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Abstract. In order to overcome the limitations of finite element in solving the 

rod structure, it is proposed to apply the particle discrete element method to study 

the force characteristics of the rod structure. This paper firstly introduces the ad-

vantages of discrete element relative to finite element, then describes the basic 

theory and calculation method of discrete element, finally, through the mutual 

comparison of the theoretical solution of cantilever steel beam, finite element 

solution and the discrete element solution by applying the parallel bond model, it 

is confirmed that the parallel bond model conforms to the intrinsic properties of 

the rod structure, and the parameter setting of the parallel bond model meets the 

requirement of the accuracy of the discrete element of rod system, and a set of 

parameters of the parallel bond model conforms to the intrinsic properties of 

Q235 steel.  
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1 Introduction 

The traditional Finite Element Method (FEM) used to simulate rod structures' mechan-

ical behavior involves issues such as mesh distortion, element disappearance, displace-

ment discontinuity, and stiffness matrix singularities [1]. To address these limitations, 

Cundall [2] introduced the Discrete Element Method (DEM), originally developed for 

discontinuous media but also applicable to continuous media problems [3]. Unlike 

FEM, DEM allows for relative motion between elements and does not necessarily re-

quire displacement continuity or deformation compatibility conditions. This feature 

makes it especially suitable for simulating large displacements, rotations, displacement 

discontinuities, and fracture material discontinuities in rod systems. 

2 Basic Principle of Discrete Element Method 

The principal idea of the discrete element method is to discretize the object of study 

into several rigid particles, which are connected by springs and dampers, as depicted in  
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Fig. 1. The contact forces between particles are determined by the force-displacement 
criterion, and the motion of the particles is governed by the equation of motion (New-
ton’s second law) [4]. The computational process of the discrete element method is 
illustrated in Fig. 2. 

 
Fig. 1. Discrete element model of the beam element bar 

 
Fig. 2. Flow chart of discrete element method 

2.1 Motion Control Equation 

For spatial structures, the motion variables of the element can be decomposed into three 
translational displacements and three rotational displacements along the coordinate 
axes. Similarly, the mechanical state of the element can be de-composed into three 
forces and three moments of force along the coordinate axes. 

Take any element a and its motion control equation can be expressed as follows： 
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where am is the mass of particle a, ijI  is the mass moment of inertia of particle a against 
the coordinate axes i and j, iu  is the horizontal displacement of particle a along the 
coordinate axis i, iθ  is the angular displacement of particle a around the coordinate axis 

i, ,intiF  and ,i extF  are the combined internal force and combined external force on parti-

cle a along the coordinate axis i, respectively, and i, intM , i,ex tM  and iM  are the com-
bined internal moment, combined external moment, and total combined moment on 
particle a around the coordinate axis i, respectively. 

2.2 Calculation Method of Solution 

The basic solution methods for the discrete element include the dynamic relaxa-tion 
method and the static relaxation method. The dynamic relaxation method is an explicit 
solution method, while the static relaxation method is an implicit solution method. The 
dynamic relaxation method is more widely used and is a numerical solution method 
that transforms nonlinear static problems into dynamic problems. It adopts a backward 
time-step iterative calculation idea, which introduces mass damping and stiffness 
damping that are less than critical damping, absorbs and dissipates the kinetic energy 
in the system, reduces the amplitude of vibration, and eliminates vibration. As a result, 
the system structure converges towards qua-si-static values [5]. 

The dynamic relaxation method solves the displacements of the elements using the 
central difference method based on Newton’s Second Law. The calculation begins from 
the known initial state. In one time step calculation process, all elements in the structure 
are first fixed. According to the contact constitutive relationship between the elements 
(force-displacement law), the contact internal forces and moments of the elements are 
determined and summed up with the external forces and moments acting on the ele-
ments to get the force state of the elements at the current time step. The central differ-
ence method is used to calculate the motion displacements of the relaxed elements. The 
elements are first relaxed, and then the relaxed elements are re-fixed in the new posi-
tions. Once the calculation of one element is completed, new contacts are formed with 
the adjacent elements, and the interaction forces between the elements change. The 
force state of the adjacent elements is updated and relaxation calculation is performed. 
This process is se-quentially repeated for each element until all elements have been 
traversed. Once one time step calculation is completed, the calculation for the next time 
step begins [6]. 

The discrete element method employs an explicit integration method and the basic 
equation of motion of the discrete element method, taking into account the damping at 
the time t, can be expressed as follows: 
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Where ( )u t  and ( )tθ  are the translational linear acceleration and rotational angular ac-
celeration, respectively, int ( )F t  and int ( )M t  are the particle contact combined internal 
force and combined internal moment, respectively, ( )extF t  and ( )extM t  are the particle 
contact combined external force and combined external moment, respectively. 
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Where d ( )ampF t  and d ( )ampM t  are the damping of the element in the translation direction 
and the rotation direction, respectively, which can be either real or virtual damping. 

( )u t , ( )tθ  are the translation velocity and the rotation angular velocity, respectively, 
uC  and Cθ  are the damping coefficients in the translation and rotation direction, re-

spectively. 
The explicit solution of the discrete element method adopts the central difference 

method and the first-order center difference for the velocity and acceleration of the 
elements is performed. 
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Substitute Eqs. (4), (5), and (6) into Eq. (3), and organize to obtain the iterative for-
mula for the velocity at the adjacent time step. The velocity at time   is as follows: 
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From Eqs. (7) and (8), it can be observed that all the items on the right side of the 
equation are known, which simplifies the calculation process. The velocity at time   can 
be directly obtained without the need for iteration, which improves computational effi-
ciency. This demonstrates that the discrete element method does not need to solve large 
matrices or satisfy deformation compatibility conditions, making it suitable to deal with 
nonlinear large deformation problems. 

3 Parallel Bond Model Theory and Parameter Validation 

3.1 Parallel Bond Model Theory 

The parallel bond model views the contact between particles as a collection of springs 
that are uniformly distributed on the contact surface. These springs have constant values 
for normal stiffness, tangential stiffness, and strength. And it is capable of transmitting 
both force and moment. The parallel bond contact model consists of two parts of inter-
face mechanical behavior. The first interface behaves as a linear model that accommo-
dates slip by applying a Coulomb limit to the shear force, without resisting relative 
rotation. The second interface, known as the par-allel bond, acts in parallel with the first 
interface when bonded. When bonded, the second interface resists relative rotation and 
exhibits linear elastic behavior until the strength limit is surpassed, causing the bond to 
break and rendering it un-bonded. In the unbonded state, the second interface does not 
bear the load. The unbonded linear parallel bond model is essentially equivalent to the 
linear model [7]. 

 
Fig. 3. Failure envelope for the parallel bond 

In Fig. 3, when the parallel bond model is subjected to compression, the parallel 
bond contact will not be damaged. The parallel bond model always remains bonded 
while the compressive stress and shear stress continue to increase at the contact point. 
However, when the parallel bond model is subjected to tension, the contact shear stress 
decreases but the tensile stress increases up to   (tensile stress limit). At this moment, 
the parallel bond breaks and the parallel bond model is equivalent to a linear contact 
model. 

3.2 Validation of Parameter Settings for the Parallel Bond Model 

In this section, the example employs Q235 steel and a cantilever beam with the beam 
length of 10 meters and the cross-sectional size of 500 mm × 500 mm. The theoretical 
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solution, finite element solution, and discrete element solution are compared and ana-
lyzed to validate the accuracy of the parameter settings for the parallel bond model. 
(1) In the theoretical analysis of the cantilever beam, the relationship between the load 
applied at the free end of the beam and displacement at different posi-tions along the 
axis of the beam can be represented as follows: 
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The relationship between the load at the free end of the cantilever beam and the stress 
at different positions of the axis of the beam is shown in the following equation: 
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Where σ  is the stress at the monitoring point of the cantilever beam, ν  is the displace-
ment of the monitoring position of the cantilever beam, P  is the load at the free end of 
the cantilever beam, x  is the distance of the monitoring point from the fixed end, y  is 
the distance from the stress monitoring point to the centroid axis of the cross-section, 
L  is the length of the cantilever beam, E  is the elastic modulus of the material, and I  
is the moment of inertia of the cross-section. 

(2) Finite element numerical simulation analysis is conducted using the ANSYS Me-
chanical finite element module. As shown in Fig. 4, BEAM188 is se-lected for the beam 
element, BKIN is selected for the material model, the yield strength is 235MPa, the 
elastic modulus is E=205GPa, and the Poisson's ratio is 0.3. 

 
Fig. 4. Diagram of the numerical finite element model 

(3) Discrete element numerical simulation analysis is performed using the parallel 
bond contact model, as shown in Fig. 5. The particle spheres have a radius of 0.05 m. 
The spheres of the left end of the beam are fixed, while the center sphere of the free 
end of the beam applies a concentrate Load. 

 
Fig. 5. Discrete element numerical model diagram 

 
Fig. 6. Mechanical diagram of the cantilever beam and arrangement of monitoring points 
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Fig. 6 shows a schematic diagram of the mechanical calculation and the layout of 11 
monitoring points for the cantilever beam. These monitoring points are set along the 
beam axis at intervals of 1 m to obtain stress and displacement data for these points. 
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Fig. 7. Displacement curve of the cantilever beam 
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Fig. 8. The maximum stress curve of the cantilever beam monitoring point 

Fig. 7 and Fig. 8 show the displacement and maximum stress curves at the mon-
itoring points obtained via the theoretical method, finite element method, and discrete 
element method for the cantilever beam. From the figures, it can be observed that the 
numerical curves obtained from the three methods show similar trends, and the values 
of displacement and stress are close. The displacement errors of the finite element so-
lution and the discrete element solution relative to the theoretical solution at the free 
end of the cantilever beam are 1% and 0.8%, respectively. The stress errors of both the 
finite element solution and the discrete element solution compared to the theoretical 
solution at the fixed end of the can-tilever beam are within 1%. This indicates that the 
parameter settings of the parallel bond model are consistent with the constitutive rela-
tionship of Q235 steel. Additionally, the parallel bond model is suitable for the discrete 
element numerical simulation of structures made of Q235 steel. 
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4  Conclusions 

This paper introduces the fundamental theory of the Discrete Element Method (DEM) 
and validates the correctness and rationality of applying the parallel bond constitutive 
model to rod structures through a comparative analysis of three numerical solutions for 
a cantilever steel beam. The main conclusions are as follows: 

(1)This study confirms the parallel bond model's compliance with the solution accu-
racy of the Discrete Element Method (DEM) through three numerical solution methods 
for a cantilever beam, obtaining a set of parallel bond parameters for Q235 steel. 

(2) The parallel bond model is consistent with the mechanical constitutive charac-
teristics of rod structures. 

(3) The rod system's Discrete Element Method, employing the parallel bond model, 
can serve as a novel approach for studying the mechanical behavior of rod structures 
under load. 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
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        The images or other third party material in this chapter are included in the chapter's
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is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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