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Abstract. This paper operationalizes the general unfolding model for poly-

tomous responses under the condition of equal-distances between the successive 

thresholds of an item.  Using the joint maximum likelihood estimation (JML), 

two algorithms are proposed for parameter estimation, each with a different tech-

nique to reduce the bias in the estimates produced by the inconsistency of the 

JML. One algorithm is a direct extension of the algorithm described in [15] in 

which a correction is applied on the mean latitude of acceptance parameter. Sim-

ulation studies show the efficiency of the algorithms in various situations. An 

analysis of real data is included for illustrative purposes. 

Keywords: polytomous responses, unfolding models, joint maximum likeli-

hood estimation, weighted likelihood estimation. 

1 Introduction  

Thurstone [1] introduced his rigorous method of scaling for the measurement of atti-

tude. This method involved two stages. In the first stage, the statements are located by 

judges on a continuum which is often called a scale. As the result, each of the statements 

is assigned a scale value which may vary from negative, through neutral, to positive on 

the scale. In the second stage, the measurement of attitude is obtained by the mid-point 

principle, which takes the mean or median of the scale values of the statements that a 

person agrees to as the attitude value of the person on the scale.  Although Thurstone’s 

scaling principles were widely accepted as rigorous, the most popular method for the 

measurement of attitude in the last 70 years was not Thurstone’s, but Likert’s [2] sum-

mated rating scaling. In fact, after reversing the responses on the negative items, Lik-

ert’s scaling uses a cumulative process characterized by monotonic response functions. 

The total scores of persons across items are used as the measures of attitudes.  In con-

trast, the mid-point principle, which is used in the second stage of the Thursone’s scal-

ing, implies a single-peaked response function which characterizes what is often termed 

an unfolding process. These two response processes are not compatible [3] [4]. 

 

In the last decade or so, developments in computer technology and psychometric 

models have made the application of single-peaked response functions more practical, 

thus eliminating the need for the first stage of the Thurstone’s procedure, even when 
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single-peaked response processes are employed.  The analyses of the responses imme-

diately give the locations of both the persons and the statements, and therefore retain 

the features of Thurstone scaling.  Various commercial packages for analyzing dichot-

omous responses with unfolding models are available (e.g. [5] [6]). Specific probabil-

istic unfolding models for polytomous responses have also been proposed ([3]; [7]; [8]; 

[9] and [10]), with accompanying software. 

 

Luo [11] introduced a general class of probabilistic unfolding models for polytomous 

responses with the rationale of the rating formulation [12]. The feature of this class is 

that in addition to the item parameter, each item has a series of thresholds. These thresh-

olds define intervals within which the most likely response is the corresponding cate-

gory. 

 

In [13], the form of the general class of unfolding models is expressed as 

  (1) 

 

where n  is the location parameter for person n, i  is the location parameter of 

item i , and 
ik

 
(  0) is the k -th threshold for item i . The functions { k } was 

termed the operational functions, and 𝜆𝑛𝑖 is the normalization factor 

 𝜆𝑛𝑖 = ∑ ∏ 𝛹𝑙(𝜌𝑖𝑙)∏ 𝛹𝑙(𝛽𝑛 − 𝛿𝑖)
𝑚𝑖
𝑙=𝑘+1 .𝑘

𝑙=1
𝑚𝑖
𝑘=0  (2) 

 

An equivalent expression of Equation (1) is 
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The set of probabilities { mkik ,...,1, = } have the form of a probabilistic unfold-

ing model for dichotomous responses, thought these dichotomous responses are latent 

and not observed. The probabilistic functions of (1) and the curves of corresponding 

{ mkik ,...,1, = } in (3) are shown in Figure 1. 
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Fig. 1. Probabilistic functions of the general form for unfolding models for poly-

tomous response (in solid lines) with the probabilistic functions of the latent dichoto-

mous variables (In broken lines). 

 

Figure 1 shows that if thresholds are in their serial order, 

imikii   ......21
, then (

imiimi  +− , ) is the interval within 

which the response category m has the greatest probability. That is, for a person n  

with location ),( imiimin  +− , the response ( mxni = ) is the most likely. 

For mk  , ),( )1( ikikii  −− −  and ),( )1( −++ kiiiki  are the two inter-

vals in which the response category k has the greatest probability. That is, for a person 

n  with location ),(),( )1()1( −− ++−− kiiikiikikiin  , the re-

sponse ( kxni = ) is the most likely. 

 

A simpler case of model (1) is that all operational functions involved are identical 

(denoted as without a subscript) and the adjacent thresholds of an item have an equal 

distance: 

 

 ;1,...,1         ,)1( −==− + iiliil ml  (4) 

 

Or 

 

 ;,...,1         ,)1( iiiil mllm =−+=   (5) 
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where 0i . 

 

It is anticipated that the investigation of the equi-distant unfolding model above 

would lead to further understanding of the general class of probabilistic unfolding mod-

els for polytomous responses. In addition, development of parameter estimation proce-

dures for equi-distant unfolding model itself would be useful for analyzing the data 

where a single operational function and equi-distant thresholds are justified. Similar 

investigation in the family of Rasch models were studied by [14]. 

 

The development of parameter estimation procedures of the model above is to have 

three main steps. First, it extends the joint maximum likelihood (JML) algorithm for 

the general dichotomous unfolding model [15] to the polytomous equi-distant unfold-

ing model described above to derive the solution equations. Second, with the same set 

of solution equations, it operationalizes two alternative procedures for minimizing the 

bias of the estimates, which is known to exist due to the inconsistency of the direct 

application of the JML. Third, because the solution equations derived are general, it 

examines the efficiencies of these two procedures with respect to two specific models 

with different operational functions, namely the hyperbolic cosine model (HCM), in 

which ),cosh()( tt =  and the simple square logistic model (SSLM), in which 

)exp()( 2tt = . This examination is carried out with a series of simulated data sets 

and a real data set. 

 

The rest of this paper is structured as follows.  Section 2 begins with the expression 

of the equi-distant unfolding model, followed by a rationale for using the JML approach 

among other estimation approaches available. The solution equations with the JML ap-

proach are then derived, and two algorithms are proposed for parameter estimation. 

Though both of the algorithms use a two-stage approach with the same set of solution 

equations, the techniques for controlling bias in the estimates are different. One algo-

rithm is a direct extension of the algorithm proposed in [15] and [16] , in which a cor-

rection procedure is applied to the estimate of the mean latitude of acceptance parame-

ter to reduce the bias caused by the inconsistency of the JML, while the other prevents 

the accumulation of the bias in the estimation cycles by means of the weighted likeli-

hood estimation of person locations ([17] , [18] and [19]).  The results of simulation 

studies for the comparison of these two algorithms are presented in Appendix E. Ap-

pendix F provides an illustrative example with real data, in which the results from the 

two operational functions and algorithms are compared. A discussion with considera-

tion of some issues for further investigation is also provided. As the focus of this paper 

is on efficient estimation procedures, the issue of the test fit, which is at least equally 

t.important for practical purposes, is left for further development. 
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2 Estimation procedure 

2.1 The equi-distant unfolding model.  

 

To emphasize that items may have different maximum scores and different distances 

between the thresholds, the maximum score and the distance between the adjacent 

thresholds of item i are denoted as im  and i  respectively. The condition of the equi-

distant unfolding model can be expressed in terms of i  as 

 

 ;1,...,1         ,)1( −==− + iiliil ml  (6) 

 

 .,...,1         ,)1( iiiil mllm =−+=   (7) 

 

The parameter 0i  is termed the item unit as it specifies the distance between 

the adjacent thresholds. Then the equi-distant unfolding model can be written as 
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where 
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2.2 The JML verses MML estimation procedures. 

 

 

Historically, the JML was used very early in the study of latent trait theory [20] 

(Birnbaum, 1968) with cumulative response models ([21]and [22]).  The advantage of 
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this procedure is that it is straightforward to implement with quick convergence and 

does not require any assumptions about the person distribution. The well known weak-

ness of the JML is its inconsistency with a relatively small number of items [23]. 

 

The marginal maximum likelihood (MML) is another common procedure for the 

parameter estimation in Item Response Theory ( [24]; [25] and [26]). In the context of 

unfolding, [9] used the MML with the EM algorithm in estimating the item parameters 

of the generalized graded unfolding model (GGUM), with person parameters in turn 

derived from an expected a posterior technique. On the other hand, [15] used the JML 

to estimate the parameters for the general unfolding models for dichotomous responses. 

In order to compensate for the effect of inconsistency, a correction procedure on the 

mean of the item units was proposed. The generalization of this procedure to the case 

of polytomous responses of (4) is one of the methods studied in this paper. 

 

2.3 The JML Solution Equations. 

 

For model (8), the joint likelihood function takes the form as 
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Then 
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The solution equations derived in Appendix A are 
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The conventional constraint on the item locations is applied as 

 

 0
1

=
=

I

i

i  (13) 

 

When the maximum scores are 1=im , the solution equations of (12) specialize to 

those derived in [15] for the general dichotomous unfolding models. The details of the 

solution equations for special cases are in Appendix B. 

 

The derivation above assumes that there are no missing responses. That is, all per-

sons give responses to all items. However, if person n does not give a response to item 

i , it can be handled by omitting the corresponding term involving nix  in the log like-

lihood function of (11), but keeping the terms involving  njx  , ij   when  njx  is pre-

sent. Subsequently, the solution equation functions for the parameters of item i exclude 

person n  , and the solution equation functions for the location parameter of person n
excludes item i . 

 

A conventional two-stage JML [20] (Birnbaum, 1968) algorithm can be used directly 

to solve the solution equations (12). [27] summarized the principle of two-stage JML 

estimation in the context of item response theory. In our situation, the principle of two-

stage procedure can be applied to form an estimation cycle of {( i ), ( i ), ( n )}. For 

example, when solving equation (12a) to estimate i  within each cycle, the item loca-

tion for the item i  and all the person locations ( n ) are fixed temporarily at their 

current (provisional) values estimated in the previous cycle. After solving (12b), the 

constraint of (13) is applied to adjust the estimates of ( i ).  In solving these equations 

sequentially using the procedure above, the expected values of the second order deriv-

atives for the corresponding parameters are employed. These are derived in Appendix 

C: 
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i

ii lm
li







−+


))1((log
),(  (17) 

 

2.4 Information functions and standard errors. 

 

In dichotomous cases of model (1) where 1=im , the information function for item 

i  with respect to person n  is given by 
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Similarly, from (15), the information for item i  on person n when 1im  is 
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Therefore, the information function for item i is 
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and the standard error for item i  over all persons is 
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Symmetrically, the standard error for person n  over all items is 
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2.5 Iteration Procedure A: with a correction on the estimate of mean unit. 

 

The control of the inconsistency of the item parameters in procedure A involves a 

correction on the mean unit parameter for all items.  Let   be the mean of the item unit 

parameters for all items: 
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When the value of   is unknown, it can be estimated by solving (12) with the sub-

sequent condition that all item unit parameters { i } have the mean value of  . A 

correction procedure to reduce the inconsistency on   is also employed: 
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The heuristically simple correction formula could alleviate the effect of incon-

sistency greatly, as shown in the simulation studies in the next section. 

 

In summary, the estimation procedure includes the following three steps: 

 

Step 1.  The value of mean unit parameter   is estimated by solving (12) with the 

constraint that the values of all item units equal the mean unit  ; 

 

  =i , . ..., ,1 Ii =    (26) 

 

Step 2.  A correction factor (derived below) is applied on  , the estimate of  , 

giving the corrected value c . 

 

Step 3.  The parameters are re-estimated by solving (12) with the constraint (26)  

item unit parameter is released. 

 

2.6 Iteration Procedure B: with the WLE for person locations. 
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Procedure B focuses on preventing the accumulation of the bias by using the WLE 

[17]. [18] gives an approximation of the bias function of the MLE as 
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To prevent the bias, [19] Wang & Wang, (2001) proposed the solution equation as 

 

 0)()(
log

=−



nn

n

BiasI
L




 (29) 

 

With the equi-distant unfolding model of (8), the MLE bias function is 
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The derivation of (30) is in Appendix D. Hence, the alternative iteration Procedure 

B replaces the solution equation for person locations (12c) with (29), and no correction 

is placed on the item units. 
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2.7 Initial values.  

 

At the beginning of the estimation in both procedures, the initial values of all param-

eters need to be specified. First, the values of ( i ) are set to zero. Second, t 
)0(

i  are 

calculated using (12b) when all n ’s and i ’s  are set to 0.  That is, 
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Equation (37) is a polynomial equation of )( i  and may be solved routinely. In 

particular, when the operational function is an exponential square, )exp()( 2tt =  ; 

and 1=im ,  (37) can be simply calculated by 
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When 
im =2, 
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In general, the initial value can be obtained by 
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The sign (plus or minus) can be assigned conceptually or by the sign analysis pro-

posed in [16]. 

 

In addition, the initial value for the person location n is calculated using the mid-

point principle ([1] and [28]), but applied to polytomous responses according to 
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3 Summary and conclusion 

 

The algorithm presented in this paper provides another example of the operationali-

zation of unfolding models for statements with polytomous response formats. Though 

more investigation on parameter estimation would help (a comparison study on the es-

timation result of JML and MML, for example), the studies presented in this paper show 

that this operationalization efficiently recovers the parameter values of the model with 

satisfactory accuracy.  RateFold, a program developed with this algorithm is available 

from the author of this paper. 

 

 

Appendix A. Derivation of solution equation 

 

A.1. Solution Equations for i . 

From  (11), the partial derivative of Llog with respect to i  is 
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Then the solution equations for i  is 
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A.2. Solution Equations for i . 

From  (11), the partial derivative of Llog with respect to i  is 
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Because 
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(A4) can be simplified to 
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it leads to the solution equations for i  as 
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A.3. Solution Equations for n . 

 

The JML estimation in the equi-distant unfolding model              35



From  (11), the partial derivative of Llog with respect to n  is 
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(A9) can be written as 

 

.
)(log

}Pr{}Pr{)(

)(log
)}(Pr{)(

log

0 01

01

}{

}{

 



= ==

==



−
=+=−−=



−
−=−−=





i i

i

m

k n

in

m

k

ninii

I

i

nii

m

k n

in
ini

I

i

nii

n

kXkkXmxm

kmkXxm
L











 (A11) 

 

(A9) can be further simplified to 
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In summary, the solution equations are 
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with the conventional constraint on item locations 
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In addition, let 
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(A13a) then can be expressed in terms of ),( li as 
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(A14) and (A15) will be used in Appendix B. 

 

 

Appendix B. Solution equations for special cases  
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B.1. Special case (I)-SSLMP: 
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The solution equations are 
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Because that 0i , the solution equations can be simplified to 
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B.2. Special case (II)-HCMP: 
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In this case, 
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The solution equations are 
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Appendix C. Calculation of the expected values of second 

derivatives.  

 

C.1. The expected values of second derivatives for item unit i . 

 

According to  (12a), 
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It is evident that 
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It is evident that 
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From  (C6) and (C7), equation (C5) can be rewritten a 
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Therefore,  (C4) can be simplified as 
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C.2. The expected values of second derivatives for item location i . 

According to (12b), 
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Because 

 

The JML estimation in the equi-distant unfolding model              43



}{ log)(log
)(}Pr{

][
)]([

)]([
)]()[(

      

))1((

)]([
))1((

}Pr{

2

1

1

1

i

ni

i

in
ini

ni

i

nikm

in

i

inkm

inini

k

l

ii

ni

km

in

i

k

l

ii

i

ni

kmkX

km

lm

lm
kX

ii

i



































−



−
−==




−−



−
−−

−+=

−




−+=



=

−−−

=

−

=





 (C12) 

 

and 

 

;
)(log

)}(Pr{

)(
)]()[)()1((

1log

0

0

1





=

=

−−



−
−==



−
−−−+=





i

i

i

m

j i

in
ini

m

j i

injm

iniii

nii

ni

jmjX

jmlm














 (C13) 

 
 

.}Pr{
)(log

}Pr{

}Pr{)(
)(log

}Pr{

)}(Pr{)(
)(log

}Pr{

)(log
)}(Pr{

)(log
)(}Pr{

}Pr{

}{

}{

}{

}{

0

0

0

0









=

=

=

=

=+−


−
==

=+−−


−
==

−=−−


−
==



−
−=−



−
−==



=

i

i

i

i

m

j

ni

i

in
ni

m

j

niii

i

in
ni

m

j

inii

i

in
ni

m

j i

in
ini

i

in
ini

i

ni

jXjkkX

jXjmkmkX

jmjXkmkX

jmjXkmkX
kX























 (C14) 

 

And because that 

 

44             G. Luo 



 
=

==
im

k

nini kXkxE
0

}Pr{)( ; (C15) 

 

the expected values of second derivatives for item location i  is 
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C.3. The expected values of second derivatives for item location n . 

Similar to the derivation in C.2, 
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Appendix D. Weighted likelihood estimation of person locations 

within the model of equation (8)  

 

The MLE bias function for general discrete responses is [18] 
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The solution equation is 
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From (19), information function for person n is 
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In addition, 

 

 

n

in
nnini

n

in

n

nni

ni

n

in
nni

n

ni

n

in
nnini

nn

ni

EkkX

Ek
kX

Ek
kX

EkkX
kP

2

2

2

2

)(log
)(}Pr{

)(log)(
}Pr{

)(log
)(

}Pr{

]
)(log

)(}[Pr{
)(

}{

}{

}{

}{






























−
−=+



−




−
=+



−
−



=
=



−
−=




=





 (D4) 

 

Let 
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It is evident that 
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And then 
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It is evident that 
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and because that 
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So, 
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In addition, 
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where 
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The MLE bias function then becomes 
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The solution equation is 
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Special case (I)-SSLMP 
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Special case (II)-HCMP:  
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Appendix E. Simulation studies.  

To show the efficiency and robustness of the two JML estimation procedures de-

scribed above, results of two simulation studies are reported in this section - one study 

focuses on the comparison between procedures A and B, and the other examines the 

effect of the number of items on the recovery of item and person parameters. In both 

studies, the operational function used in estimation is the same as used in generating 

the data. The convergence criterion for all iterations is set as 0.001. 

 

Study 1. Comparison of procedures A and B. 

 

In each data set of this study, responses to ten items were generated. The location 

values of the items were evenly spaced on the interval [-2.0,2.0]. The item units were 

randomly generated in the interval [0.6, 1.0]. Five hundred person locations normally 

distributed with mean of 0.0 and variance of 2.0. Each simulation had 10 replications. 

All the items involved were of four categories, e.g., 0 –strongly disagree; 1 – disagree; 

2 – agree and 3 – strongly agree. In the replications, data were simulated with the 

simple square logistic and hyperbolic cosine operational functions respectively. 

 

Recovery of item locations. Table 1 shows the average of the estimated item loca-

tions over the 10 replications. In all estimations, the initial signs of the item locations 

are obtained using the Sign Analysis procedure (Luo, 1999). The estimates obtained 

with Procedure A are compared with those obtained with Procedure B. The root mean 

squared error (RMSE), a commonly used measure of estimation accuracy, is calculated 

according to 
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Another measure of the accuracy of the estimation is the correlation coefficient be-

tween the generated person locations and their corresponding estimates. Table E1 also 
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reports the average of these correlation coefficients over the 10 replications. Figure E1 

plots the recovery of item locations in Table 1. 

 

Table E1. Recovery of item locations 

 

  HCM SSLM 

It

em Generating A StdErr B StdErr A StdErr B StdErr 

1 -2.000 -2.052 0.034 -2.149 0.032 -1.854 0.028 -1.989 0.028 

2 -1.556 -1.632 0.034 -1.589 0.033 -1.457 0.028 -1.569 0.028 

3 -1.111 -1.173 0.035 -1.134 0.034 -1.084 0.030 -1.127 0.029 

4 -0.667 -0.766 0.034 -0.695 0.034 -0.675 0.030 -0.705 0.030 

5 -0.222 -0.244 0.035 -0.275 0.035 -0.233 0.031 -0.241 0.031 

6 0.222 0.222 0.035 0.249 0.036 0.201 0.031 0.216 0.031 

7 0.667 0.690 0.035 0.692 0.036 0.636 0.031 0.676 0.031 

8 1.111 1.198 0.034 1.153 0.034 1.090 0.030 1.151 0.030 

9 1.556 1.720 0.034 1.645 0.033 1.526 0.031 1.609 0.031 

1

0 2.000 2.039 0.034 2.103 0.032 1.849 0.028 1.979 0.028 

Person correlation 0.939  0.940  0.989  0.989  

RMSE 0.134  0.116  0.089  0.057  
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Fig. E1.  Recovery of item locations in Study 1 
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It is seen in the results above that Procedure A produces slightly under-estimated 

item locations and units with the SSLM while Procedure B produces slightly over-esti-

mated item locations and units with the HCM.  The RMSE values with Procedure B are 

smaller than those with Procedure A for both operational functions. However, the dif-

ference in item estimates with different procedures is not significant in comparison to 

the corresponding standard errors, except for item 1 (the most negative item) and item 

10 (the most positive item). Therefore, both sets of the estimates are acceptable for 

practical purposes. 

 

Study 2. Effects of the number of items and sample size on item parameter es-

timates 

 

Effect of the number of items. Table E3 lists the RMSE for the estimation of item 

parameters with Procedures A and B when the numbers of items involved are 5, 10, 15, 

and 20 respectively, while the other specifications remain the same as those in Study 1. 

It suggests that the item parameters can be well recovered with the number of items 

greater than 10. 

 

 

 

 

 

 

 

Table E3. Values of the RMSE 

 

 Locations Units 

  HCM SSLM HCM SSLM 

I  A              B A B A B A B 

5 0.238 0.205 0.060 0.213 0.069 0.064 0.035 0.065 

10 0.134 0.116 0.089 0.057 0.037 0.034 0.030 0.024 

15 0.098 0.122 0.087 0.052 0.026 0.028 0.024 0.019 

20 0.095 0.093 0.088 0.063 0.022 0.022 0.021 0.018 

 

 

Effect of the sample size. In the simulation study reported above, the sample size was 

fixed at 500. To observe the effect of sample size on the recovery of item locations, 

more simulation studies were conducted, in which the sample sizes were specified in 

turn in increasing increments of 100 to 1000 while the other specifications of the sim-

ulations were as in Study 1. Then the estimation Procedures A and B were used respec-

tively in recovering the item parameters. Figures E3 and E4 plot the RMSE of item 

locations for different sample sizes when the numbers of items involved were 5, 10, 15 

and 20, and for the HCM and the SSLM respectively. 
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Fig. E3. MRSE of item location estimates for different sample sizes  

 (operational function: HCM) 

 

 

 

 
 

Fig. E4. MRSE of item location estimates for different sample sizes  

(operational function: SLM 
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The Figures E3 and E4 also show that when the number of four-category items is 

greater than 10 and the sample size is greater than 500, the increase of sample size or 

the number of items does not affect the RMSE noticeably. Roberts, et. al. (2002) re-

ported a similar result with the GGUM under the design of 15 six-category items and 

750 persons. 

 

Appendix F. A real example.  

 

The example in this section is for illustrative purpose and  was previously analyzed 

in [29]. It measures the attitude towards capital punishment which was thoroughly stud-

ied in literature [30] [31]. The version of the questionnaire used in [29] includes 10 

statements as shown in the order from against to for capital punishment. 

 

Item 

No. 
Statement 

9 Capital punishment is just and necessary. 

7 Capital punishment is justified because it stops serious crime. 

2 Until we find a way to prevent serious crime, we need capital punishment. 

4 Capital punishment gives criminals exactly what they deserve. 

8 Capital punishment is necessary but I wish it were not. 

3 I do not believe in capital punishment but it may be justified. 

5 Capital punishment does not stop serious crime. 

1 The state cannot teach that human life is sacred by destroying it. 

6 Capital punishment is one of the most hideous practices in our society. 

10 Capital punishment is never really justified. 

 

Three hundred and eighty students, who were from universities in Australia, Japan 

and Singapore, responded to the questionnaire. [29] Andrich & Luo (2003) analyzed 

the data using the HCM and the estimation procedure A. The analyses below compare 

the application of the HCM and the SSLM and estimation Procedures A and B. The 

convergence criterion for all iterations was again set as 0.001.  Tables F1 and F2 list 

the estimated item parameters in these four analyses.  It is seen that while the results of 

Procedure A is similar to those of Procedure B with the same operational function, the 

estimates of item unit estimated with the HCM are systematically greater than those 

estimated with the SSLM. Consequently, the estimated item locations with the HCM 

cover a larger range of the continuum than that covered by the estimated item locations 
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with the SSLM. This arises from the relative properties of the models – the operational 

function of the SSLM has a much sharper shape than that of the HCM has. 

Table F1. Estimates of item locations from real data 

  HCM SSLM 

Item A StdErr B StdErr A StdErr B StdErr 

9 -2.876 0.037 -2.728 0.036 -1.621 0.027 -1.727 0.026 

7 -3.104 0.037 -2.904 0.037 -1.610 0.027 -1.735 0.026 

2 -2.794 0.037 -2.555 0.037 -1.398 0.028 -1.509 0.028 

4 -2.636 0.036 -2.337 0.036 -1.251 0.029 -1.361 0.029 

8 -1.580 0.035 -2.476 0.036 0.150 0.052 0.154 0.051 

3 -1.873 0.035 -3.183 0.038 0.418 0.044 0.430 0.043 

5 3.574 0.039 3.855 0.037 1.111 0.030 1.203 0.030 

1 3.405 0.039 3.671 0.038 1.196 0.030 1.285 0.030 

6 3.726 0.038 4.202 0.037 1.266 0.028 1.393 0.027 

10 4.159 0.039 4.456 0.038 1.739 0.026 1.866 0.025 

 

 

Table F2. Estimates of item units from real data 

 

  HCM SSLM 

Item A StdErr B StdErr A StdErr B StdErr 

9 1.591 0.018 1.709 0.018 0.870 0.011 0.920 0.011 

7 1.886 0.020 1.776 0.018 0.583 0.008 0.635 0.008 

2 1.166 0.017 1.929 0.019 0.371 0.006 0.387 0.006 

4 1.931 0.021 1.799 0.019 0.650 0.009 0.701 0.009 

8 1.010 0.017 1.560 0.018 0.320 0.006 0.333 0.006 

3 1.520 0.018 1.565 0.018 0.727 0.010 0.777 0.010 

5 1.646 0.019 1.719 0.019 0.811 0.010 0.863 0.011 

1 1.764 0.018 1.760 0.017 0.588 0.007 0.653 0.007 

6 1.641 0.018 1.737 0.018 0.843 0.010 0.900 0.011 

10 1.932 0.018 1.850 0.017 0.759 0.008 0.823 0.009 

 

With the attempt to answer as to which model fits the data better, the following sta-

tistical indicators are presented. 

 

1. The log-likelihood value. This is calculated using Equation (11) with the estimated 

parameter values 
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2. Sum of square error. For person n ’s response nix on item i , its expected value 

)( nixE can be calculated with the estimates for the person and item parameters. The 

corresponding square error is 
2])([ nini xxE − . Therefore, the sum of square error can 

be calculated according to 
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3. Goodness-of-fit Statistic. The conventional goodness-of-fit statistic involving 

class intervals is also used. Persons are divided into G class intervals. With each inter-

val g , Gg ,...,1= ; the mean of person locations within the class interval is used to 

calculate the expected value igE for each item i . Then for each item i , the difference 

between this expected value and the mean score of the persons igs in the  class interval 

are standardized by the standard deviation of this expected value )( igEV , that is 
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The overall goodness-of-fit statistic is calculated by 
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It is noted that though the goodness-of-fit statistic of (F3) has a similar structure as 

that proposed by [32], whether the distribution of the statistic within the model of (1) 

is approximately 
2  is to be explored. Therefore, it is considered only as a descriptive 

statistic for the goodness-of-fit. The values of this statistic for the real data of this sec-

tion with different operational functions and estimation procedures are listed in (F3) 

where in the calculation of the goodness-of-fit statistic, persons were divided into 10 

class intervals. 
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It is noted that for this particular data set, the results with the SSLM are quite robust 

with the two estimation procedures. It is interesting to note that though the three sets of 

estimates of item parameters with the SSLM in Tables F1, F2 and F3 are very close to 

each other, the goodness-of-fit statistics for them are different. It seems that the good-

ness-of-fit statistics are more sensitive than the other indicators. Although the estimates 

with procedure B for the SSLM have a slightly higher log-likelihood value, the esti-

mates with procedure A for the SSLM have a much smaller overall goodness-of-fit 

statistic. In this sense, the results with SSLM using Procedure A seem marginally better. 

However, the choice of models is not conclusive. 

 

Table F3. Statistics for the estimations from real data 

 

Operational function 
HCM SSLM 

Procedure A B A B 

Log Likelihood Value -3784.50 -3753.95 -3672.68 -3660.54 

Sum of Square Error 1684.65 1683.11 1612.87 1617.95 

Goodness-of-fit statistic 659.262 486.148 279.00 322.17 

 

The following summarizes the other results with the SSLM using Procedure A. The 

results with other combinations of the operational functions and procedures are similar. 

Figure F1 shows the distribution of the person locations with item locations estimated 

with the SSLM and Procedure A. The scale information function is also plotted. It is 

seen that the interval on which the scale information has high values captures the ma-

jority of the population. That is, the questionnaire is targeting this particular population 

excellently. Figure F2 plots the expected values of items 8, 9, 10 with the observed 

means of the person responses on these items (persons are divided into 10 class intervals 

according to their estimated locations).  It can be seen that while the observed means 

of person responses on items 9 (the most negative item) and 10 (the most positive item) 

are monotonically decreasing and increasing respectively, those on item 8, which is in 

the middle of the continuum, form a single-peak. They are all as predicted by the cor-

responding expected values. 
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Fig. F1. The frequency of estimated person locations with item locations (labelled with item 

number in a circle) and the scale information function. 
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Item 9 

 
 

 

Item 8 
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Item 10 

 
 

Fig. F1. The expected values of items 8, 9, 10 with the observed means of the person re-

sponses. 
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