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Abstract

In this paper, a class of impulsive fractional Langevin equation is considered and
proceeds to derive a solution formula for this equation, incorporating Mittag-Leffler
functions. The solution is obtained through an analysis of linear Langevin equation
involving distinct fractional derivatives. We establish the existence and uniqueness
results of the solution by employing mathematical tools such as boundedness, con-
tinuity, monotonicity, and non-negativity properties of Mittag-Leffler functions and
fixed point methods. Furthermore, we establish appropriate conditions and results
to discuss Ulam-Hyers, generalized Ulam-Hyers, Ulam—Hyers-Rassias and gener-
alized Ulam—Hyers—Rassias stability of our proposed model, with the help of fixed
point theorem. Finally, the theoretical findings are illustrated through a practical
example.
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1 Introduction

Fractional differential equations represent a generalized form of classical differential equa-
tions with fractional order derivatives. The field of fractional calculus has matured sig-
nificantly and finds numerous applications in diverse areas such as porous media, elec-
trochemistry, economics, electromagnetics, physical sciences, and medicine. Notably,
fractional differential equations play a crucial role in viscoelasticity, statistical physics,
optics, signal processing, control systems, electrical circuits, astronomy etc. Several piv-
otal articles have contributed theoretical tools for qualitatively analyzing this field, high-
lighting both the connections and distinctions between classical integral models and frac-
tional differential equations. More recently, there has been growing interest in a subclass
known as fuzzy fractional differential equations. Researchers have investigated solvabil-
ity results for nonlocal problems within fuzzy fractional differential systems, particularly
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under the framework of gh-differentiability in fuzzy metric spaces. These investigations
have extended to encompass fuzzy wave equations, and numerous references provide
in-depth insights into this intriguing field, see [1, 17, 19, 27, 37, 36, 31, 22, 23, 24, 25].

The Langevin equation, which was originally introduced by Paul Langevin in 1908,
has emerged as an exceptionally versatile and indispensable tool for understanding a
wide spectrum of phenomena. Its applicability extends across various fields, including
physics, engineering, economics, and medicine, where it plays a pivotal role in eluci-
dating complex processes. Whether unraveling the intricate dynamics of particles in a
physical system or shedding light on the behavior of systems under stochastic influences,
the Langevin equation has proven to be a robust and accurate modeling framework. Its
applications are far-reaching, encompassing the realm of defense systems, where it aids
in the analysis of unpredictable scenarios, as well as image processing, chemistry, astron-
omy, and mechanical and electrical engineering, where it provides invaluable insights for
problem-solving and optimization. Moreover, the Langevin equation finds its place in
the study of Brownian motion, serving as a fundamental tool when describing the effect
of random oscillation forces, often characterized as Gaussian noise. Furthermore, in the
pursuit of cleaner data and noise reduction, fractional order differential equations emerge
as essential allies. These equations offer a sophisticated means of enhancing signal pro-
cessing and minimizing noise interference in various applications. For a more in-depth
exploration of this multifaceted subject, interested readers are encouraged to delve into
the extensive body of work presented in references such as [2, 12, 20, 21, 29, 30].

The study of impulsive differential equations has garnered substantial attention from
researchers in recent times, owing to their wide-ranging applications in various domains
of science and technology. These equations serve as a powerful tool for describing dy-
namic processes that undergo abrupt changes and discontinuous jumps in their states.
Numerous physical systems, such as the motion of a pendulum clock, the impact dynam-
ics of mechanical systems, species preservation through periodic stocking or harvesting,
and the functioning of the heart, naturally exhibit impulsive phenomena as part of their
behavior. Additionally, impulsive behavior is prevalent in various other scenarios, such
as interruptions in cellular neural networks, the operation of dampers with percussive
effects, electromechanical systems with relaxational oscillations, and dynamical systems
with automatic regulations. The extensive spectrum of applications underscores the sig-
nificance and widespread relevance of impulsive differential equations in contemporary
research. For a comprehensive exploration of this subject, we refer interested readers to
sources such as [10, 13, 42, 18, 47, 49, 5, 45, 32]. The remarkable diversity of applications
in this field underscores its importance and the notable attention it has received from
the research community.

At the University of Wisconsin, Ulam posed a fundamental question in 1940 regarding
the stability of functional equations, which has since become a cornerstone in mathe-
matical stability theory. Ulam’s question revolved around the conditions under which an
additive mapping exists in the vicinity of an approximately additive mapping, as detailed
in [38]. In 1941, Hyers made a significant contribution by providing a partial answer to
Ulam’s query, particularly within the context of Banach spaces, as documented in [14].
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Subsequently, this notion of stability became known as Ulam-Hyers stability. Building
on this foundation, in 1978, Rassias introduced a remarkable generalization of Ulam-
Hyers stability by considering variables, thus expanding the scope of this mathematical
framework. For further insights into this intriguing topic and its various developments,
we recommend exploring additional references such as [33, 35, 41, 48, 50, 15, 40]. These
sources delve into the intricacies and applications of stability theory, offering a compre-
hensive understanding of its significance in mathematics.

Recently, the existence, uniqueness and different types of fractional differential equa-
tions stability of nonlinear implicit fractional differential equations with Caputo frac-
tional derivative have received a considerable attention, see [7, 9, 34, 35, 39].

Wang et al. [44], conducted an investigation into the generalized stability of the
Ulam—Hyers—Rassias type for a fractional differential equation of the form:

‘Diz(w) = flw,2(w), we (wys], i=0,1,....m, 0<a<l,
z2(w) = gi(w, z2(w)), w € (sic1,wi], 1=1,2,...,m.

Zada et al. [46], conducted a study to examine the existence and uniqueness of solutions.
They employed the Diaz—Margolis fixed point theorem for their analysis. Furthermore,
they explored different manifestations of stability within the context of Ulam—Hyers
stability. This research focused on a particular class of nonlinear implicit fractional
differential equations that feature non-instantaneous integral impulses and nonlinear
integral boundary conditions:

“Dgyz(w) = f(w, 2(w), "D y2(w)), w € (wi,si], i=0,1,...,m, 0<a <1, we (0,1],
z(w) = I ({i(w,z(w))), w e (Si—lvwi]a i = 1727 U2

Si—1,Wi
1

T
z(0) = F(oz)/o (T — <) (s, 2(<))ds.

Building on the aforementioned research, this paper delves into an examination of several
concepts, including existence, uniqueness, Ulam-Hyers, generalized Ulam-Hyers, Ulam-
Hyers-Rassias, and generalized Ulam-Hyers-Rassias stability, for a nonlinear implicit
impulsive Langevin equation by incorporates two fractional derivatives:

DY (D + m)u(§) = f(§ u(8), D"u(€)), €€ =J—{&. .8, &n} ] =[0.T),

Au(gr) = u(€") —u(§) = Iu(u(§)),

uw(0) =0, u(nk) =0,u(l)=0,m = (&, &k+1),k=0,1,2...,m —1, W

1.1
where f : J Xx R xR — R are a given functions, 0 < 6,9 < 1, with 0 < 6 + 9 < 1,
and £ > 0,0 = § < & < & < -+ < &n < &my1 = Lu(§) = lmor u(& + ©),
u(é, ) = lim._,o- u(&x + €), represent the right and left limits of u(§) at & = &, the
constants I denotes the size of the jump.

The paper’s second section presents a set of notations, definitions, and supplemen-
tary findings. In Section 3, we establish the existence and uniqueness of solutions for
the model described in problem (1.1). These results are derived using the Banach con-
traction principle and Krasnoselski fixed point theorem. In Section 4, our focus shifts to
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an investigation of various stability concepts, including Ulam—Hyers stability, general-
ized Ulam—Hyers stability, Ulam—-Hyers—Rassias stability, and generalized Ulam-Hyers—
Rassias stability, all pertaining to the proposed model. Finally, we illustrate our main
findings with an example that reinforces our conclusions.

2 Preliminaries

We revisit certain fractional calculus definitions from sources such as [27, 17].

Definition 1 The fractional integral of order 0 with respect to the wvariable w for a
function f is defined as follows:

I§ o f(w) = F(le) /Ow F()w—=¢)"Yds, w>0,0>0.

Here, the function T'(-) corresponds to the Gamma function.

Definition 2 The fractional derivative of order 0 for the function f is the Riemann-
Liowville fractional derivative:

1 ar (v f()
L 0
D = d 0, n—1<4 .
0wf (W) F(n—@)dw”/o (@ —<)tin S, w>0,n <f<n

Definition 3 The Caputo derivative of fractional order 6 for f is

‘DY f (W) = ! 9) /Ow(w — )M ()ds,  where n = [0] + 1.

I'(n—
Definition 4 The classical Caputo derivative of order 6 of f is
n—1 wk

CDg,w = LDg,w(f(W) - Zk!f(k)(o)>, w>0,n—1<6<n.

Remark 2.1 (a) Operator D% also can be written as

D@,'ﬁf(x) _ (Iﬁ(l—e)D(l_ﬂ)(l_e))) — Iﬂ(l_e)D'y, ¥ = 0+ 19— 69.

(b) If9 =0, then D%’ = D0 is called Riemman-Liouville fractional derivative.
(c) If 9 =1, then D%V = I'"9D is called Caputo fractional derivative.

Lemma 2.1 [17] The fractional differential equation °DY f(w) = 0 with § > 0, involving
Caputo differential operator “D° have a solution in the following form.:

fw)=co+cw+cw?+- +cpow™ 1,

where ¢ €R, i=0,1,....m—1 and m=][0]+1.
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Lemma 2.2 [17] For arbitrary 0 > 0, we have

I°(°DY f(w)) = co+ crw + cow? + -+ + g™,
where ¢ €R, i=0,1,....m—1 and m=1[0]+1.
Lemma 2.3 [27] Let >0 and 9 > 0, f € L'([a,b]).

Then I'T° f(w) = I°7 f(), DY, ("Dl f (w)) = “D§E f(w)and I°DY,, f(w) = f(w),w € [a,b].

Let J = [0,T], Jo = [0,w1], J1 = (w1,w2], J2 = (w2,ws,..., Ji-1 = (wi—1,wi], Ji =
(wiaTL
J =J- {wo, w1, ws,...,w;}. Also for convenience use the notation J; = (wj,wjt1]-

Theorem 2.2 Let M be a closed convex and nonempty subset of a Banach space X.
Let A, B be two operators such that

1. Az + By € M whenever x,y € M,
2. A is a compact and continuous,
3. B is a contraction mapping.

Then there exists z € M such that z = Az + Bz.

Theorem 2.3 [[4](Banach’s fixed point theorem)]. Let B be a Banach space. Then
any contraction mapping N : B — B has a unique fixed point.

Theorem 2.4 A general solution u of the problem (1.1) is given by

/ (€= 2 By gy (€ — 2 R) (2 u(z), Du(2))dz

= N [ = " B O = 0 (). D) for € < o
ue) =9 | (€ 2 By gy (— (€ — 2 R) (2 u(z), Du(2))dz

+ Mo (u(€)) = My Ny / )1y o a(— (10 — 2)°%) f(zu(2), D?u(z))dz

+ M,, /qu (M — )9‘“9 1E9’9+79(—(nm — Z)Gﬁ)f(z,u(2)7 Dﬁu(z))dz,forf € Ji,k={1,...,m},

2.1)
x)—E K E K —Eo(—¢x
where M, = maX{E = gm E"e(( 777:;%))} = ) E‘;(( im H)) and Np, = max{ii_EzE_ggﬁ; }.

Proof To accomplish our objectives, we initiate our investigation by examining linear
Langevin equations that feature two distinct fractional derivatives.

Dﬁ(De + K)u(g) = f(§)7 fed= [OvT]> (2'2)
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by integrating the above equation from zero to £, we have

3
(DY + wyu(€) = 1/0 (€= o)V f(s)ds —ap, k=1,23,....m,  (2.3)

I'(9)
where ay, are constants.
Utilizing the same concepts and methodologies as employed in Wang et al.[41], we
arrive at the comprehensive solution for

(D% + K)u(€) = h(€) (24)

128 ¢
u(€) = B(E)b; + / (€ — 5)771W(€ — 5)h(s)ds, (2.5)

0

where ®(§) = [¢° we(p)e=t'Prdl, W(E) = oy pwo(p)e "Pdf. Here wy is a one-side

probability density function (see Wang [41]) defined on (0, 00) and satisfying fooo 0wy (p)do =
r(14v)
F(l-l—@ljl/)
in the monograph [17], and it is given by the following expression:

,—1 < v < co. Meanwhile, the solution of the equation (2.4) have been considered

13
u(€) = Bo(—€%)b; + / (€ — )0 "Bgo(— (€ — 5)°r)h(s)ds, (2.6)

0

where Eg is the classical Mittag-Leffler function: Eg(z) = > 77 oy Z € K, 0 >0 and

1)
the function Eg g is the generalized Mittag-Leffler function: Eg (2 ) =370 F(k0+9) ,2,0 €

R, 0 > 0 combined (2.5) and (2.6), we can rewrite ®(&) = Eo(—&%k), U(&) = Eg o(—&%k).
Note Egg(z) = 0E/y(z) and so

(€~ ) Boo(—(E —9)°K) = &

Bo(—(— )R] (27)

This yields that fo —5) " Egg(— (& — 5)?k)ds = L[1 —Eg(—¢%k)]. So the final formula
of solution of the equation (2. 2) should be

s—z)?71

_ _ 0 . ¢ _ 0—1 _ _ ] 8(7 _
() = Bo(~E"R)bi+ /0 (€ — )" "Bog(—(€ - 5) m>( /O e ak>ds
13
— B0~ [ (€~ 9" Baa(~(€ — 9)'w)ds
0
S (s—2) ! RV 7 SERY;
[ € Bl (e ) )z
= Eo(—€'wbi — <[~ Bo(~€R)lo
£
+/0 (€= 2)" T By gi9(— (€ — 2)7K) f(2)dz, (2.8)

where Eg g1 is the generalized Mittag-Leffler function: Eggi9 = > 5o WIM.
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For & € Jy, by integrating the first equation in (1.1), one can derive the following
result

€
) = Bo(—"w)h = +1 = Bo(—€la+ [ (6= ) B gy (~(€ = 91R)f(21u(2). D"ul(2)) = 29)

Using the conditions u(0) = 0 and u(no) = 0, we get

70
a= [1—]3(;—778”)]/0 (mo—2)" T By gr9(—(no—2)°k) f(z,u(z), D’u(z))dz, b=0.
(2.10)
Submitting (2.10) in (2.9), we obtain
W@ = —N, / " 0 — 2By o~ (10 — 2)°8) £ (2, u(2), Du(z))d

+ (€= 9 Bapra( (6~ )0, DPu (21
0
For & € Ji, by integrating the first equation in (1.1), one can derive the following result:

[1

_ _¢b 3
u§) = B¢~ LN 0y [ 0 B (-6~ 2R ula), D))

Since
u(E") = Bo(~€m)b — 1~ Ey(~E"mlan
- (6= 2 By o (€ — 2 8) Tz, ulz), D u())ds,
and
wE) = N, /no P By oo (= (10 — 2)Pk) (2, u(z), D”u(z))dz

T /0 (€ — 2T By g o(—(€ — 2)°R) [ (2, u(2), DPu(z))dz,
from U(fl ) =w(& )+ Li(u(m)) =0, it follows
Ey(—¢lR)br — ;[1 ~Eo(~&r)ar = L(u(§)

—Np, /0770 (T}o - Z)0+19—1E979+19(_(770 _ 2)9,{)]0(2,7 u(z)7 DﬂU(Z))dz,

and

Bo(-nf)br 1= Ba(nfwlar + [ O = Eouo(—(m - W) (o u(z), Du(e))dz =
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solving the above equations for unknowns a1 and by and putting the values in equation
(2.12), we can get

Ey(—¢"x) — Eo(—nir) "o Ly0H9-1 Y 9 .
~(Beir o)), 0= 9 Basas(cl - e D
Ey(—¢"k) — Ep(=¢lR)\ (™ 1
+(E0(7§?/{)7E0(77}%H))/{) (m = 2)"" " Eg o9 (—(m — 2)°x) f(z,u(2), D"u(z))dz

£
- / (€ — 2T By g g(—(€ — 2)R) (2 u(2), DPu(2))dz + My T (u(€))
MN,, / By 4o (— (0 — 2)0k) f (2, u(2), DPu(2))dz
M, /0 (1 — 2T By g (— (1 — 2)°) (2 u(z), Du(z))dz.

Repeating the above methods on the subinterval Jg, k = 2,3,...,m — 1 respectively.
Finally, for & € Jy, by integrating both sides of the first equation in (1.1), one can
derive the following result

u(§) = /5(5 2)" T By gyo(— (€ — 2)°K) (2, u(2), DPu(2))dz + M I (u(€))
My N, / " 0 — 21y go(— (10 — 2)°8) £z u(2), Du(2))dz
M, / " i — ) B g g (— (i — 2)0) £ (25 u(2), DPu(2))d.
Lemma 2.4 [43], Let 0 < 0,0 < 1. The functions Eq, Egg and Eqg.g are nonnegative

and have the following properties:

1. Forany k>0 and & € J,

1 1

Eo(—¢%%) <1, Epp(—¢k) < ()’ Egp+9(—&k) < NCET)

Moreover, Eg(0) =1, Egg(0) = 357, Eggi0(0) =

NOR (9+19)

2. For any k>0 and &1,& € J,
Eo(—&r) = Bo(—€lw)  as & =&,

Eoo(—&5k) — Ego(—&lk)  as & — &,

Eop+0(—E5K) — Egoro(—&lk)  as & — &,
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Or rather,
IEo(=&35) — Bo(—¢R)[| = O(I62 — &%) as & — &,
IEoo(—£5%) — Bop(—ElR)l| = O(1&2 — &11°)  as & — &,
IEo,0+9(—E5K) — Bggyo(—ER)| = O(&2 — &1I°)  as & — &
3. For any k >0 and &1,& € J and & < &9,
Eq(—&5k) < Eo(—£1k),
Ego(—&Jrk) < Ego(—&lk),
Eg049(—&5k) < Egoio(—& k).

4. For any k >0 and &, > 0,
Eg(—&lk) > 0.

3 Existence and uniqueness results

In this section, we focus on establishing the existence and uniqueness of solutions for the
problem described by equation (1.1). Recent literature has witnessed numerous works
addressing fractional impulsive initial and boundary value problems. However, it is note-
worthy that both the research conducted by Omar et al. [26] and the work of Zada et al.
[40] have brought to light certain inaccuracies in previous solutions for specific impulsive
fractional differential equations. They accomplished this by introducing counterexam-
ples and developing a comprehensive framework to explore a more accurate solution for
such problems. This endeavor is largely inspired by the findings in Wang et al. [43].
Before stating and proving the main results, we introduce the following hypotheses.

(Hy) f:J xR xR — R is jointly continuous.

(Hy) There exists a function n(-) € LY@ (J,R") such that |f(£,z,y)| < n(€) for all
¢ € Jand all z,y € R, where q; € (0,6 +9).

(H3) There exists a function h(-) € LY%(J,RT) such that |f(&, z,y) — f(&w,2)| <
h(€)|x —w| + Lfly — 2| for all £ € J and all z,y,w, z € R, where g2 € (0,6 + 9).

(Hy) There exists Ly > 0, such that ’Ik(u) - Ik(v)} < Lg|u —v|, for each v e Jy, k=
1,2,...,m, and for all u,v € R.

Theorem 3.1 Assume that (Hy) — (Hs) hold. If

MpMg < 1, (3.1)
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then the problem (1.1) has an unique solution, where

qu

Mp = ,
FTTO+9)(1+ p2)1_QQ

(3.2)

Lf §0+19+n +19) B

9+
Mo = max ({1+ s+ My (L + 1= Ny )+ it s+ 6Ty (14

(04+9+1) (6+9+1) F(6+19+1) L(6+9+1)
Np})-
Proof Consider an operator N : PC(J,R) — PC(J,R) defined by
¢ 0+9—1 0 9
6= 2 B (6 = 2 £z (). D)
U
= Ny [ = 2" B~ = 270 £z (). Du()), for € € o

(Nu)(€) = /0 (€ — 2T By gy o(—(€ — 2)°8) (2, ul2), DPu(2))d

+ My I (u(€)) — My Ny, / " (o — 2 By o (— (0 — 2)'R) (2, u(z), D u(2))dz

L /ﬂk 2)0HI-1E, o9 (— (1 — 2)26) f(z,u(z), D'u(2))dz, for € € Jy.

(3.3)
To establish that N is a contraction mapping, we will break down our proof into two
distinct steps.

Step: 1. N(u) € PC(J,R) for every u € PC(J,R).

If € € Jy, then for every u € PC(J,R). and any § > 0,0 < £ < £+ 6 < &, by (Ha),
Lemma 2.4 and Holder inequality, we get

(N)u(€ +8) — (N)u(©)|
£46
| /0 (€ 46— 2" By g y(—(€ +6 — 2)°k) f(z,ul2), D'u(z))dz

1 —Eo(—(£+ 5)9,%) o
1 —Eg(—nr) /o (o

IN

— 2)" T By gr9(— (0 — 2)°K) £ (2, u(2), D u(z))dz

13
- / (€ — 2 By g o(— (€ — 2)°R) (2, u(2), DPu(2))dz

+ N /UO 2)" T By g9 (— (0 — 2)°K) f (2, u(z), D u(z))dz |
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£+6
/ (E+0— 2" By oro(—(£+ 6 — 2)°k) f(2,u(z), D u(z))dz
3

|
- /0 (€ — 2" By g p(—(E — 2)°R) f(z,u(2), DPu(2))dz]

Eo(—(£+6)"k) — Eg(—£%R)
1 — Eg(—nK)

</ " (0 — ) By a0 — 2)R) f (2 u(z), DPu(z))dz|

IN

3
/ (£ 40— 2)" "By ppa(—(€ + 6 — 2)°k) — By gpo(—(€ — 2)°k)|n(2)dz

£
+ /0 (€ +6 — 2971 — (€ = 2P By gy (— (€ — 2)°) n(2)d

o _N\O+0—1 _ Y
n /5 (€45 — 2PV Bggro(—(€ + 5 — 2)°) n(2)dz

0 0
( (£1+_5E9 5 ’/77 0+19 lEG 9+19( (,'70 —Z)em)n(z)dz

= 0(59></0 (£+5_2)91+0q11dz>1_q1</O§n(z)qlldz>q1

A R R e e O I RGO N

E+0 0191 1-q1 &46 q1
+1)</€ (§+5—Z)1‘41dz> (/§ n(z)ﬂdz)

T(O+9
1

+ (") ! ) </0770 (o — z)%dz) o (/Ono n(z)a dz> !

1 —Eg(—nfr) T+

Il 4 26U |||

Il 2
L1 () L1 () >+

f L (Jo)
=00 )<(1 —Eg(—nfr))T(0 + 9)(1 +p1)t-a + 1 +p)i-o — ((3.4)

TO+9)(1+p)t—a

as 6 — 0, where we use the facts

0+9—1

.fo §+(5_Z)1q1 d2§1+p1

o J(E= 2T = (45— Tads < S

st

£+6 S
(€40 —2) "0 de = T,

Inll 1
L1 (Jg)

1—
e (P00 < 5 ( [P0 — ) it dz) () ds ) < ko)
+0 0 0 S FEEo)(p) 0
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Thus we obtain N(u) € C(Jo,R).
If ¢ € Jy, then for every u € C(J1,R) and any § > 0,&; < § < £+ 6 < &, one can
obtain

o { (L= Eg(—nf )| (Fu)(m)| + |(Tou)(€1)| + Iy
< OW( Eo(~€0r)) — (Ea(—nir)

Inll 1 260P) =)

[(N)u(€ +6) = (N)u(E)]

L% (Jo)

Jo)
) T T+ )+ p)i -0

as 0 > 0, where we use the fact |(Tou)(&1)| < m](Fu)(\no)] and |(Fu)(m)| <

Inll 1

M%7 Thus we obtain N(u) € C(J1,R).

With the same argument, one can verify that N(u) € C(J;,R), for everyu, € C(Ji,R), k =
2,...,m. From the above fact, we can conclude that N(u) € PC(J,R), for every u, €

C(J,R).
Step 2. N is a contraction mapping on PC(J,R).

If ¢ € Jy, for every arbitrary u,u € PC(Jy,R), by (Hs), Lemma 2.4 and Holder inequal-
ity, we get

IN () - < | / 2 By g p(— (€ — 2)°k) £z u(z), DVu(z))dz
N, / " 0 — 2 By g (— (0 — 2)R) S (2 u(z), DPu(z))dz
- /0 (€ — 2" By ga(— (€ — 2)°w) (2, 0(2), D*u(2))dz

+Np, /0”0 (no — 2)" T Egp19(—(no — 2)°k) f(2,1(2), D u(2))dz|

P B g49(— (€ — 2)°0)| f (2, u(2), DPu(2)) = f(2,(2), D"u(z))|d=

IN
S—
Ay
—~
~
|
N
&

N | (0 — )"+ Egp10(—(n0 — 2)°w)| (2, u(2), D'u(2)) — f(2,u(2), D"u(2))|d=

4
r(91+19> /o (€ = 2)" 7 (h(2)|u(z) = u(2)| + Lyl D"u(z) — D"u(z)|)d=

—F(é\frﬂ) /Ono (0 — )P (h(2)u(z) — u(2)| + Ly|D u(z) — DYu(z)|dz

IA
=
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< waa( ] (e z)gf”q?dz)l_qg (/ 5 Mz uCe) — (o)

L €0+ Ly new

+m\|u(z) —u(z)| + m\u@) —(z)|
—F(évrﬁ) ( /no (o —2) =m0 dz) o </On° h(z)qédz> ") — 7))
= (F(e +Hz9)”(L1qi po)i Lf((ésf;fg;)ﬁ) - T(0 +Tj9||)(l’$;(23)1 q2> [u(z) —a(z)]
S T +”ﬁ)”(qui(;2)1‘q2 < Lf((if;f;;ﬁ) - Nm> lu(z) = a2
IN(u) — N(@)| < MpMe|u(z) —u(z)]). (3.5)

If € € Jy, for arbitrary u,u € C(Ji, R), we get

(1) — N (@)
< | / PRy g (6 — )2 u(2). D(2)) — (2 7(2). DY)l
M, / AP~ — )R u(2), D) — F( ), D)
+ My / "~ 2 By~ — )W) (2 u(z), D)) — Sz, 0(2), DY(2))ld=

Mo T (w(€)) — Tk (@(©))]

3
r<el+z9> /0 (€ = )" (W) u(z) — W(2)| + Lyl D”u(z) — D”u(z)|)dz

My Ny,
_r(9+0)/0 (mo =2 (A

s [ 2 B ate) — (e + LyDute) — DY)
+ M| (u(§)) — Te(@(€)) |

IA

— 2" (W) u() — 72| + Lyl D u(z) — DPa(z))d>

+
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< wa( ] E<£—z)gf‘l?clz)l_(H( / 5 Mz u(e) ~ ()l

Lf£0+19 B B
m\\ﬂ(ﬁ) = ()| + M £l (w(§)) — ()l

Do (" gy ) ) ([ neraz) lute) - ute)
gt ([ =) s ([ nertas) ute) -l

+

S |-
I
I

Lf,,]0+19 B Lfn9+19 B
+m|u(z) —u(z) + m\u(z) —u(2)|
L. ) Ly ) i
S FTTI  ay HE) ~ TN+ gy () T + M (u(8)) — ((€))]
Lfn0+19 7 MmNm”h”Lé(J) ~
+m\\u(£) —a(§)[l - TO T 00 ) u() —u(e)|
Lpnt*? - MinlRll, & o) -
+m\\u(£) —a(@)l + TR A" u(€) —u(e)|
- < I ||L‘12 N Lf§0+19 ML+ Lfng-l-ﬂ - MmNmHhHL%(J)
- F(9+19)(1+p2)1*qz TO+9+1) " LO@+09+1) T(0+9)(1+py)l—a
Lynf+? Mnl|Rll, & o) -
+I‘(0 +9+1) + (6 +9)(1 + po)i—a ) [[u(€) —u(€)]|
[ 0-+9 0+ 0+
LQQ Lff Lf'r] Lfn B
= F(0+z9)(1+102)1*q2 Fr@+9+1) T@O+9+1) (0+19+1)+Mm Moy N
+ M Ly, + 1) [u(€) —a(9)||
< MpMe|uw(€) —u@)l,

Due to the condition (3.1), N has a unique fized point on PC(J,R) by Banach contrac-
tion mapping principle.

Theorem 3.2 Assume the conditions (Hy)—(Hs) hold. If MpM¢g < 1, then the problem
(1.1) has at least a solution on PC(J,R).

Proof Setting B, = u € PC(J,R) : ||ullpc < r, where r > MpMg, and Mg, Mr are
finite positive constants deﬁned by

Eo( &%)— Ee( nlk) | _ Eg(—£%%)—Eg(—£5k) 1- Ee (=¢%)
M = max{ g e 5 o ) = Bo(—ehm)—Bo(ni) @04 Nm = max{i—gi— a5}

Step 1. For every u € B, and if £ € Jy, by (Hs), Lemma 2.4 and Holder inequality, we
get
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IN

IN

IN

IN

IN

<

¢
(5 )T By g9 (— (€ — 2) ) [ (2, u(2), D"u(2))dz

—Np /’7" 2) " By g0 (— (10 — 2)°K) f (2, u(2), D u(z))dz
/ (& = 2)" " By g19(—(€ = 2)"R)|f (2, u(2), D u(2))|d=
—Np, /”0 2)" Eg g9(—(m0 — 2)°K)| f (2, u(2), D u(2))|dz

1 10 B
(9+19)/ (€ — )0 h(2)d2 —wa/o (0 — 2)P*~\h(2)d=

g 6+9—1 5 1
ra ([ TR [
o 04+9-1 70 1
g [ ot

Lq2 _N qu
I +9)(1 +P2)1*q2 mf(9+19)(1 —HDQ)lfq2
Mp — N, MF.

For every u € B, and if € € Ji, after a similar computation, we obtain

[u(E)]

IN

IN

IN

3
(€= 2" Bora(— (€~ 2RI (2. 0(2), Du(z)ldz + Mo li(u(©))

—M N, /770 2)0H0- "Egg10(— (o — 2)°k)| f (2, u(2), D?u(2))|dz

M [ = T By~ — 21 u(a), DY)l

3
! | / (€ — 2 \n(2)dz + Mo | T (u())]

T+ Jy

1 o N M,, u B
~Hn T ) / (o = 2)""""In(2)dz + T(0 + 1) /0 (e = 2)"*" " In(2)dz

1 § 0+9—1 1-q2 § 1 q2
rara [, €T ) ([ rerses)
0 0

M, Ny, o 0+0—1 1-g2 Mo 1 q2
_m (/(; (7]() - Z) 1—qo dZ) </0 h(z) q2 dZ>

My, Tk b= 1=a2 /(e ey a2
S0 0 o —z) -2 dz z)e2 dz
F(9+19)</0 (1 ) ) </0 (2) >
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M |[hll 4

M3 ) Mol 35 L7 ()
< + M, B — 4
= TO+9)(1+p)—® FTTO+0)(L+pe)me D0+ 0)(1+ po)i
[t
L2 (J)
< 1+ My Ly, — My Ny + My,
- I‘(9+19)(1+p2)1*q2< + k + )
< MpMg.

Where, Mg = max(1 + M, L — M, Ny, + M,,). Due to the definition of the ball B,.,
we must have u € B, for any € € Jy.

Step 2. N is a contraction mapping on B,.. By equation (3.5) we have, |[N(u)—N (u)| <
MpMallu(€) —u()||. The assumption MpMq < 1 implies that N is a contraction
mapping.

Step 3. N is a completely continuous operator on B, € Ji, k. =0,1,2,...,m. Similar to
Theorem 3.1, one can easy to verify that N is continuous and is uniformly bounded.
Thus, N s a completely continuous operator on B, € Ji,k=0,1,2,... m.

4 Ulam—Hyers stability analysis

Let € > 0 and ¢ : J — R™ be a continuous function. Consider

{ DY(D? + k)u(€) — f(v,u(€),Du(€))| <e, €€y, k=1,2,...,m, (41)

IA u(r) — Ip(u(é))| <e, kE=1,2,...,m,

{ DD+ oue) - SE U DN <), € k=Ldsm
A (@) — Ilu()| < v,k .

and

{ DY(D? + k)u(€) — f(&u(&), D u(€))] < ep(§), €€y, k=1,2,...,m, (4.3)
1A u(8r) — Ie(u(ép))| < ey, k=1,2,...,m. '

Definition 5 The problem described by equation (1.1) exhibits Ulam-Hyers stability if
there exists a real number denoted as Cy; 4 », such that for any given small value of € > 0,
and for any solution u within the interval [0,T] that satisfies the inequality defined by
equation (4.1), there exists a corresponding solution v within the same interval [0,T],
which fulfills the conditions outlined by problem (1.1) such that

(€)= (€)] < Cpigo & E€J. (4.4)

Definition 6 The problem described by equation (1.1) is considered to be generally
Ulam-Hyers stable if there exists a function ¢5;4. defined on the interval [0,T] with
the properties ¢ 45(0) = 0 and a positive value € > 0, such that for any solution u
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within the interval [0,T] that satisfies the inequality defined by equation (4.1), there ex-
ists a corresponding solution v within the same interval [0, T] that satisfies the conditions
specified by problem (1.1) such that

(&) = V()| < ¢rigo € € (4.5)
Remark 4.1 Keep in mind that Definition 5 = Definition 6.

Definition 7 The stability of the problem defined by equation (1.1) under the Ulam-
Hyers-Rassias framework with respect to the functions (¢,1) is established when there
exists a positive constant denoted as Cy; 45,0, such that for any given positive value of
e > 0, and for any solution u within the interval [0, T] that satisfies the inequality defined
by equation (4.3), there exists a corresponding solution v within the same interval [0, T
that satisfies the conditions specified by problem (1.1) with

[u(€) =v(&)] < Crigoee(p(€) +9) e £ J. (4.6)

Definition 8 The problem defined by equation (1.1) is said to exhibit generalized Ulam-
Hyers-Rassias stability with respect to the functions (@, 1) if there exists a positive con-
stant denoted as Cy; g0, such that for any solution u within the interval [0,T] that
satisfies the inequality defined by equation (4.2), there exists a corresponding solution
v within the same interval [0,T) that satisfies the conditions specified by problem (1.1)
with

[u(€) = v(E)] < Crigoe(p&) +9) e E€J. (4.7)
Remark 4.2 [t should be noted that Definition 7 implies Definition 8.

Remark 4.3 A function u € [0,T] is a solution of the inequality (4.1) < there exists a
function g € [0,T] and a sequence gx,k =1,2,...,m, depending on g, such that

(@) 19§ <e, |gp| <e E€dy, k=1,2,...,m,
(b) D?(D? + k)u(é) = f(&,u(€), D u(€)) +g(&), €€ Jp, k=1,2,...,m,
(c) Au(éy) = Ie(u(ép)) +gx, E€ Tk, E=1,2,...,m.

Remark 4.4 A function u € [0,T] satisfies (4.2) < there exists g € [0,T] and a se-
quence g;, k =1,2,...,m, depending on g, such that

(@) 19 <@(&), lgrl < §€J, k=1,2,...,m,
(b) DY(D + k)u(€) = f(&,u(&), D’u(€)) + g(&), &€ Jp, k=1,2,...,m,
(C) A u(§k) = Ik(u(fk)) 49k, E€J;, k=1,2,...,m.

Remark 4.5 A function u € [0,T] satisfies (4.2) < there exists g € [0,T] and a se-
quence gi, k =1,2,...,m, depending on g, such that
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(a) ‘g(g)‘ SE(p(&)? ‘gk| §€¢ fejkv k:1727"'1m7
(b) D’(D? + k)u(§) = f(&,u(8), D u()) +9(8), §€Jp, k=1,2,....m
(C) A U(gk) :Ik(u(gk))+gka 56 Jk’7 k= 1>2""am

Theorem 4.6 If the assumptions (Hy)— (Hy) and the inequality (3.1) hold, then model
(1.1) s Ulam—Hyers stable and consequently generalized Ulam—Hyers stable.

Proof Let v € [0,T] satisfies (4.1) and let u be the only one solution of

Au(gr) = u(€) —u(§™) = u(§),
U(O) = 07 U(nk) = O,’U,(l) = 0,77k = (é-k:agk‘-l-l)a k= 07 1727 cee, M — 1.
By Theorem 2.11, we have for each £ € Ji

{ D’(D? + kyu(€) = f(& u(€), D u(é)), £€J =J—{&,8.8,....6n}, T =[0,T),

13
/ (€ = 2)" 0By gy (— (€ — 2)°m) f(2, u(2), DPu(2))dz

~ N / " o — 240 "Eg049(—(m0 — 2)°K) f(z,u(2), D’u(2))dz, for & € Jo,
u(€) = /O(g TRy oo (—(€ — 2)0%) £ (2, ulz), D”u(2))d=

+ My I (u(€)) — My, Ny, /Ono<n0 — z)9+‘9_1E979+19(7(770 — Z)eli)f(z, u(z), Dﬂu(z))dz

+ M, /nk )0+ YEgg19(—(nk — 2)?k) f(z,u(z), D"u(2))dz, for & € J.

Since v satisfies inequality (4.1), so by Remark 4.3, we get

DYDY + k)v(€) = f(&v (&), Dv(€) +gr, E€J =J—{&,60,83,...,Em},J =[0,T],
Av(&) = v(ET) —v(€7) = Lw(€) + g,

V(O) = 07 V(Uk) :O,V(l) :Oynk = (fknfk—l—l)ak = 0,1,2...,’[71— 1.
(4.8)
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Obviously the solution of (4.8), will be

+ M, /0% (e — 2)P TP B g ro(— (e — 2)K)gr(2)dz, for € € Jp,k={1,2,3,...,
Therefore, for each € € Jo, we have the following
u(©) ~ (e < | / 2N E gy (—(€ — 20 (2, u(z), Du(z))dz
=N [ 0 = 2" B (= = ) £z (), D a2
- / (€ = 2" By gy (— (€ — 2)K) F(2,0(2), DP(2)dz
N / P B gy (— (10 — 2)°k) (2, v(2), DPw(2))dz

/ (€= 2 By o (€ — 2)R)F (2, v(2), DY (=)

+ /0 5(& — )" Bpg40(— (€ - 2)’w)g(2)dz

= N [ 0= 2T B~ — 2R (), Dw(2)s

= N [ 0= 2 B (~(m ~ 2 R)g(2)dz, or €€ o,

/0 (€ = 2" B o (— (€ — 2)°R) f (2 (2), Dw(2))dz

+ (6= 2 Byga(—(€ - ) R)gr(2)dz + Mo (€) + g1(6)
— M,,Np, /770 2) 0 By g1 9(— (0 — 2)PK) f (2, v(2), DYv(2))dz
Mo [ = 2 B sol—(m = )W) 0(2), D ()

7o
— MmNm/ (o — )T Eg o19(— (00 — 2)°k) gr(2)dz
0

+ / (€ — 2" By g g(—(€ — 2)R)g(2)dz

"0 201 0
—Np / By o40(— (0 — 2)"k)g(2)dz

m}.
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3
< /0 (€ - z)9+1971E9,0+19<_(§ - Z)GH)U(Z,U(Z),Dﬁu(z)) — f(z, V(Z),Dﬂl/(z)”dz
—Np, /0”0(770 — 2)0 T By g1 9(— (0 — 2)78)| f(2,u(2), D7u(2)) — f(z,v(2), D’v(2))|dz
3

e /0 (€ — 2T By g (— (€ — 2)°R)dz — Npne /0 " (0 — 2" By gra(— (0 — 2)°)dz

3
< F(Qlﬂg)/o (€ = )" (n(2)|u(2) — v(2)| + Ls| D u(z) — D’v(z)|)dz
_le“(01+z9) /0710 (no — 2)"T7 1 (h(2)u(2) — v(2)| + Ly|D?u(z) — D’v(z)|d>
€ ¢ m€ 0 _
trg €= e [ -
1 £ 0+0-1 1-g2 3 1 q2
< ([0 a) ([ ueEa) e - vol
0+9
e ol
1 1o 0491 1-g2 70 1 2
N ([ =25 as) ([ hrEes) lute) - vie)
L f779+’9 e£0+? Nmen‘”ﬁ
+ﬁ?I%IﬂW“y_””“‘w+ﬁww+ﬁy+w+ﬁwé+ﬁ)
Il o
S T (O ~ O + g 1) — (o)
Nolhll 1 L4
72 (J) il
T ) — O + s (e (o)
gt N+

T(O4+9+1) TO+09+1)

L
Mel©) ~ Ol + g €% + i ) — (€] - Modiule) (O]
Eéeﬂg ]\7m€77(‘§)+7L9

TO+9+1) TO+9+1)

IN

L€ +ng™)
T(0+9+1)

IN

(Mp — MoMp)|[u(§) — v(§)[l +

[u(€) = v(E)]

L Nmeg"
TO+9+1) TO+9+1)

N, ng+19 _ 504—19 .
) .

[u(€) =€) < <(MF — MoMp +2L)0(0+ 0 + 1 (4.9)
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If € € J, for arbitrary u,v € C(Jx, R), we get

IN

IN

[u(€) = v(&)]
3
/0 (&= 2)" " Bopr0(=(€ = 2)°R)|f(2,u(2), D'u(2)) = f(z,v(2), D v(2))|d>

70

~Mpn N | (0= 2)" " By r0(— (0 — 2)°K)|f (2,u(2), D'u(2)) — f(z,v(2), D"v(2))dz

+ M, ; (1 — 2)"*"  Eogro(—(m — 2)°k)|f (2, u(2), D’u(2)) — f(2,v(2), D v(2))|d=

3
+/O (& = 2)" " Egp40(—(€ = 2)°R)|gr(€)|dz + My || I (u()) — Te(v(€))ll

7o

— M, Ny, ; (no — 2)" " By g49(— (0 — 2)°k)|gk (€)|dz

+M,, /Onk (e — 2)" " B o0(—(mk — 2)°6) |9k (€)|dz + Mingi(€)

1 ¢ _
S | €D BEIO) ~ O]+ Ly D u(z) ~ Dv())dz
ML (€)= O] = 7t [ o= =) b)) = O]
+Ly|D"u(z) = Dw(e) s+ gy [ = e — (o))

3
VL D%u(z) — DPw(2)|)dz + Mye + 1“(9119)/ (€ — P+,
0

My, Npe [ +9—1 eMp, /nk 0+9—1
o [M =0t g s [ 20

3 049—1 1=q2 3 1 q2
o ([e-aTRa) ([ aea) uo - vol
L §0+19 L 779-1-19
+f@£§ITﬂMQ—V@W+AhJNW@W—IW®W+Fwi§+1ﬂMQ—V@N

o ([0 o)) ([ herias) e -

Mm Nk 0+9—1 I_QZ Nk 1 q2

trgg (=0T a) ([T aeEa) e - e
&' M Npengt’ | Mmeng ™ Lyng ™

O+0+1) TO+9+1) T(O+9+1) TO+0+1)

T u(€) — V()] + Mine
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T .
RO u(e) = v(€)| + o i (€ Y ) u(€) — (€]

<
S TO+ )1 +p) L@ +9+1)
M N || 2| 049
Lis (J 29
"‘v‘MmLkHU(g) - V(&)H - (9 ¥ 19)( 2)1 >q2 ”u(§) - V(g)” + m
Mm”h”Lé(J) My Npeny ™ Myeni ™’

O 00+ oy MO Ol T T T o1 T M

(§6+19 4 779+19 + anﬂ?

M&%MS(MmeM+mm+mm+ Qw@wm

(O +9+1)
0+ 0+0 6+
193 B My, Npeng . Mpen, M

re+v+1) rLO+9+1) TO+I9+1)

Thus
[u(§) —v(§)| < eCrg0.-
Where
§9+19 MmNmW6+ an
o _ TOF9FD  T@wo+n T r(e+19+1) + M
L90.9 1 — (Mp + 3Ly + My Ly,)

So equation (1.1) is Ulam—Hyers stable and if we set ¢(e) = €Cy 49, 0,, ¢(0) = 0, then
equation (1.1) is generalized Ulam—Hyers stable.

Theorem 4.7 If the assumptions (Hy) — (Hy) and the inequality (3.1) are satisfied,
then the problem (1.1) is Ulam—Hyers—Rassias stable with respect to (p,1), consequently
generalized Ulam—Hyers—Rassias stable.

Proof Let uw € [0,T] be a solution of the inequality (4.3) and let u be the only one
solution of the problem (1.1).
From Theorem 4.6, ¥ v € Jy, we get Therefore, for each & € Jy, we have the following

u(€) - v(©)] < | / DI By g10(—(€ — 2)'%)F (2, u(2), D7u(2))dz
=N [0 = 2" B~ = ) £z u(2), D)
- / (€= )™ By gyg(— (€ — 2)'K) F(z, (=), D'u(2)dz
[ = 2 B (= = 210 (2, (2), D ()i
+ / (€ = )™ By a1 (—( — ) R)g()dz

770
—Np, / 2)P T Eg gyg(— (0 — 2)°K)g(2)dz
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£
/ (€ — 2 By g, o(— (€ — 2)°%) [ (2, u(2), D*u(2)) — f(z, v(2), D"w(2))|d=
N, / By 4o (— (0 — 2)°K) £ (5, u(2), DPu(2)) — f(2,v(2), D'w(2))|d=
e /0 (€ — 2 By gy a(— (€ — 2 R)p(2)dz
Npe / " o — 2 B gro(— (0 — 2)Pk)e(2)d>
1 £
T /0 (€ — 2T () [u(€) — (E)]| + Ly D u(z) — D’w(2)])dz
1) /0 (10 — 2701 (=) [u€) — w(E)]| + LI DPu(z) — D”w(z)|dz
€ £ m€ 0 _
T L €A e - 1= [ = (s

o ([eo%8e) " ([Trewe:) e - vl + Lo - veol

Ny ([ w27 ) ([ nera:) “hute) - ol

0+ 0+
FLplu(E) - ()] - 2

Kpp(2) Nmeny ™ kpp(2)

O@+NCO+9)  (@+)T(O+9)

€ rpp(€) | Nmeng ™ hpp(€)
re+v9+1) re+v9+1)

(Mp — MoMp)|[u(§) = v(E)I + 2L¢l[u(§) = v(E)I] -

Nmnt9+19 _ 56’4—19
[ul€) =v(Ol = <(MF - MOMF0+ LT (O + 0+ 1)

Jenete. @10

If &€ € Ji, for arbitrary u,v € C(Jx, R), we get

IA

u(€) - v(€)]
3
[ (6= 2 Bogaa (6 — 2R aru(2). Dul2) - f a0 Dw()ds

M, N, / )" By o (= (10 — 2)°R)| £ (2, u(2), DPu(2)) — f(z,0(2), D"w(2))|d2
My, /0 " e = 2 B~ — 2RI (), DPu(2)) — £z, 0(2), Dw(2)ldz

n / (€= 2 By o~ (€ — 2 W) lgr(©)ldz + Mo (u(=) ~ ()]

M N, / &) By g g (—(10 — 2)7w) 9w (€)|d2

+Mm/0 (i — 2)" " By g9 (— (e — 2)°k)[gx(€)|dz + Mimgi(€)
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1 .
= r(@w)/o (€ = )" P (h(2)|[u(©) — w(&)| + Ly|DPu(z) — D’w(2)|)dz
—I% /Ono(no — 2)" 7 ((2)[u(€) — v(©)Il + LI D u(z) — D w(2)|)d=

g /f(nk — 2" () [u(€) — v(©) | + LelD u(z) — D'u(z)|)dz

€

3
T /0 (€ = 2)" T (2)dz + M| I (u(2)) — Tu(v(2)]
%’;‘]I’gj /Ono(noz)”q9 'o(2)dz + 5 9+19 / 20710 (2)dz + Mye
04191 1-g2 L
< el / (€ - 9T a:) ( )¥dz) u(e) = ] + Lyllu(e) - v(e)

+ M [ (u(2)) — I (v(2))[| + 2L [u(€) — (5

770 9+191 1-g2 L
T o aFEe) ([ e )“u

77k 9+1971 1-q
0+19< ; (g — 2) 122 dz> < q2dz> llu(€)

" kpp(€) My Nmenh ™ rp0(§) Mmen?%so(f)
(9+19+ 1)  T@O+9+1) re+v9+1)
Mp|lu(€) = v(E)| + Llu(€) — v(E)|| + ML |w(€) — v(&)|| — My Ny Mp||u(€) — v(€)]|

FLlu(€) = vl + M Mp|u(€) — vl + Lllu€) — v

+ M€

IN

0+ M N 0+19 Mm 0+
+< : 5 o+ Mm) ekpp(§)
TO+9+1) (9+19+1) U0 +0+1)
egf+? My N e o+9 ]\/[me’r]

< F(9§—ﬁ+1) B F(9+79—Z(i) I‘(9+19+1) + MmEH ©

- 1 — (Mp + 3Ly + MpIy) PSS
Thus

[u() —v(&)] < Cpg09€600(8).

Where

£9+19 MmNmn(9+19 M 779+19
TOToTD) ~ T@to+D) | TerorD

1—(MF+3Lf+M I )

M,

Crg00 =

Example 4.8 Let us consider the following impulsive fractional Langevin equations

1
1 1 o E4+D2u(€
D (D3 1) u(e) = o i gy €€ 0.1V (3}
Az (1) =01, (1)
2(0)=0, =z(;)=0, =z(1)=0.
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SetG:%,ﬁz%,/ﬁ:1,51:%,I1:0.1,770:%,J:[0,1],m:1,and
1
(& u(8), Du(g)) = %, (&,2) € J x [0,00). For any z1,22 € R and £ €J,
we have |f(&,21) — f(& 22)| < 555l71 — 22|, which implies that f satisfies the Lipschitz
condition with h(-) := 2—10 € L?(J,R). Moreover, for all z € R and each ¢ € J,
we have |f(§,u(§))| < 555, which implies that f satisfies the growth condition with
n(-) == ﬁ € L*(J,R). For ¢ € J and qu = %, it is easy to compute py = —%, and
Mp = 0.0054, Mg = 0.954.

Next, we provide two potential methods to compute the Mittag-Leffler functions Eq,
which will aid in verifying the condition (3.1) in the above main theorems.

It follows the series formula for Eg(—z) where z > 0. Using Mathematica, we can
calculate: Eg(—nok) = 0.6157, Eg(—&1k) = 0.5781, and Eg(—k) = 0.4276. Notably, it’s
evident that MpM, = 0.0051516, which is less than 1.

Hence, all the assumptions in Theorems 3.1 and 3.2 are satisfied, allowing us to apply

our results to the problem (4.11) whose solution is given by:

Thus, by Theorem 3.1, (4.11) has a unique solution. Further the conditions of Theorem
4.6 are satisfied so the solution of (4.11) is Ulam—Hyers stable and generalized Ulam—
Hyers stable. Further it can be easily verified that the conditions of Theorem 4.7 hold
and thus (4.11) is Ulam—Hyers—Rassias stable and consequently generalized Ulam—Hyers—
Rassias stable.

5 Conclusion

In conclusion, this paper delves into the study of a specific class of impulsive fractional
Langevin equations. It achieves this by deriving solution formulas that incorporate
Mittag-Leffler functions and impulsive terms. The solutions are a result of a compre-
hensive analysis of linear Langevin equations, which involve distinct fractional deriva-
tives. The paper further establishes the existence of solutions through the application
of various mathematical tools, such as the boundedness, continuity, monotonicity, and
non-negativity properties of Mittag-Leffler functions, while employing fixed point meth-
ods.
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Moreover, the study sets forth the necessary conditions and outcomes to discuss the
existence, uniqueness, as well as different forms of Ulam—Hyers and Ulam—Hyers—Rassias
stability, all concerning the proposed model. These results are established with the aid
of a fixed point theorem. To solidify the theoretical findings, the paper provides practical
illustration through a concrete example, thereby demonstrating the practical relevance
and applicability of the developed mathematical framework.
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