vectors, and the currently leading solution for the moment t. The element-wise
multiplicator is expressed as the operator ·.

The following formulas are used to compute the vectors ~A and ~C

~A = 2~a · ~r − ~a (6)
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~C = 2 · ~r. (7)

In the range [0, 1], ~r refers to a pseudo-random vector drawn from a nor-
mal distribution, and ~a denotes a vector that diminishes linearly from 2 to 0
throughout the course of the iterations.

All prospective contenders ~X are continuously shifted toward a neighbor-
hood of current best alternatives, ~X∗, after being corrected by vector ~r for the
coefficients ~A and ~C.

As can be observed in Eq.(8), the air bubble rings are linearly reduced α
beginning at 2 and approaching 0 in each repetition.

~a = 2− t 2

maxIter
, (8)

the present iteration and the top number of iterations are marked as t and
maxIter.

The gap between the globally favored option ( ~X∗(t)) and the current choice
for solution ( ~X(t)) being calculated signals the start of the spiraling movement.
Next, assuming Eq. (9), the altered location of option ( ~X(t+ 1)) is obtained:

~X(t+ 1) = ~D′ · ebl · cos(2πl) + ~X∗(t), (9)

Here, ~D′ reflects the space that remains after dividing the i-th feasible choice
from the globally optimal option, which is determined by applying the formula
~D′ = | ~X∗(t) − ~X(t)|. The fixed value b is used to benchmark the logarithmic
spiral’s form. Finally, the pseudo-random number l from the range (−1, 1) is
presented.

According to Eq. (10), the circular action is able to be mathematically de-
scribed as alternating the two mechanisms with equal probabilities p for each
iteration.

~X(t+ 1) =

{
~X∗(t)− ~A · ~D , if p < 0.5
~D′ · ebl · cos(2πl) + ~X∗(t) , if p ≥ 0.5

. (10)

In the exploration step, instead of updating the global best, every participant
updates its position based on where a random solution is located. In the event
that the generated random numbers are more than or equal to (|A| ≥ 1), the ~A
vector allows the people to be directed to a random solution. This is shown by
the equation that follows: Eq. (11):

~X(t+ 1) = ~Xrnd(t)− ~A · ~D, (11)

~D marks how much space there is from the i-th possibility to the random solu-
tion rnd in iteration number t, computed as ~D = | ~C · ~Xrnd(t)− ~X(t)|.
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3.2 Adaptive genetic WOA

Despite generally good performance, WOA still holds untapped potential for
optimization. While extensive analysis using standard CEC functions [21] has
yielded promising results, the algorithm might be improved by prioritizing ex-
ploration action during beginning stages, while prioritizing exploitation in later
phases. To address this, this study integrates mechanisms based on the genetic
algorithms (GA), firefly algorithms (FA), and quasi-reflexive learning (QRL) [17]
to enhance performance.

The initial enhancement focuses on boosting exploration even before com-
pleting the first iteration of the algorithm. This is accomplished by integrating
QRL into the initialization process. Specifically, the first half of the population
is generated making use of the conventional mechanisms of the original WHO
algorithm. However, the other portion of agents is created as quasi-reflexive op-
posites of the current agents, as outlined in Eq. 12.

Aqrz = rand

(
lbz + ubz

2
, az

)
(12)

here the lb and ub mark minimum and maximum constraints of the search scope
while rad indicates a random value in the range.

Additional upgrades in convergence are gained when the algorithm is mixed
with the FA [61]. The firefly search mechanism is depicted in Eq. (13)

Xi(t+ 1) = Xi(t) + β e−γ r2ij (Xj(t) − Xi(t)) + α εi(t), (13)

in which β0 stands for the allure at r = 0. Eq. (13) is often replaced by Eq. (14)
for better practical use.

β(r) =
β0

(1 + γ × r2)
(14)

here, Xi(t) marks position currently occupied by agent i during iteration t,
while rij stands for the position of agent j during the t iteration. The variable β
denotes the separation of agent i from agent j, and shows the amount of shared
attraction. Marking the agent attraction coefficient, β regulates the interaction.
Next, γ is the coefficient of light absorption, α controls the randomness level,
and lastly εi(t) stands for a stochastic vector.

After starting, the algorithm progressively explores potentially good options
within the search spaces through two stages. The first stage occurs during the
initial half of iterations, focusing on aggressively exploring the search space with
larger agent jumps. To enable contributions from both algorithms to optimiza-
tion, a arbitrary number in the extent of [0, 1] is generated for ψ, while a pre-
determined empirical value is assigned to the introduced parameter θ = 0.8. In
case of ψ > θ, the FA search is activated; otherwise, the default search employed
by the WHO is utilized. Following each iteration, θ is decremented by 0.4, in-
creasing the likelihood of utilizing the FA search in subsequent iterations. This
way, the hybrid algorthm can keep convergence in later stages a priority while
gaining benefits form the initial exploration boost added by QRL.
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Thus, the algorithm resulting from this modification should be called Hybrid
Adaptive WOA (HAWOA). For the pseudocode please see Algorithm 1.

Algorithm 1 Introduced modified algorithm (AGWOA) pseudocode.
Produce 1

2
of potential solutions in S

Apply QRL to S to generate remaining solutions
Set θ = 0.8
while T > t do

Apply objective evaluation to S
Select an arbitrary number ψ
if ψ > θ then

Apply FA search to S
else

Apply WOA search to S
end if
Update adaptive parameter as θ = θ − 0.4

end while
return Best attained solution

4 Simulation Setup

Dataset for SQL injection attacks identification, used for the simulations in this
manuscript, is openly available at https://www.kaggle.com/datasets/sajid576/sql-
injection-dataset. It is comprised of the raw SQL queries and label with values
0 (non-malicious) and 1 (malicious). 70% of dataset has been used for training,
while remaining 30% was dedicated to testing. Adaboost hyperparameters cho-
sen for optimization, along with corresponding search intervals included number
of estimators [10, 50], depth [1, 10] and learning rate [0.1, 2].

The AdaBoost model was tuned by introduced AGWOA metaheuristics. The
experimental evironment was developed in Python, along with common set of
libraries dedicated to machine learning, like scikit-learn, scipy, numpy, pandas
and seaborn. The performance of the proposed AdaBoost tuned by AGWOA
algorithm (short AB-AGWOA) has been compared to cutting-edge algorithms
that included baseline WOA, GA [44], ACB [39], HHO [27] , RFO [48] and
COA [28]. All algorithms were configured with six solutions in the population,
8 iterations per run, and 30 separate executions.

Since SQL injection dataset is not balanced, the authors opted for the Cohen’s
kappa metric κ as the fitness function required to be maximized [22], which may
be obtained by:

κ =
co − ce
1− ce

= 1− 1− co
1− ce

(15)

where observed and expected results vectors are labeled as co and ce. This mea-
surement takes into account the class imbalance, consequently being capable of
providing more robust predictions than just simply observing accuracy.
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5 Experimental outcomes

The simulation results regarding the Cohen’s kappa (objective) and classification
error (used as the indicator function) are summarized in Tables 1 and 2. The
supreme outcomes in every category are shown in bold font. The most superior
model was produced by the suggested AGWOA method, and achieved supreme
outcomes by finishing first in all categories observed for both Cohen’s kappa and
classification error rate. Other metaheuristics algorithms have also attained solid
outcomes, finishing closely behind the AGWOA algorithm.

Figure 1 depicts the violin and box plots of the objective function (Cohen’s
coefficient) across thirty separate runs. From the graphs, it is obvious that the
introduced AGWOA attains remarkable stability, in other words in all indepen-
dent runs the results were very close to the result obtained in the best run.
It may also be highlighted that the HHO finished second for the best metrics,
however, it had the lowest stability, affecting the mean and median scores.

Next, Fig. 2 provides insight into the swarm plots of fitness and indicator
functions, presenting the positions of the individuals in the populace of each
algorithm within the last round of execution of the best run. Again, AGWOA
exhibited remarkable stability, where nearly all solutions were concentrated in
the near proximity of the best individual. HHO also exhibited admirable swarm
plot in its best run. Fig. 3 puts forward the convergence diagrams of the objec-
tive and indicator functions during the best runs of each regarded metaheuristics.
Suggested AGWOA once again yielded superior performance, exhibiting excel-
lent convergence capabilities that indicate the ability of the algorithm to avoid
local minimum traps that could hinder the performance in case of premature
convergence, as exhibited by other algorithms (most notably GA and HHO).

Method Best Worst Mean Median Std Var
AB-AGWOA 0.976358 0.972915 0.974419 0.974144 0.001330 1.77E-06
AB-WOA 0.975357 0.964537 0.970879 0.971374 0.003455 1.19E-05
AB-GA 0.973936 0.969393 0.972078 0.972189 0.001658 2.75E-06
AB-ABC 0.972925 0.967015 0.970932 0.971843 0.002121 4.50E-06
AB-HHO 0.976060 0.954213 0.967598 0.970326 0.007414 5.50E-05
AB-RFO 0.972575 0.965884 0.971090 0.972196 0.002382 5.67E-06
AB-COA 0.974626 0.962755 0.970565 0.971832 0.003899 1.52E-05

Table 1. SQL injection detection optimized model overall Cohen’s kappa (objective
function) outcomes.

Detailed evaluations of the scores attained by the top-produced models cre-
ated by every metaheuristics are shown in Table 3. The suggested AB-AGWOA
method provided the supreme results, leading the charts in almost every score
tracked in the simulations. HHO was the only method able to attain some bet-
ter scores, namely for the precision on the normal class, recall for the injection
class, and macro average recall. Aiming to support the replication of the simu-
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Fig. 1. Cohen’s kappa coefficient violin and box plots for all regarded metaheuristics
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Fig. 2. Swarm plots of both Cohen’s kappa and classification error
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Method Best Worst Mean Median Std Var
AB-AGWOA 0.010996 0.012613 0.011912 0.012047 0.000624 3.89E-07
AB-WOA 0.011481 0.016494 0.013556 0.013341 0.001599 2.56E-06
AB-GA 0.012128 0.014230 0.012991 0.012937 0.000774 5.99E-07
AB-ABC 0.012613 0.015362 0.013530 0.013098 0.000987 9.73E-07
AB-HHO 0.011158 0.021345 0.015093 0.013826 0.003453 1.19E-05
AB-RFO 0.012775 0.015847 0.013449 0.012937 0.001098 1.21E-06
AB-COA 0.011805 0.017303 0.013691 0.013098 0.001805 3.26E-06

Table 2. SQL injection detection optimized model overall classification error (indica-
tor) outcomes.

lation outcomes, therefore facilitating the reproducibility, the chosen collections
of AdaBoost hyperpamareters are listed in Table 4.

Table 3. Detailed metric comparisons among the top performing models.

Approach Score Normal Injection Accuracy Macro avg Weighted avg
AB-AGWOA precision 0.987261 0.992032 0.989004 0.989647 0.989029

recall 0.995376 0.978175 0.989004 0.986776 0.989004
f1-score 0.991302 0.985055 0.989004 0.988179 0.988988

AB-WOA precision 0.989247 0.987270 0.988519 0.988258 0.988515
recall 0.992551 0.981667 0.988519 0.987109 0.988519
f1-score 0.990896 0.984460 0.988519 0.987678 0.988512

AB-GA precision 0.986990 0.989399 0.987872 0.988195 0.987882
recall 0.993835 0.977739 0.987872 0.985787 0.987872
f1-score 0.990401 0.983535 0.987872 0.986968 0.987857

AB-ABC precision 0.988226 0.985946 0.987387 0.987086 0.987382
recall 0.991780 0.979921 0.987387 0.985851 0.987387
f1-score 0.990000 0.982925 0.987387 0.986462 0.987379

AB-HHO precision 0.990005 0.986854 0.988842 0.988429 0.988838
recall 0.992294 0.982977 0.988842 0.987635 0.988842
f1-score 0.991148 0.984911 0.988842 0.988030 0.988838

AB-RFO precision 0.987973 0.985940 0.987225 0.986957 0.987220
recall 0.991780 0.979485 0.987225 0.985633 0.987225
f1-score 0.989873 0.982702 0.987225 0.986288 0.987216

AB-COA precision 0.986996 0.990274 0.988195 0.988635 0.988211
recall 0.994349 0.977739 0.988195 0.986044 0.988195
f1-score 0.990659 0.983967 0.988195 0.987313 0.988180
records 3893 2291

Lastly the PR (precision-recall) curve and confusion matrix of the AdaBoost
model optimized by suggested AGWOA are depicted in Fig. 4. Summarizing
the overall simulation outcomes, it is possible to conclude that the AB-AGWOA
model is very capable to handle the SQL injection task. It can also be concluded
that other contending optimizers also performed very well in this challenge.
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Table 4. Best constructed model parameters selected by each optimizer.

Methods Number of estimators Depth Learning rate
AB-AGWOA 5 5 0.585448
AB-WOA 5 5 0.980577
AB-GA 5 5 0.597019
AB-ABC 5 5 1.129098
AB-HHO 5 5 0.630079
AB-RFO 5 5 1.246535
AB-COA 5 5 0.705048
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6 Conclusion

This research examined the capabilities of AdaBoost model tuned by metaheuris-
tics algorithms for the SQL injection attacks identifications. SQL injection is
a considerable threat, that may compromise the integrity of any institution,
leading to financial losses, decrease of customer satisfaction, and ultimately
even to the collapse of the entire organisation. AdaBoost has been optimized
by an enhanced variant of famous WOA metaheuristics, and given the task
to identify SQL injection threats. The simulation outcomes were compared to
few other contending cutting-edge metaheuristics, and the suggested method
achieved supreme results, as the top-constructed model obtained the accuracy
of approximately 98.9%.

The drawbacks of the presented research are related to the high computa-
tional requirements of the simulations, resulting in lower number of solutions and
iterations per run, and also limiting the count of metaheuristics algorithms eval-
uated in the comparative analysis. Moreover, the hyperparameters’ search space
has also been narrowed. In the future, we will aim to overcome these limitations
if additional computing resources became available. The introduced AGWOA
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shall also be validated on other optimization challenges, however, it is outside of
this paper’s scope.
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