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Abstract

Secure two-party computation is always the focus in the international crypto-
graphic community, and establishing a secure two-party computation for determin-
ing the equality of data is a fundamental and crucial task within this field. There
is still substantial room for improvement in terms of efficiency and security, so it is
worth exploring further. In this paper, two theorems are proved from camera imag-
ing of straight lines on a flat surface and the equality judgement of data between the
two-party is innovatively converted into judging whether the inner products of the
vectors owned by the two parties are zeroes. Based on the specific property of these
vectors, a security protocol is established to determine whether those inner prod-
ucts are zeroes, which realizes the protocol scheme of judging the data equality of
two-party under the semi-honest model and analyses its security theoretically. The
scheme needs key stream for dynamic data encoding, since only basic arithmetic
operations (integer addition, subtraction and multiplication) and a final modulus
operation are required after encode without high-order and decimal operations, and
the communication complexity is O(1), which greatly improves the efficiency. This
scheme may not fit for malicious model, we could use the existing agreements of
malicious model to determine whether those inner products are zeroes, by the con-
version in this paper we also could complete the equality judgement.

Key words: Secure Multi-party Computation, Data equality test, Semi-honest model, key

steam

1 Introduction

Secure two-party computation (2PC) is a field of cryptography involving two mutually
distrusting parties who wish to securely compute an arbitrary function on their private
input so that each of them can learn some private outputs. This field is proposed by
Yao [1], who proposed a protocol for the millionaires’ problem, that is, to determine
which of the two participants is richer, so that no information about a party’s amount
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of assets is leaked to the other party, specifically for the semi-honest model where both
parties are assumed to follow the prescribed protocol. It lays the groundwork for sub-
sequent research of cryptography and privacy protection. In [2], Cleve demonstrated an
impossibility by revealing that certain functions could not be computed with complete
fairness unless there was an honest majority. Subsequently, Goldreich et al. [3] presented
a solution within the malicious setting, where one of the parties might deviate arbitrarily
from the prescribed protocol, offering a general theoretical resolution to issues in secure
multi-party computation and its security. Nonetheless, the efficiency of this protocol
was hindered as it relied on public-key operations for each Boolean gate in the circuit
describing the function to compute. Subsequent extensive research in the field of 2PC
has led to the development of practically efficient protocols that are secure against both
semi-honest and malicious adversaries [4]- [9]. These studies not only propelled the the-
oretical development of 2PC but also provided practical tools for real-world applications
like e-commerce and data mining.

The private comparison of the equal information is a very important problem. The
development of 2PC protocols also includes various solutions based on comparison prob-
lems, such as Cachin’s third-party based GT protocol and the GT protocol developed by
Ioannidis and Grama using Oblivious Transfer (OT). Boudot [10] proposed a protocol
addressing the socialist millionaires’ problem, wherein two millionaires seek to determine
if they are equally rich. For active adversaries, Lo [11] shows that the equality function
cannot be securely evaluated between two (all-powerful) parties. However, if the addi-
tional assumptions are made, the goal can be obtained. Bogdanov et al. [12] present a
provably secure and efficient general-purpose computation system to address sensitive
data. Damgard [13] used the additional assumption of bounded quantum storage to
achieve the secure evaluation of the equality function. It is possible that an additional
party as considered allow for the secure computation of the equality as well. Yang et
al. [14] proposed an efficient protocol for two-party quantum private comparison with
the TP’s help and the hash function. However, the hash function cannot guarantee a
one-to-one mapping, that is, when two characters are not equal, the corresponding hash
values may be equal, which makes the protocol unable to guarantee the correctness of
the judgement theoretically. The literature [15], with the help of a third party (TP),
proposes an effective equivalent information comparison protocol. Assuming the TP is
semi-honest, that is, the TP faithfully executes the protocol, records all intermediate
calculations, and may attempt to steal the player’s private input from the record, but
he cannot be corrupted by the opponent. In [16], the problem of personalized multi-
keyword ranking search for encrypted data in cloud computing is studied and solved for
the first time under the premise of privacy protection. Furthermore, Couteau [17] intro-
duced new protocols for securely computing the greater than and the equality between
two parties, which is very suitable for large-scale secure computing protocols, including
security comparison (SC) and equality testing.

From a large number of research literatures, the transformation of the research on
secure 2PC from traditional secure two-party protocols to quantum encryption shows
that the problem still has further improvement needs and hopes to find solutions from
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new research methods. To determine whether the data of two-party are equal, the data
of two-party can be converted into the space pinhole coordinates of the third three-
dimensional integer type with non-zero component by injective method according to
the convention. Then, whether the data of the two-party are equal is converted into
whether the three-dimensional integral type space pinhole coordinates of the two-party
are the same. This paper innovatively finds a secure two-party protocol that converts the
judgement of whether the data of two-party are equal to the inner product of vectors from
the principle of pinhole imaging of plane linear. We first analyze the principle of pinhole
imaging of planar straight lines and important conclusions related to the protocol, and
then apply the relevant conclusions to determine whether the two numbers are equal,
and establish a secure two-party calculation to determine whether the two numbers are
equal to the vector inner product. Because the data does not appear separately in each
component of the vector, it can well protect the security of the data.

2 Pinhole imaging principle of straight lines in a plane

2.1 Principle of pinhole imaging

First establish a coordinate system {O; i, j,k} in the object space, referred as the world
coordinate system. Let P0(x0, y0, z0)be the world coordinate of the camera’s pinhole,
The camera axis line passing through the pinhole in the z′ direction is k′ = (l3,m3, n3),
which points from the pinhole towards the outside of the camera, perpendicular to the
receiving screen. The plane perpendicular to the camera axis line at the pinhole is called
the camera plane. Let the direction vector of x′ be i′ = (l1,m1, n1) , representing the
horizontal direction of the camera plane, and consequently, the vertical direction of the
camera plane is j′ = k′ × i′ = (l2,m2, n2). Assume the distance from the pinhole to the
plane where the receiving screen is located is d, and that the receiving screen’s plane is
perpendicular to the axis line.

Let P (x, y, z) be any point in the world coordinate system, and (x′, y′, z′) be the
corresponding point in the pinhole coordinate system. Then, we have x

y
z

 =

 l1 l2 l3
m1 m2 m3

n1 n2 n3

 x′

y′

z′

+

 x0
y0
z0


Letting x = [x, y, z]T , x′ = [x′, y′, z′]T , x0 = [x0, y0, z0]

T , R =

 l1 l2 l3
m1 m2 m3

n1 n2 n3

,

then the above equation can be written as x = Rx′ + x0

Let P ′(u′, v′,−d) be the correspond point on the receiving screen after pinhole imag-
ing of P (x, y, z), then we have u′

x′ = v′

y′ = −d
z′ , denote u′ = [u′, v′, 1]T ,

Λ =

 −d 0 0
0 −d 0
0 0 1

,

then u′ = 1
z′ Λx′ = 1

z′ Λ(RTx − RTx0), simplifying it we can get u′ = 1
z′ Λx′ =
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1
z′ Λ

[
RT t

] [ x
1

]
, here t = −RTx0.

Let the pixel coordinate P ′(u′, v′,−d) corresponding to the coordinate P ′′(u, v) on

the receiving screen as the following formula:

 u
v
1

 =

 α′ γ′ u0
s′ β′ v0
0 0 1

 u′

v′

1

,here u

represents the row and v represents the column in the pixel coordinates.

Denote K =

 α′ γ′ u0
s′ β′ v0
0 0 1

 and zp = l3x+m3y+n3z+ z′0, then by rearranging the

above formula, we get u = 1
zp
KΛ

[
RT t

] [ x
1

]
, where u =

[
u v 1

]T
.

By orthogonal decomposition of

KΛ =

 −dα′ −dγ′ u0
−ds′ −dβ′ v0

0 0 1

,

there exist K ′ =

 α γ u0
0 β v0
0 0 1

 and θ which satisfy

 −dα′ −dγ′ u0
−ds′ −dβ′ v0

0 0 1

 = K ′

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


Denote

 l′1 m′1 n′1 x′′0
l′2 m′2 n′2 y′′0
l′3 m′3 n′3 z′0

 as cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 l1 m1 n1 x′0
l2 m2 n2 y′0
l3 m3 n3 z′0

,

then it is not difficult to obtain that
( l′1 m′1 n′1 )T , ( l′2 m′2 n′2 )T

are the world coordinates of the vectors obtained by rotating i′, j′ counter-clockwise
θ within the horizontal plane of the pinhole coordinate system.

For the ease of subsequent discussion, the two vectors after rotation are still denoted
as i′ = ( l1 m1 n1 )T , j′ = ( l2 m2 n2 )T . In the new pinhole coordinate system
{P0; i

′, j′,k′}, let (x′′0, y
′′
0 , z
′
0) be the coordinates of the world coordinate system’s origin

in this system. For convenience, we still denote (x′0, y
′
0, z
′
0) = (x′′0, y

′′
0 , z
′
0) ,

[
RT t

]
= l′1 m′1 n′1 x′′0

l′2 m′2 n′2 y′′0
l′3 m′3 n′3 z′0

 and K =

 α γ u0
0 β v0
0 0 1

.

Using the agreed notation, leading to the following vector form pinhole imaging formula:

u =
1

zp
K
[
RT t

] [ x
1

]
(2.1)
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Assuming there is a receiving screen shifted outward by one unit on the horizontal
plane of the new pinhole coordinate system, then the coordinate of the pinhole imaging

point u = ( u v 1 )T satisfies u′ = 1
zp

[
RT t

] [ x
1

]
. After undergoing rotation,

translation, and stretching transformations K =

 α γ u0
0 β v0
0 0 1

, the pixel coordinate

(u, v) satisfies the formula

 u
v
1

 =

 α γ u0
0 β v0
0 0 1

 u′

v′

1

 , which collectively repre-

sents Imaging Formula (1). This understanding is equivalent to the principle of pinhole
imaging.

2.2 Imaging lines that correspond to straight lines

Let P1(x1, y1, y1) be a fixed point , and v = (l,m, n)T be the direction vector of a line
passing through P1. For any point P (x, y, z) on this line, P (x, y, z) satisfies the equation:
x−x1
l = y−y1

m = z−z1
n .

Let P ′′(u, v) be the pixel coordinates obtained using the pinhole imaging formula

(1). Denote a = (v,
−−−→
P0P1, i

′), b = (v,
−−−→
P0P1, j

′), c = (v,
−−−→
P0P1,k

′), according to the
equivalent principle of pinhole imaging, the corresponding imaging line equation for the
above spatial line is:

(a, b, c)K−1

 u
v
1

 = 0

Since the three components of (a, b, c) are the inner products of v×
−−−→
P0P1 with i′, j′,k′

respectively, in the world coordinate system, (v×
−−−→
P0P1)R precisely corresponds to vector

(a, b, c). Thus, the line equation in the pixel coordinate system can be simplified to

(v ×
−−−→
P0P1)R)K−1

 u
v
1

 = 0 .

Here v ×
−−−→
P0P1 = (v ×

−−−→
P0P1)E

= ((v,
−−−→
P0P1, i), (v,

−−−→
P0P1, j), (v,

−−−→
P0P1,k)) .

Assuming that the pinhole does not originate from the horizontal plane of the world
coordinate system. Therefore, the third component of its world coordinates is not zero,
and this assumption is followed throughout. Suppose there are vectors of three lines on
a plane passing through the origin of the world coordinate system and their respective

points denoted as vi, Pi, i = 1, 2, 3 . Let M1 =

 v1 ×
−−−→
P01P1

v2 ×
−−−→
P01P2

v3 ×
−−−→
P01P3

 be an invertible matrix,

where P01 is the pinhole coordinate.
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Additionally, consider the vectors of three other lines on the previously discussed

plane and their respective points as v′i, P
′
i , i = 1, 2, 3 . Let M2 =

 v′1 ×
−−−→
P02P

′
1

v′2 ×
−−−→
P02P

′
2

v′3 ×
−−−→
P02P

′
3

 be an

invertible matrix, where P02 is the pinhole coordinate.

Theorem 1. Assume M1,M2 are invertible, the matrix M2M
−1
1 is calculated as men-

tioned above.

1) Let vi, Pi, i = 1, 2, 3 and v′i, P
′
i , i = 1, 2, 3 be fixed,

and the pinhole coordinates P01, P02 be collinear with the world coordinate origin. If per-
turbations are applied to the two pinhole coordinates while maintaining this collinearity
and fixed ratio, then the resulting matrix remains unchanged;

Especially, if P01 = P02 , then M2M
−1
1 is independent of P01 .

2) Let vi, Pi, i = 1, 2, 3 and v′i, P
′
i , i = 1, 2, 3 be fixed, and P01, P02 be the pinhole coordi-

nates. If P01 is unchanged and P02 is perturbed, then the resulting matrix will necessarily
change;

3) Let vi, Pi, i = 1, 2, 3 and v′i, P
′
i , i = 1, 2 be fixed,v′i, i = 1, 2 be non-collinear, and

, P01, P02 be pinhole coordinates. If P01 is unchanged and P02 is perturbed, then the
resulting matrix will necessarily change. In this case, M2 is a two-row, three-column
matrix;

4) Let vi, Pi, i = 1, 2, 3 and v′i, P
′
i , i = 1, 2, 3 be fixed, and vi, i = 2, 3 be non-collinear,

with and P01, P02 as the pinhole coordinates. Then, if P01 remains constant and P02 is
perturbed, then the resulting matrix M2M

−1
1 (:, 1 : 2) will necessarily change;

Proof: (1) Since the concepts of co-planarity, collinearity, fixed ratio, and identical
points do not change through orthogonal transformations , and since (M2R)(M1R)−1 =
M2M

−1
1 , the discussion of vi, Pi, i = 1, 2, 3 and v′i, P

′
i , i = 1, 2, 3 from a general plane

passing through the origin can be transformed into a discussion from the horizontal plane
in the world coordinate system.

As M1 =

 (v1,
−−−→
P01P1, i) (v1,

−−−→
P01P1, j) (v1,

−−−→
P01P1,k)

(v2,
−−−→
P01P2, i) (v2,

−−−→
P01P2, j) (v2,

−−−→
P01P2,k)

(v3,
−−−→
P01P3, i) (v3,

−−−→
P01P3, j) (v3,

−−−→
P01P3,k)

,

let vi, i = 1, 2, 3 be parallel to the horizontal plane of the world coordinate system, with
the world coordinates of Pi, i = 1, 2, 3 being (xi, yi, 0) . Let the coordinates of P01 be
(x01, y01, z01) , and let vn = (λn, µn, 0) , then

(vn,
−−−→
P01Pn, i) =

∣∣∣∣∣∣
λn µn 0

xn − x01 yn − y01 −z01
1 0 0

∣∣∣∣∣∣ = −z01µn,

(vn,
−−−→
P01Pn, j) =

∣∣∣∣∣∣
λn µn 0

xn − x01 yn − y01 −z01
0 1 0

∣∣∣∣∣∣ = z01λn,
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(vn,
−−−→
P01Pn,k) =

∣∣∣∣∣∣
λn µn 0

xn − x01 yn − y01 −z01
0 0 1

∣∣∣∣∣∣ = λn(yn − y01)− µn(xn − x01).

For similar notations regarding v′i, P
′
i , i = 1, 2, 3 and P02 , we have

M2 =

∣∣∣∣∣∣
−z02µ′1 z02λ

′
1 λ′1(y

′
1 − y02)− µ′1(x′1 − x02)

−z02µ′2 z02λ
′
2 λ′2(y

′
2 − y02)− µ′2(x′2 − x02)

−z02µ′3 z02λ
′
3 λ′3(y

′
3 − y02)− µ′3(x′3 − x02)

∣∣∣∣∣∣. SinceM1 =

 −z01µ1 z02λ1 y1λ1 − x1µ1
−z01µ2 z01λ2 y2λ2 − x2µ2
−z01µ3 z01λ3 y3λ3 − x3µ3



×

 1 0 −x01
z01

0 1 −y01
z01

0 0 1

,

so |M1| =

∣∣∣∣∣∣
−z01µ1 z01λ1 y1λ1 − x1µ1
−z01µ2 z01λ2 y2λ2 − x2µ2
−z01µ3 z01λ3 y3λ3 − x3µ3

∣∣∣∣∣∣
= −z201

∣∣∣∣∣∣
µ1 λ1 y1λ1 − x1µ1
µ2 λ2 y2λ2 − x2µ2
µ3 λ3 y3λ3 − x3µ3

∣∣∣∣∣∣
After simplification, we get
M2(1, :)M

−1
1 (:, 1) =

−z02µ′1
z02λ

′
1

(−(x01z01
− x02

z02
)z02µ

′
1 + (y01z01

− y02
z02

)z02λ
′
1

+λ′1y
′
1 − µ′1x′1)



T

−z01

∣∣∣∣∣∣∣∣
µ1 λ1 y1λ1 − x1µ1
µ2 λ2 y2λ2 − x2µ2
µ3 λ3 y3λ3 − x3µ3

∣∣∣∣∣∣∣∣

×



∣∣∣∣λ2 y2λ2 − x2µ2
λ3 y3λ3 − x3µ3

∣∣∣∣∣∣∣∣µ2 y2λ2 − x2µ2
µ3 y3λ3 − x3µ3

∣∣∣∣
−z01

∣∣∣∣µ2 λ2
µ3 λ3

∣∣∣∣


If P01 and P02 are collinear with the world coordinate origin, then ∃ν such that

(x01, y01, z01) = ν(x02, y02, z02) . Since the pinhole coordinates are not on the horizontal
plane here z01 6= 0, thus ν 6= 0 .

Therefore, −x01
z01

+ x02
z02

= −νx02
νz02

+ x02
z02

= 0 ,y01z01
− y02

z02
= νy02

νz02
− y02

z02
= 0

Consequently,
M2(1, :)M

−1
1 (:, 1) =

− z02
z01
µ′1

z02
z01
λ′1

λ′1y
′
1 − µ′1x′1


T

∣∣∣∣∣∣∣∣
µ1 λ1 y1λ1 − x1µ1
µ2 λ2 y2λ2 − x2µ2
µ3 λ3 y3λ3 − x3µ3

∣∣∣∣∣∣∣∣



∣∣∣∣λ2 y2λ2 − x2µ2
λ3 y3λ3 − x3µ3

∣∣∣∣∣∣∣∣µ2 y2λ2 − x2µ2
µ3 y3λ3 − x3µ3

∣∣∣∣
−
∣∣∣∣µ2 λ2
µ3 λ3

∣∣∣∣


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Thus M2(1, :)M
−1
1 (:, 1) remains unchanged under condition (1) of Theorem 1. Simi-

larly, M2(i, :)M
−1
1 (:, j), i, j = 1, 2, 3 also remains unchanged under condition (1) of The-

orem 1.

(2) Given M2 =

 −z02µ′1 z02λ
′
1 y′1λ

′
1 − x′1µ′1

−z02µ′2 z02λ
′
2 y′2λ

′
2 − x′2µ′2

−z02µ′3 z02λ
′
3 y′3λ

′
3 − x′3µ′3


×

 1 0 −x02
z02

0 1 −y02
z02

0 0 1

,

when other conditions remain constant and only P02 is perturbed, then at least one of
x02
z02

,y02z02
, and z02 will change. Due to the invertible of M2 , if z02 changes, then the first

two columns of M2 must have a changing component. Therefore, if z02 remains constant,
then one of x02

z02
or y02

z02
must change. Consequently, changes, leading to the change of 1 0 −x02

z02
0 1 −y02

z02
0 0 1

, and thus M2 changes.

(3) Given

M2 =

 −z02µ
′
1 z02λ

′
1

(
y′1λ
′
1 − x′1µ′1

+(x02µ
′
1 − y02λ′1)

)
−z02µ′2 z02λ

′
2

(
y′2λ
′
2 − x′2µ′2

+(x02µ
′
2 − y02λ′1)

)
,

when other conditions remain constant and only P02 is perturbed, then at least one of
x02 , y02 , and z02 will change. If z02 changes, the components of the first two columns
of M2 must change. Therefore, if either x02 or y02 changes, given the non-collinearity of
vi, i = 1, 2,[
x02µ

′
1 − y02λ′1

x02µ
′
2 − y02λ′2

]
=

[
µ′1 −λ′1
µ′2 −λ′2

] [
x02
y02

]
must change.

Consequently, M2 changes. With everything else remaining constant, M−11 remains
unchanged, hence M2M

−1
1 changes.

(4) Let

α1 =

∣∣∣∣λ2 y2λ2 − x2µ2
λ3 y3λ3 − x3µ3

∣∣∣∣ , α2 = −
∣∣∣∣λ1 y1λ1 − x1µ1
λ3 y3λ3 − x3µ3

∣∣∣∣
α3 =

∣∣∣∣λ1 y1λ1 − x1µ1
λ2 y2λ2 − x2µ2

∣∣∣∣ , β1 =

∣∣∣∣µ2 y2λ2 − x2µ2
µ3 y3λ3 − x3µ3

∣∣∣∣,
β2 = −

∣∣∣∣µ1 y1λ1 − x1µ1
µ3 y3λ3 − x3µ3

∣∣∣∣ , β3 =

∣∣∣∣µ1 y1λ1 − x1µ1
µ2 y2λ2 − x2µ2

∣∣∣∣,
γ1 = −

∣∣∣∣µ2 λ2
µ3 λ3

∣∣∣∣ , γ2 =

∣∣∣∣µ1 λ1
µ3 λ3

∣∣∣∣ , γ3 = −
∣∣∣∣µ1 λ1
µ2 λ2

∣∣∣∣.
Let m =

∣∣∣∣∣∣
µ1 λ1 y1λ1 − x1µ1
µ2 λ2 y2λ2 − x2µ2
µ3 λ3 y3λ3 − x3µ3

∣∣∣∣∣∣, it is not difficult to obtain
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M−11 =
1

−z01m

 1 0 x01
0 1 y01
0 0 z01

 α1 α2 α3

β1 β2 β3
γ1 γ2 γ3

 (2.2)

Therefore, M−11 (:, 1 : 2)

= 1
−z01m

 α1 + x01γ1 α2 + x01γ2
β1 + y01γ1 β2 + y01γ2
z01γ1 z01γ2

 .

Let x′′ = x01
z01
, y′′ = y01

z01
, z′′ = 1

z01
, then

M−11 (:, 1 : 2) = 1
−m

 z′′α1 + x′′γ1 z′′α2 + x′′γ2
z′′β1 + y′′γ1 z′′β2 + y′′γ2

γ1 γ2

.

Because M1 is invertible and due to equation (2), α1 α2

β1 β2
γ1 γ2

 has a rank of 2. vi, i = 2, 3 are non-collinear and γ1 6= 0 , it follows by

contradiction that either

∣∣∣∣α1 α2

γ1 γ2

∣∣∣∣ 6= 0 or

∣∣∣∣β1 β2
γ1 γ2

∣∣∣∣ 6= 0 must be true.

When P01 changes, (x′′, y′′, z′′) must change. Let the change vector be (∆x,∆y,∆z), then
(∆x,∆y,∆z) is not a zero vector. Assuming M−11 (:, 1 : 2) remains unchanged when only

P01 changes under other constant conditions, then

[
∆zα1 + ∆xγ1 ∆zα2 + ∆xγ2
∆zβ1 + ∆yγ1 ∆zβ2 + ∆yγ2

]
=[

0 0
0 0

]
,

i.e.,


γ1 0 α1

γ2 0 α2

0 γ1 β1
0 γ2 β2


 ∆x

∆y
∆z

 =


0
0
0
0

.

However, since

∣∣∣∣α1 α2

γ1 γ2

∣∣∣∣ 6= 0 or

∣∣∣∣β1 β2
γ1 γ2

∣∣∣∣ 6= 0 , it follows that

 γ1 0 α1

γ2 0 α2

0 γ1 β1

 6= 0

or

 γ1 0 α1

γ2 0 α2

0 γ2 β2

 6= 0, hence


γ1 0 α1

γ2 0 α2

0 γ1 β1
0 γ2 β2

 has a rank of 3. This contradicts the

existence of a non-zero vector solution (∆x,∆y,∆z) for


γ1 0 α1

γ2 0 α2

0 γ1 β1
0 γ2 β2


 ∆x

∆y
∆z

 =

12             C. Gui et al.




0
0
0
0

 . Therefore, when P01 changes, M−11 (:, 1 : 2) must change, and thus M2M
−1
1 (:

, 1 : 2) must change.

Theorem 2. Assuming M1,M2 are invertible, the matrix M2M
−1
1 is computed accord-

ing to Theorem 1. Let vi, Pi, i = 1, 2, 3 and v′i, P
′
i , i = 1, 2, 3 satisfy the previous re-

quirements, and P0 be the pinhole coordinates. Let P01 = P02 = P0 calculate the matrix
Mat1 = M2M

−1
1 according to Theorem 1, and then calculate the matrix Mat2 with the

actual P01 and P02 that need to be assessed for equality as pinhole coordinates. Then,
Mat1 = Mat2 if and only if P01 = P02 .

Proof : According to Theorem 1, when P01 = P02 , applying the same perturbations
to the pinhole coordinates will still result in equality, satisfying the condition of Theorem
1(1). Thus, the calculated matrix remains unchanged under the same perturbations.
Therefore, to determine whether P01 and P02 are equal, one can first agree on a set of
pinhole coordinates P0 and calculate a matrix Mat1 = M2M

−1
1 according to Theorem 1.

As this matrix remains unchanged under the same perturbations, it can be understood
as being calculated with the same pinhole coordinates P01 according to Theorem 1,
then by P01 and P02 according to Theorem 1 calculate the matrix Mat2 . Thus, when
P01 = P02 , it follows that Mat1 = Mat2 , and by Theorem 1(2), when P01 6= P02 ,we
have Mat1 6= Mat2.

From Theorem 1(3), it is known that when v′i, i = 1, 2 are non-collinear, one can
discuss the situation where M2 is a two-row, three-column matrix. In this case, removing
the invertibility condition of M2, Theorem 2 still holds.

Theorem 1(4) shows that when vi, i = 2, 3 is not collinear, only the matrix M2M
−1
1 (:

, 1 : 2) is discussed, and theorem 2 still holds.

2.3 Preliminary approach to applying Theorem 2 in secure two-party
computation

Suppose Alice has P0, P01,vi, Pi, i = 1, 2, 3 , and Bob has P0, P02 , v′i,P
′
i , i = 1, 2, 3.

Both parties first use an agreed set of identical pinhole coordinates P0 as P01 and P02 to
calculate a matrix value Mat1 = M2M

−1
1 according to Theorem 1 . Then, both parties

use their respective pinhole coordinates P01 and P02 to calculate a new matrix value
Mat2 according to Theorem 1. According to Theorem 2, Mat1 = Mat2 if and only if
P01 = P02.
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3 Protocol for Determining Equality of Data Between Two
Parties Based on Vector Inner Product in Secure Two-
party Computation Under Semi-Honest Model

Suppose Alice has three-dimensional integer data P01, and Bob has three-dimensional
integer data P02 . The objective is to design a secure bilateral protocol without third-
party involvement to determine whether P01 and P02 are equal. Secure bilateral protocol
under the semi-honest model:

Step 1. Alice or Bob sends the other party a randomly generated pinhole coordinate
P0 with integer components, hereP0 serves as the public key for both parties;

Step 2. Alice and Bob independently generate random vector coordinates with integer
components (the third component being zero) and spatial point coordinatesvi, Pi, i =
1, 2, 3 and v′i, P

′
i , i = 1, 2, 3 as private keys. M−11 (:, 1) =

1
|M1|

 1 0 −x01
z01

0 1 −y01
z01

0 0 1

−1


∣∣∣∣ z01λ2 y2λ2 − x2µ2
z01λ3 y3λ3 − x3µ3

∣∣∣∣
−
∣∣∣∣ −z01µ2 y2λ2 − x2µ2
−z01µ3 y3λ3 − x3µ3

∣∣∣∣∣∣∣∣ −z01µ2 z01λ2
−z01µ3 z01λ3

∣∣∣∣


= 1

−z01

∣∣∣∣∣∣∣∣
µ1 λ1 y1λ1 − x1µ1
µ2 λ2 y2λ2 − x2µ2
µ3 λ3 y3λ3 − x3µ3

∣∣∣∣∣∣∣∣

 z01 0 x01
0 z01 y01
0 0 z01



×



∣∣∣∣λ2 y2λ2 − x2µ2
λ3 y3λ3 − x3µ3

∣∣∣∣∣∣∣∣µ2 y2λ2 − x2µ2
µ3 y3λ3 − x3µ3

∣∣∣∣
−z01

∣∣∣∣µ2 λ2
µ3 λ3

∣∣∣∣


The calculation results here are fractions, with numerator and denominator computed
separately. Alice calculates two matrices under her selected private key for pinhole
coordinates P0 and P01 , denoted as M11, M12 . Bob calculates two matrices under his
selected private key for pinhole coordinates P0 and P02 , denoted as M21, M22

Step 3. Alice and Bob determine whether the calculated matrix M21M
−1
11 is equal

to M22M
−1
12 . According to Theorem 2, if they are not equal, then P01 6= P02; if they are

equal, then P01 = P02. Here, matrix operations follow the secure two-party computation
of vector inner products.

Explanation: To determine whether M21M
−1
11 is equal to M22M

−1
12 , consider that

each component of M−111 has the same denominator q1 = −z0

∣∣∣∣∣∣
µ1 λ1 y1λ1 − x1µ1
µ2 λ2 y2λ2 − x2µ2
µ3 λ3 y3λ3 − x3µ3

∣∣∣∣∣∣ 6=
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0, and each component ofM−112 has the same denominator q2 = −z01

∣∣∣∣∣∣
µ1 λ1 y1λ1 − x1µ1
µ2 λ2 y2λ2 − x2µ2
µ3 λ3 y3λ3 − x3µ3

∣∣∣∣∣∣ 6=
0. Therefore, it suffices to determine whether M21 (z01M

∗
11)is equal to M22 (z0M

∗
12).

Here, M∗11and M∗12 are the adjoint matrices of the corresponding matrices, with each
component corresponding to the inner product of two vectors. The equality of two inner
product operations can be assessed by rearranging and combining the vector components
to determine if the inner product is zero. Secure Two-party Computation of Vector Inner
Products: Alice has a vector (x1, x2, · · · , xn), and Bob has a vector (y1, y2, · · · , yn).

Consider a secure bilateral protocol between them without the involvement of a third
party.
Step 1: Alice randomly generates two integers a 6= 0, r as a key and sends (ax1 + r, ax2 + r, · · · , axn + r)

to Bob,
Step 2: Bob randomly generates a non-zero disturbance term b and calculates c1 =

ax1y1b+ ry1b+ax2y2b+ ry2b+ · · ·+axnynb+ rynb and c2 = y1b+y2b+ · · ·+ynb , which
he sends to Alice.

Step 3: Alice calculates
c1 − rc2 = ax1y1b+ ry1b+ ax2y2b+ ry2b+ · · ·
+axnynb+ rynb− r (y1b+ y2b+ · · ·+ ynb) =
a (x1y1 + x2y2 + · · ·+ xnyn) b

Alice determines whether the inner product is zero based on whether the final result
a(x1y1 + x2y2 + · · ·+ xnyn) b equals zero. For instance, when comparing the first row
and first column of the matrix, Alice takes out

a1 = z0M
∗
12(:, 1)

= z0

 1 0 x01
0 1 y01
0 0 z01




∣∣∣∣λ2 y2λ2 − x2µ2
λ3 y3λ3 − x3µ3

∣∣∣∣∣∣∣∣µ2 y2λ2 − x2µ2
µ3 y3λ3 − x3µ3

∣∣∣∣
−
∣∣∣∣µ2 λ2
µ3 λ3

∣∣∣∣


and
a2 = z01M

∗
11(:, 1)

= z01

 1 0 x0
0 1 y0
0 0 z0




∣∣∣∣λ2 y2λ2 − x2µ2
λ3 y3λ3 − x3µ3

∣∣∣∣∣∣∣∣µ2 y2λ2 − x2µ2
µ3 y3λ3 − x3µ3

∣∣∣∣
−
∣∣∣∣µ2 λ2
µ3 λ3

∣∣∣∣

.

After applying the two numbers a 6= 0, r , then obtains
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az0

 1 0 x01
0 1 y01
0 0 z01




∣∣∣∣λ2 y2λ2 − x2µ2
λ3 y3λ3 − x3µ3

∣∣∣∣∣∣∣∣µ2 y2λ2 − x2µ2
µ3 y3λ3 − x3µ3

∣∣∣∣
−
∣∣∣∣µ2 λ2
µ3 λ3

∣∣∣∣

+ b

and

az01

 1 0 x0
0 1 y0
0 0 z0




∣∣∣∣λ2 y2λ2 − x2µ2
λ3 y3λ3 − x3µ3

∣∣∣∣∣∣∣∣µ2 y2λ2 − x2µ2
µ3 y3λ3 − x3µ3

∣∣∣∣
−
∣∣∣∣µ2 λ2
µ3 λ3

∣∣∣∣

+ b,

then sends them to Bob.
Bob receives these six numbers and, by eliminating a and r , can derive four numbers.

For ease of discussion, let

α1 =

∣∣∣∣ λ2 y2λ2 − x2µ2
λ3 y3λ3 − x3µ3

∣∣∣∣ , β1 =

∣∣∣∣ µ2 y2λ2 − x2µ2
µ3 y3λ3 − x3µ3

∣∣∣∣ ,

γ1 = −
∣∣∣∣ µ2 λ2
µ3 λ3

∣∣∣∣.
Then, these six numbers are az0α1 + az0x01γ1 + b
az0β1 + az0y01γ1 + b
az0z01γ1 + b

,

 az01α1 + az01x0γ1 + b
az01β1 + az01y0γ1 + b
az01z0γ1 + b

 .

By eliminating a, r, Bob can obtain
b1 = z0α1+z0x01γ1−z0β1−z0y01γ1

z0α1+z0x01γ1−z0z01γ1 ,

b2 = z0α1+z0x01γ1−z01α1−z01x0γ1
z0α1+z0x01γ1−z0z01γ1 ,

b3 = z0α1+z0x01γ1−z01β1−z01y0γ1
z0α1+z0x01γ1−z0z01γ1 ,

b4 = z0α1+z0x01γ1−z01z0γ1
z0α1+z0x01γ1−z0z01γ1 .

Thus, Bob can obtain four equations about Alice’s information:

b1z0α1 + b1z0x01γ1 − b1z0z01γ1 − z0α1−
z0x01γ1 + z0β1 + z0y01γ1 = 0
b2z0α1 + b2z0x01γ1 − b2z0z01γ1 − z0α1−
z0x01γ1 + z01α1 + z01x0γ1 = 0
b3z0α1 + b3z0x01γ1 − b3z0z01γ1 − z0α1−
z0x01γ1 + z01β1 + z01y0γ1 = 0
b4z0α1 + b4z0x01γ1 − b4z0z01γ1 − z0α1−
z0x01γ1 + z01z0γ1 = 0

which is simplified as follow:
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

(b1 − 1) z0α1 + (b1 − 1) z0x01γ1−
b1z0z01γ1 + z0β1 + z0y01γ1 = 0
(b2 − 1) z0α1 + (b2 − 1) z0x01γ1−
b2z0z01γ1 + z01α1 + z01x0γ1 = 0
(b3 − 1) z0α1 + (b3 − 1) z0x01γ1−
b3z0z01γ1 + z01β1 + z01y0γ1 = 0
(b4 − 1) z0α1 + (b4 − 1) z0x01γ1−
b4z0z01γ1 + z01z0γ1 = 0

Here, for Bob, α1,β1,γ1, x01, y01, z01 are unknown variables.
By eliminating β1 , Bob gets

(b1 − 1) z0z01α1 + (b1 − 1) z0x01z01γ1 − b1z0z201γ1
+z0y01z01γ1 − (b3 − 1) z20α1 − (b3 − 1) z20x01γ1
+b3z

2
0z01γ1 − z0z01y0γ1 = 0

(b2 − 1) z0α1 + (b2 − 1) z0x01γ1 − b2z0z01γ1+
z01α1 + z01x0γ1 = 0
(b4 − 1) z0α1 + (b4 − 1) z0x01γ1 − b4z0z01γ1
+z01z0γ1 = 0

Thus, further eliminating α1, γ1 will yield a nonlinear equation about x01, y01, z01.
Recalling Theorem 1(4) and the corresponding Theorem 2, when vi, i = 2, 3 are

non-collinear, calculations M2M
−1
1 (:, 1 : 2) with the agreed-upon P0 and P01,P02 remain

unchanged if and only if P01 = P02.
Therefore, Alice only needs to send two columns of data, which means Bob can only

obtain two equations about x01, y01,z01.
Note: Each time an inner product judgement is made, the receiver of the first en-

crypted vector can obtain an equation of the other party’s data without parameters. If
the other party actively attacks, three attempts can establish three equations, thereby
using the obtained information to decrypt the other party’s data.

To further enhance security and enable theoretically rigorous judgements, we can
agree on a sufficiently large integer M .

Secure Two-party Computation of Vector Inner Product: Alice has a vector with
integer components (a1, a2, · · · , an) , and Bob has a vector with integer components
(b1, b2, · · · , bn) . A secure protocol is established to enable Alice to determine whether
the inner product is zero, without the involvement of a third party.

In the following discussion, Alice will generate random integers a, and Bob will
generate random integers b. Here, the integer M needs to be greater than the theoret-
ical maximum value of a (a1b1 + a2b2 + · · ·+ anbn) b in the case of the agreed range of
a, b, (a1, a2, · · · , an) and (b1, b2, · · · , bn).

Step 1: Alice randomly generates an integer weight a 6= 0 and disturbance term r as
well as an integer vector (m1,m2, · · · ,mn)as a key, and randomly generates a sufficiently
1 large integerM that meets the previous requirements, and sends (a× a1 + r +m1M,a× a2 + r +m2M, · · · ,

a× an + r +mnM) to Bob,
Step 2: Bob randomly generates a integer interference item b 6= 0 and calculates

c1 = aba1b1 + rb1b+m1Mb1b+aba2b2 + rb2b+m2Mb2b+ · · ·+abanbn + rbnb+mnMbnb
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and c2 = y1b+ y2b+ · · ·+ ynb , which he sends to Alice,
Step 3: Alice calculates
(c1 − rc2) mod M = aba1b1 + rb1b+ aba2b2+
rb2b+ · · ·+ abanbn + rbnb−
r (b1b+ b2b+ · · ·+ bnb) =
a (a1b1 + a2b2 + · · ·+ anbn) b

Here, Alice uses the two numbers obtained to perform modulo and division operations
on the large integer M , resulting in the following three equations:

c2 = b1b+ b2b+ · · ·+ bnb
c3 = a (a1b1 + a2b2 + · · ·+ anbn) b
c4 = m1b1b+m2b2b+ · · ·+mnbnb

After eliminating,only the following two equations can be derived:
c2a (a1b1 + a2b2 + · · ·+ anbn) =
c3 (b1 + b2 + · · ·+ bn)
c4a (a1b1 + a2b2 + · · ·+ anbn) =
c3 (m1b1 +m2b2 + · · ·+mnbn)

.

Because Bob provides the row vector data
(b1, b2, · · · , bn) = (−z01µi, z01λi, λi (yi − y01)−
µi (xi − x01) ,−z0µi, z0λi, λi (yi − y0)− µi (xi − x0)

and since there are four parameters λi,µi,xi, yi , only four equations can be obtained
when making two determinations on whether the inner product is zero. Although Alice
knows the corresponding values of c2, c3, c4 , they are not controlled or given by Alice.
Similarly, for the second inner product determination based on the same row vector data
provided by Bob, the two equations obtained also involve c′2, c

′
3, c
′
4 , not controlled by

Alice, making it impossible to obtain equations that only contain pinhole coordinates
(x01, y01, z01) without other parameters. Therefore, it is sufficiently secure if each row
of Bob’s data is only used for two determinations of whether the inner product is zero.
Thus, Bob’s data is secure. Under such an agreement, due to the effect of modulo
operations, Alice’s data is obviously secure. Whether M2M

−1
1 (:, 1 : 2) changes only

requires two inner product determinations for each row of Bob’s data. Hence, Theorem
2 corresponding to Theorem 1(4) can determine whether the pinhole coordinate data of
both parties are equal.

4 Conclusion

By adopting certain conventions, this paper introduces two theorems derived from
the imaging of a pinhole in a planar straight line, specifically focusing on the three-
dimensional matrices related to pinhole coordinates. Then, using these theorems, it
converts the task of determining whether the pinhole coordinates of both parties are the
same into checking whether the vector inner product of the integer components they
own is zero. Further, it establishes a protocol for whether this vector inner product is
zero and analyses the potential for information leakage from a theoretical perspective.
Several improvement plans are proposed for various scenarios. Apart from the dynamic
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encryption involved in the initial data conversion to pinhole coordinates, the opera-
tions normally involve only integer addition, subtraction, and multiplication. The final
supplementary protocol for rigorously determining equality involves only large prime
numbers and modulo operations, avoiding the inaccuracies of decimal operations and
the inefficiency of high-power computations. Thus, our protocol is highly practical and
efficient.

For addition, subtraction, and multiplication of large integers that exceed the de-
fault computational capacity of computers, integers can be treated as vectors with each
digit as a component. By customizing the processing of vectors and combining parallel
algorithms, the multiplication and addition/subtraction of large-digit integers can be
calculated. This approach extends the range of operations and greatly enhances compu-
tational efficiency, allowing this paper to determine whether large-digit data are equal.

If the data to be compared involve practical tasks like text proofreading and intersec-
tion of sets, frequent comparisons of whether strings are equal are required. Determining
if strings are identical through binary conversion can be understood as determining if
data are equal. An advantage of this paper is that each time the agreed-upon text strings
to be compared are equal in length, longer than in other literature, allowing for an effi-
cient protocol without the need for modulo operations. The equality judgement of data
between the two-party is innovatively converted into judging whether the inner product
of the vectors owned by the two parties is zero. Based on the specific property of these
vectors, a security protocol is established to determine whether the inner product is
zero, which realizes the protocol scheme of judging the data equality of two-party under
the semi-honest model and analyses its security theoretically. If we allow one party can
access the other’s same data two or more times, this data may not safe, so we need the
key stream for dynamic data encoding such that the data of two parties are encoded
into different ciphertext each time they are judged to be equal. As high-power integer
operations are not needed, this results in a relatively highly efficient and secure protocol.
If the common factor is easily detected by Bob, Alice and Bob could only compute the
matrix M2M

−1
1 (:, 1) two or more times. A large number of practical simulations show

that there is no such thing as the original unequal information judgement of equality.
This scheme may not fit for malicious model, we could use the existing agreements

[18]- [19] of malicious model to determine whether those inner products are zeroes, by
the conversion in this paper we also could complete the equality judgement.
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