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Abstract

Multi-task learning (MTL) aims to improve the performance of multiple related
prediction tasks by leveraging useful information from them. Due to their flexibility
and ability to reduce unknown coefficients substantially, the task-clustering-based
MTL approaches have attracted considerable attention. Motivated by the idea of
semisoft clustering of data, we propose a semisoft task clustering approach, which
can simultaneously reveal the task cluster structure for both pure and mixed tasks
as well as select the relevant features. The main assumption behind our approach
is that each cluster has some pure tasks, and each mixed task can be represented
by a linear combination of pure tasks in different clusters. To solve the resulting
non-convex constrained optimization problem, we design an efficient three-step algo-
rithm. The experimental results based on synthetic and real-world datasets validate
the effectiveness and efficiency of the proposed approach. Finally, we extend the
proposed approach to a robust task clustering problem.
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1 Introduction

The learning of multiple related tasks is often observed in real-world applications, such as
computer vision [1], web research [4], bioinformatics [30], and others. Multi-task learn-
ing (MTL) is a common machine learning method that is used to solve this problem.
To be more specific, MTL learns multiple related tasks simultaneously while exploiting
commonalities and differences across the tasks. This can lead to better generalization
performance compared to that from learning each task separately. The key challenge
in MTL is how to screen the common information across related tasks while prevent-
ing information from being shared among unrelated tasks. To tackle this challenge, a
multitude of MTL approaches have been proposed in the last decade. Among these
approaches, feature selection approaches [23, 36] and task clustering approaches [34, 24]
have been the most commonly investigated.
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The feature selection approaches aim to select a subset of the original features to serve
as the shared features for different tasks, which can be achieved via the regularization
[23] or sparse prior [38] of the coefficient matrix. Compared with other methods, the
feature selection methods provide better interpretability. However, the assumption that
all tasks share identical or similar relevant features is too strong to be valid in many
applications. Moreover, information can only be shared in the original feature space,
which limits the ability to share information across tasks.

Inspired by the idea of data clustering, the task clustering approaches group tasks
into several clusters with similar coefficients. Earlier studies focused on identifying the
disjoint task clusters, which can be realized via a two-stage strategy [8], a Gaussian mix-
ture model [34], or regularizations [39, 40]. Such hard clustering may not always reflect
the true clustering structure and may result in the inaccurate extraction of information
shared among tasks. To this end, recent studies have focused on improvements through
allowing partial overlaps between different clusters, such that each task can belong to
multiple clusters [16, 19, 15]. This is achieved by decomposing the original coefficient
matrix into a product of a matrix consisting of coefficient vectors in different clusters
and a matrix containing combination weights.

Due to their flexibility and ability to reduce unknown coefficients substantially, task-
clustering approaches have attracted widespread attention in the field of MTL. Although
great progress has been made in the task-clustering approaches, the existing approaches
still have several limitations. First, few task clustering approaches conduct feature se-
lection, which may affect interpretability and generalizability to some degree. Second,
most task-clustering approaches assume that task parameters within a cluster lie in a
low dimensional subspace, which we have little information about. As a result, two
major issues would arise: the cluster structure could become non-identifiable in a latent
space, and the characteristics of individual clusters would be blurred. This would limit
their applications in areas such as biomedicine and economics, where the reliability and
interpretability of results are especially valued.

Motivated by the idea of the semisoft clustering of data [41, 7], we propose a novel
semisoft task clustering MTL (STCMTL) approach, which can simultaneously reveal
the task cluster structure for both pure tasks and mixed tasks and select relevant fea-
tures. A pure task is a task that belongs to a single cluster, while a mixed task is one
that belongs to two or more clusters. The key insights of the STCMTL are as follows:
(a) pure and mixed tasks co-exist (which is why the term ”semisoft” is used); and (b)
each mixed task can be represented by a linear combination of pure tasks in different
clusters, where the linear combination weights are nonnegative numbers that sum to one
(called memberships) and represent the proportions of the mixed task in the correspond-
ing clusters. The idea of representing a task as a linear combination of a set of pure
(or representative) tasks has been widely adopted in the literature [40, 33]. However,
these approaches cannot remove the irrelevant features. VSTG-MTL [15] is the most
relevant method to ours, which can simultaneously perform feature selection and learn
an overlapping task cluster structure by encouraging sparsity within the column of the
weight matrix. However, this method fails to classify the pure and mixed tasks.
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We formulate the semisoft task clustering problem as a constrained optimization
problem. A novel and efficient algorithm is developed to solve this complex problem.
Specifically, we decompose the original non-convex optimization problem into three sub-
problems. We then employ the semisoft clustering with pure cells (SOUP) algorithm [41]
that was recently proposed for data semisoft clustering to identify the set of pure tasks
and estimate the soft memberships for mixed tasks. Extensive simulation studies have
demonstrated the superiority of STCMTL to natural competitors in identifying cluster
structure and relevant features, estimating coefficients, and especially, time cost. The
effectiveness and efficiency of STCMTL are again validated in the four real-world data
sets. In addition, STCMTL can be easily extended to other task clustering problems
(e.g., robust task clustering) by replacing the SOUP algorithm with other corresponding
algorithms.

In summary, the proposed STCMTL approach has the following advantages:

e It can simultaneously reveal the task cluster structure for both pure and mixed
tasks as well as perform feature selection.

e [t provides an identifiable and interpretable task cluster structure.

e Compared with its direct competitors, it requires much less calculation time and
results in more precise feature selection, and it can be easily extended to other
task clustering problems.

The rest of the paper is organized as follows. We first introduce the notations and
problem formulation in Section 2. The optimization procedure is presented in Section
3. In Section 4, we campare our method’s experimental results with 5 other baselines
on synthetic and real-world dataset. We rewrite our algotithm to a general framework
and provide an alternatives under the framework in Section 5.

2 Formulation

Suppose we have T tasks and D features. In task i(=1,2...,T), there are n; observa-
tions. Denote X; = [(x})7,...,(x[")T]" € R"*P as the input matrix with Xg € RWP
and y; = [yzl, e ,yz”]T € R™*1! as the output vector, where yf € R for regression prob-
lems and yi € {—1,1} for binary classification problems. For each task, consider the

linear relationship between the input matrix and output vector:
Yy = f(XZWz), 1= 1,2, N ,T,

where f is an identify function for regression problems and a logit function for clas-
sification problems, and w; € RP*! is the coefficient vector for the ith task. Denote
W = [wy,...,wr] € RP*T as the coefficient matrix to be estimated.

We consider a setting in which 7' tasks form K(K < min{D,T}) clusters, and
each cluster k has the unique coefficient vector u, € RP*!. Different from many task
clustering methods that partition tasks into disjoint clusters, we allow for an overlapping
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cluster structure in the sense that it allows a task to be a member of multiple clusters.
We call the tasks that belong to a single cluster pure tasks and the tasks that belong to
two or more clusters mized tasks. We assume that the coefficient vector of each task w;
can be represented by the linear combination of the coefficient vector of the cluster to
which this task belongs; that is, w; = Zszl ViU, where vg; is the membership weight
that represents the proportions of the ith task belonging to cluster k£ with 0 < vg; <1
and Zle vi; = 1. To obtain a more intuitive, and more importantly, identifiable, cluster
structure, we assume that each cluster has some pure tasks. Obviously, a pure task in
cluster k has vy; = 1 and zeros elsewhere. Denote a full rank matrix U = [uy,...,ux] €
RP*K as the cluster coefficients and V = [vq,...,vy] € REXT as the membership
matrix with ith column v; = [vy, . .. ,UKZ-}T € REX1 containing the membership weight
of task i. The above assumption enables us to write the original coefficient matrix as
W = UV. Formally, we formulate our approach as a constrained optimization problem:

T

. 1
rlrjl}\l} g TTZL (yu XzUVz)
st [y (og — 1) =0,for k=1,..., K, (2.1)
V>0, Vg =Ir,
U h<a.

where L(-, -) is the empirical loss function, which is a squared loss for a regression problem
and a logistic loss for a binary classification problem; the first constraint ensures the
existence of pure tasks in each cluster k; V > 0 means that each element in matrix V
is nonnegative; I, represents a m x 1 vector with all elements being 1; and || U ;=
Zle || ug |1 is the I3 norm, which encourages the sparsity in the cluster coefficients,
and « is the constraint parameter.

3 Optimization and Algorithm

Traditional constrained optimization algorithms, such as the interior point method and
alternating direction method of multipliers (ADMM) method, are time consuming, and
will inevitably involve tedious tuning parameters. Recently, [41] proposed SOUP, a novel
semisoft clustering algorithm, which can simultaneously identify the pure and mixed
samples. Extensive simulation and real-data analysis demonstrate its advantages over
direct competitors. Motivated by the idea of SOUP, we develop a new optimization
algorithm to solve the problem in Eq. (2.1). As the standard alternating optimization
algorithm, the new algorithm updates the membership matrix V and cluster coefficient
matrix U alternately. The biggest difference is that the coeflicient matrix W is also
updated after updating V and U. The key ingredient of the algorithm is to adopt SOUP
to extract the overlapping cluster structure from the coefficient matrix W by identifying
the set of pure tasks and then estimating the membership matrix V. Hence, W is
required. In addition, to increase the numerical stability and accelerate convergence, we
modify each column of W separately before inputting it into SOUP (see more details in
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the follows). In sum, the new algorithm involves a three-step process: updating V, U,
and W.

3.1 Updating V

We directly apply the SOUP algorithm to the coefficient matrix W to reveal the cluster
structure among tasks. The SOUP algorithm involves two steps: identifying the set of
pure tasks and estimating the membership matrix V. In the following, we introduce the
main ideas of the two steps.

Identify the set of pure tasks. Pure tasks provide valuable information from which
to recover their memberships, further guiding the estimation of the membership weights
for the mixed tasks. Define a task similarity matrix: S = WTW € RT*T. To find the
set of pure tasks, SOUP exploits the special block structure formed by the pure tasks
in the similarity matrix S to calculate a purity score for each task. After sorting the
purity scores in descending order, the top 6 percent of tasks are declared as pure tasks,
denoted as P, and then partitioned into K clusters by K-means algorithm.

Estimate the membership matrix V. It is noticed that there is a matrix A € REXK,
such that V = A®, where © € RE*T is the matrix consisting of the top K eigenvectors
of matrix S. Because we have identified the set of pure tasks P and their memberships
Vp, the desired matrix A can be automatically determined from Vp = A®p, where
Op refers to the sub-matrix of matrix © formed by the columns in set P. As a result,
the full membership matrix can be recovered: V = A®.

3.2 Updating U

For a fixed membership matrix V, the optimization problem in Eq. (2.1) with respect
to the cluster coefficient matrix U, becomes as follows:

T
. 1
m(}nzl n—iL (vi, X;Uv;)
1=
st || U h<a.

We transform the above constraint problem to the following regularized objective func-

tion

LIy XUv) 47 | U, (3.1)
i=1 "

where 7y is the regularization parameter. We optimize the objective function with respect

to one column vector u; at a time and iteratively cycle through all the columns until

the Euclidian distances between ug’s in two adjacent steps converge. Specifically, for

ke{l,...,K}, we minimize M (uy) with respect to uy, where
T
M(u) = — i =X Y v — vg X |3+ | w [l (3-2)

i=1 " I#£k
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for linear regression problems with a squared loss, and

T 1 n;
) =303 s
=1

) ]:1

exp [ 4/ ()T vy
12k

o (3.3)
+log |exp —yg(xg)Tth-ul }
1£k

+ exp (—yivki(X3)Tuk)

+ | ug I,

for binary classification problems with a logistic loss. The above problems are solved by
using the coordinate descent [9, 35], a well-developed method for tackling a regularized
regression model.

3.3 Updating W

After updating V and U, we obtain a new coefficient matrix W = UV. To increase
the numerical stability and achieve faster convergence, we update each column of the
coefficient matrix W separately with W as initial values. Specifically, the ¢th column
vector w; can be updated by solving the following optimization problem, which optimizes
the following objective function

min — L(yi, Xews) + A || wi [J1, (3.4)
Wi Ty
where ); is the regularization parameter, which is fixed during iteration (see more details
in the following). We again leverage the coordinate descent algorithm to solve the
problem efficiently. Note that, in practice, we apply early stopping to the coordinate
descent to update each w; with a given number (2 ~ 5) of iterations until completion.

3.4 Algorithm

Algorithm 1 summarizes the whole procedure to solve the optimization problem in Eq.
(2.1). To start the algorithm, it is important to find a reasonable initial value of W.
For this purpose, in each task, we learn a regularized regression or logistic regression
coefficient:

W? = min iL(yZ,X,W,) + N H Ww; H17 (35)
Wi Ty

which can be solved with the coordinate descent method. The initial value of W is given
by WO = [wi, ... wl].
Tuning parameters. SOUP has two tuning parameters: ¢, the fraction of most neigh-
bors to be examined for each task; and 6, the fraction of tasks that are declared as pure
tasks. In practice, SOUP is robust with respect to these two parameters. Following
the setup in [41], we set § = 0.5 and ¢ = 0.1 throughout this study. As for the tun-
ing parameters \; (i = 1,...,7T) in Egs. (3.4-3.5) and v in Eq. (3.1), cross-validation



70 Z. Yuzhao and S. Yifan

Algorithm 1 STCMTL

Input: Training datasets {X;,y;}/_, and number of clusters K
Output: U and V

1: Initialization: WP9:

2: Repeat

3:  Update the membership matrix V by using SOUP;

4:  Update the cluster coefficient matrix U by minimizing Eq. (3.1);
5

6

Update the coefficient matrix W by solving Eq. (3.4);
: Until the objective function of Eq. (2.1) converges.

over a grid search is the commonly adopted method to select the optimal combination
of parameters, but this becomes increasingly prohibitive with increases in 1. There-
fore, instead of first performing regularized regression or logistic regression for the given
parameters and then searching for the optimal combination of parameters, we propose
conducting parameter tuning with cross-validation inside the algorithm. Specifically, we
perform the cross-validation within each task at the initialization step. Hence, at the
initialization step, we not only provide an initial estimator W° but also find the best
tuning parameter A; for each task. The selected \; are also used at the step of updating
W. Then, we set v as the average of \;’s: v = % Zszl Ai, where \; are the parameters
determined at the initialization step. As a result, the tuning parameters have been se-
lected inside the algorithm. Since we no longer need to run the algorithm multiple times
over a grid space of penalty parameters, we can largely reduce the computational time.
The effectiveness and efficiency of the proposed approach to selecting parameters have
both been validated in both synthetic and real-world datasets.

4 Experiments

This section aims to assess the performance of the proposed STCMTL approach on both
synthetic and real-world datasets. We compare STCMTL with the following baseline
methods:

LASSO [27]: The single-task learning method learns a sparse prediction model by
applying LASSO for each task separately.

CMTL [39]: This MTL method learns a disjoint cluster structure among the tasks
and does not conduct feature selection.

Trace [24]: This MTL method learns a low-rank structure among the tasks by
penalizing both the Frobenius norm and trace norm of the coefficient matrix.

FLARCC [25]: This MTL method achieves feature selection and coefficient cluster-
ing across tasks by using LASSO and fused LASSO penalties, respectively.

VSTG-MTL [15]: This MTL method is the first method that simultaneously per-
forms feature selection and learns an overlapping cluster structure among tasks using a
low-rank approach.
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Table 1: STCMTL and baseline methods

Feature selection Task clustering Prediction

STCMTL Vv v Vv
LASSO Vv Vv
CMTL Vi v
Trace Vv
FLARCC Vv Vv Vv
VSTG -MTL vV Vv v

These methods differ in their ability to perform feature selection, task clustering, and
prediction, as shown in Table 1. LASSO is implemented using the R package ”glmnet”,
and CMTL and Trace using the R package ”"RMTL”. The implementation of VSTG-
MTL was released at https://github.com/ JunYongJeong/VSTG-MTL. STCMTL is im-
plemented in a R package and is available at https://github.com/ RUCyuzhao/STCMTL.
Suggested by [15], for VSTG-MTL, the penalty parameter p of k-support norm is set
equal to the penalty parameter v, of {1 norm, which reduces the computational bur-
den. The hyper-parameters of all methods are selected via five-fold cross validation over
a range of {271° ... 23} The number of clusters for STCMTL, CMTL, and VSTG-
MTLare selected from the search grid {2, 3, ...,9}.

We evaluate the prediction performance by using the root mean squared error (RMSE)
for the regression problem and the error rate (ER) for the classification problem. For
the synthetic dataset, we also evaluate the estimation and feature selection performance.
Specifically, the estimation is quantified by using the root mean estimation error (REE),
which is defined as |[W — W||p/v/T, whereas feature selection is quantified by using
Matthew’s Correlation Coefficient ( MCC), which is defined as:

TP x TN — FP x FN
/(TP + FN)(TP + FP)(TN + FP)(TN + FN)

MCC =

4.1 Synthetic Datasets

We generate 60 tasks (7" = 60). For the ith task, 100 training observations (n; = 100) and
100 testing observations are generated from X; ~ N (0,1;) and y; = X;w; +N(0,0.51,,,).
To simulate the high-dimensional scenario (D > n;), which is more challenging than the
low-dimensional one, we set D = 200 and 600. The 60 tasks are divided into five
overlapping clusters (K = 5), that is, the true coefficient matrix W = UV, where
U e RP*E and V € REXT, For each W we repeat the data generation process for 10
times and the average performances on the test sets are reported

In the kth column of the cluster coefficient matrix U, only the [5(k — 1)+ 1]th to the
[5(k + 1)]th components are non-zero, which are generated from two uniform distribu-
tions, U[—0.5, —0.1] and U[0.1,0.5], randomly and independently; the other components
are zeros. The 60 tasks consist of 50 pure tasks, equally assigned to K clusters, and
10 mixed tasks. Without a loss of generality, we set the first 50 tasks as pure tasks
and the last 10 as mixed tasks. As a result, for ¢ = 1,...,50, the membership vectors
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Table 2: Results for the synthetic datasets: RMSE, REE, and MCC based on 10 repe-
titions. Each cell shows the mean + s.d.

LASSO CMTL Trace FLARCC VSTG-MTL  STCMTL

RMSE  0.659+0.015 0.651+0.007 0.911£0.001 0.5914+0.011  0.543+0.005 0.510+0.005

Sparse REE 0.030£0.001  0.02940.006 0.054+0.001 0.019£0.001 0.011+0.001 0.007+0.001

D=200 MCC  0.481+0.021 0.10940.002 0.071+0.003 0.58340.023 0.705+0.044  0.779+0.018
RMSE 0.6654+0.016 0.650+0.008 0.897+0.010 0.590+0.011 0.5154+0.007 0.515+0.008

Dense REE 0.031+0.001  0.02940.006 0.053+0.004 0.019£0.001 0.009+0.001 0.009+0.001

MCC  0.470£0.018 0.1114+0.003 0.071£0.002 0.61340.080 0.722+0.025 0.783+0.024

RMSE 0.7434+0.015 0.829+0.011 1.038+0.013 0.635+0.019 0.525+0.010  0.516+0.005

Sparse REE 0.0224+0.000  0.02740.000 0.036+0.000 0.016£0.000 0.006+0.001 0.01040.002
D=600 MCC  0.400+0.010 0.08340.002 0.070£0.004 0.6604+0.011 0.477£0.070  0.715+0.157
RMSE 0.734+0.015 0.824+0.011 1.017£0.015 0.624£0.036 0.525+0.010 0.526+0.006

Dense REE 0.02240.000  0.0264-0.000 0.036+0.000 0.018+0.000 0.010+0.001 0.005+0.001

MCC  0.386+0.013 0.088+0.002 0.073+0.006 0.643+0.059 0.542+0.084  0.717+0.159

v; only have one component equal to 1, while the others are all equal to zero. For the
last 10 mixed tasks, we consider two types of mixing patterns: (a) sparse, where the
membership vectors v; (i = 51,...,60) have positive values for only two components,
which are taken randomly from K components; and (b) dense, where the membership
vectors v; (i = 51,...,60) have positive values on all K components. All membership
vectors are normalized such that they sum to 1.

2 3 4 5 6 7 8 2 3 4 5 6 7 8
number of clusters K number of clusters K
(a) Sparse (b) Dense

Figure 1: Results for the synthetic datasets: logarithm of RMSE as a function of the
number of clusters K.

With the proposed STCMTL approach, we first examine the effect of the number of
clusters K on RMSE. Fig. 1 presents the logarithm of RMSE as a function of K for a
random replicate, where other hyper-parameters are selected by cross-validation inside
the algorithm. RMSE reaches the minimum at the true number of clusters, which is five
for the synthetic datasets. We also examine a few other replicates and observe similar
patterns.

We then compute the summary statistics based on 10 repetitions. Table 2 presents
the simulation results for the synthetic datasets. The values after & are the standard
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Figure 2: Results for the synthetic datasets: true and estimated coefficient matrices by
STCMTL and VSTG-MTL. The dark- and white-colored entries indicate the nonzero

and zero values, respectively.
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deviations of the corresponding metrics values. In general, STCMTL outperforms the
five baseline methods in terms of the three evaluation metrics in the majority of sce-
narios. STCMTL and VSTG-MTL perform significantly better than other methods.
This is expected, as LASSO does not consider the task heterogeneity, CMTL and Trace
do not conduct feature selection, and FLARCC clusters tasks based on each coeflicient
separately. For prediction, STCMTL always have the favorable performance, especially
in Sparse condition. In terms of estimation, STCMTL has the best or nearly the best
performance. Regarding the accuracy of feature selection, STCMTL performs signifi-
cantly better than the baseline methods. VSTG-MTL provide a passable accuracy when
D = 200 but it clearly suffers when D becomes large. The selection of correct features
is crucial in some areas, such as biomedicine, which values the interpretability of results.
VSTG-MTL, while it provides comparable prediction and estimation results, performs
poorly in feature selection. Fig. 2 shows the true coefficient matrix and estimated coef-
ficient matrix by using STCMTL and VSTG-MTL with D = 600, where the dark- and
white-colored entries indicate non-zero and zero values, respectively !. It can be seen
that STCMTL can almost identify the true cluster structure among the tasks and remove
most of the irrelevant features. However, VSTG-MTL suffers from selecting more false
features, which inevitably affects the identification accuracy of the cluster structure.

As VSTG-MTL is the method that is most relevant to the proposed STCMTL ap-
proach, we also compare the computational efficiencies of the two methods under all
simulation settings. Table 3 shows the time spent in updating U and V with the fixed
hyper-parameters, and completing the entire training process (including performing five-
fold cross-validation), respectively, and their standard deviations for two approaches over
10 repetitions. Clearly, the computational efficiency of STCMTL is significantly higher
than that of VSTG-MTL. The reasons for this are summarized as follows:

e STCMTL only contains a 1 norm penalty term on U, and thus, uses the coordinate
descent algorithm, a highly efficient algorithm, to update U. Meanwhile VSTG-
MTL adopts the ADMM algorithm, a more complex algorithm, to address two
penalty terms on U. In particular, the time that VSTG-MTL spends on the
updating process U grows significantly when the number of features D increases
from 200 to 600.

e As described in Section 3.4, STCMTL conducts the tuning of penalty parameters
with cross-validation only at the initialization step, avoiding running the entire
algorithm multiple times on the grid space of the penalty parameters. Hence,
considerable time is saved.

In summary, from the synthetic datasets, we can see that STCMTL achieves the most
desirable performance in terms of prediction, estimation, and feature selection compared
to the five baseline methods. While VSTG-MTL is competitive in some scenarios, it suf-
fers severely from poor feature selection and a prohibitive computational cost compared
with STCMTL.

!For demonstration purpose, we reorder the features and put the features selected by STCMTL or
VSTG-MTL on the top of list.
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Table 3: Results for the synthetic datasets: time consumption (in seconds) of STCMTL
and VSTG-MTL based on 10 repetitions. Each cell shows the mean + s.d.

Updating U  Updating V. Total

Sparse VSTG-MTL 13.0+2.3 0.8£0.1 4448.7 £ 308.2
D—=200 STCMTL 5.1+0.8 0.9£0.2 56.9£7.2
Dense VSTG-MTL 12.1+1.9 0.8£0.1 4532.9£191.6
STCMTL 5.2+ 0.6 0.9 £0.1 44.1+3.6
Sparse VSTG-MTL 141.2 £16.8 1.1 £ 0.2 39020.2 £ 1522.6
D—=600 STCMTL 48.3+3.8 2.1 £0.1 190.2 £+ 20.8
Dense VSTG-MTL 128.6 + 11.5 1.0 £ 0.1 39169.5 £ 1921.5
STCMTL 45.3+ 3.9 2.9 £0.2 191.4+20.2

4.2 Real-World Datasets

We evaluate the performance of STCMTL on the following four real-world benchmark
datasets. Isolet data’? and School data® are two regression tasks datasets, which are
widely used in previous works [[21, 15, 33]]. Training and test sets are obtained by
splitting the dataset 75%-25%. MINIST data* and USPS data® are both handwritten
10 digits datasets. We treat these 10-class classification as a multi-task learning problem
where each task is the classification of one digit from all the other digits, thus yielding
10 tasks. Following the procedure in [[16, 39, 15]], each image is preprocessed with
PCA, and the dimensionality is reduced to 64 and 87, respectively. For each task, the
training (test) set is generated by randomly selecting 100 train (test) observations of the
corresponding digit and 100 train (test) observations of other digits.

We apply STCMTL to the four real datasets. Fig. 3 shows the objective function
value by iteration, and we can see that the objective function converges to the optimal
value within 20 iterations in most repetitions.
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Figure 3: Objective function value versus iteration on four real-world datasets.

Table 4 summarizes the prediction performance on the test sets of the five methods
in the four real-world datasets over 10 repetitions. In the linear regression problem,

2www.zjucadcg.cn/dengcai/Data/data.html
3http://ttic.uchicago.edu/ argyriou/code/index.html
“http://yann.lecun.com/exdb/mnist /
http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
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Table 4: Results for the real-world datasets: RMSE and ER based on 10 repetitions.
Each cell shows the mean =+ s.d.

Dataset LASSO CMTL Trace FLARCC VSTG-MTL STCMTL

Isolet RMSE 0.241+0.005  0.273+0.003  0.237£0.003  0.262+0.006 ~ 0.19340.018 0.191+0.003
School 10.638+0.031  10.564+£0.056 12.210+£0.053 10.771+£0.059 10.020+£0.189 10.07540.107
MNIST ER 0.2024+0.013  0.1874+0.007  0.1654+0.007  0.190+0.009  0.108+0.012 0.088+0.008
USPS 0.196+0.011  0.1994+0.010  0.1704+0.009  0.184+0.012  0.101£0.009 0.091+0.008

Table 5: Results for the real-world datasets: time consumption (in seconds) of STCMTL
and VSTG-MTL based on 10 repetitions. Each cell shows the mean =+ s.d.

Isolet School MNIST USPS
VSTG-MTL STCMTL VSTG-MTL STCMTL | VSTG-MTL STCMTL VSTG-MTL STCMTL
Total 50029.8+£3657.7 525.3+35.9 | 934.14+95.6 20.8+2.6 | 2514.4+499.4 209.3+30.2 | 3077.8£154.3 121.14+11.1

STCMTL and VSTG-MTL stand out. The two methods’ results are comparable, with no
statistically significant differences. However, in the classification problem, the STCMTL

outperforms all the other baseline methods. In addition, once again, the computational
cost of VSTG-MTL is prohibitive compared to STCMTL (Table 5).

5 Extension to Robust Task Clustering

The proposed approach decouples task clustering and feature selection into estimating
three tractable sub-problems: the membership matrix V, cluster coefficients matrix U,
and coefficient matrix W. The proposed approach employs the SOUP algorithm to
identify the membership matrix but it is not the only available option, as numerous
other matrix-factorization-based clustering methods have also been proposed. Hence,
in practice, we could replace or combine SOUP with other matrix-factorization-based
clustering methods to tackle more complex scenarios in task clustering. In this section,
we consider task clustering with several outlier tasks and modify the proposed approach
to a robust task clustering one.

We assume that there are some outlier tasks that cannot be represented by a linear
combination of cluster coefficient vectors vi’s. To improve the robustness against these
outlier tasks, in the step of updating V, we first apply a li2-norm-based robust non-
negative matrix factorization (NMF) algorithm to identify the outlier tasks. Then, we
estimate V by using the SOUP algorithm. Specifically, we apply the robust NMF algo-
rithm [18] on W, yielding two rank-K matrices, C, and ©, such that W ~ CO. Then,
we define a distance D; = ||[W; — CO;||2 for each task, which measures the discrepancy
between the true and estimated coefficients. If W is precise enough, the distances of
the outlier tasks should be much larger than those of the normal tasks; thus, the outlier
tasks can be identified. For simplicity, we employ the definition of outliers in bar plots.
In words, a task is declared an outlier if it is above 4.5 times the interquartile range
(IQR) over the upper quartile of the distance. Practically, we can use other advanced



Semisoft Task Clustering for Multi-Task Learning 77

Algorithm 2 Robust STCMTL

Input: Training datasets {X;,y;}L ;, number of clusters K and index of T tasks T;
Output: matrix U, V and the set of outlier tasks I

1: Initialization: WY, T' = {;

2: Repeat

3: Apply the robust NMF algorithm on W p, yielding two rank-K matrices C and ©,
such that W ~ CO;

4: For each task i € T \ I', compute its distance: D; = [[W; — CO;]|2;

5: Update T by: T+~ T'U {i : D; > the upper quartile of {D;} + 4.5 x IQR};

6: Update the cluster coeflicient matrix Vonp by using SOUP;

7:  Update the cluster coefficient matrix U by minimizing Eq. (3.1);

8: Update the coefficient matrix W-onr by solving Eq. (3.4);

9: Until the objective function of Eq. (2.1) with tasks in ' removed converges.

Table 6: Results for the synthetic datasets with outlier tasks: RMSE, REE, and MCC
based on 10 repetitions. Each cell shows the mean + s.d.

LASSO VSTG-MTL STCMTL (Robust)
RMSE 0.836+0.014 0.884+0.046 0.577+0.029
D=100 REE 0.067£0.002 0.073£0.003 0.029+0.006
MCC  0.413£0.012 0.647£0.064 0.660+0.035
RMSE 1.011+£0.019 0.878+0.046 0.685+0.038
D=200 REE 0.125+0.001  0.073+£0.004 0.033+0.004
MCC  0.331£0.078 0.637£0.066 0.731+0.017

anomaly detection methods. Once the outlier tasks are identified, they are removed from
the set of tasks. Then, we apply the SOUP algorithm on the remaining normal tasks to
recover their membership weights. The overall procedure is summarized in Algorithm 2,
where Bg refers to the sub-matrix of matrix B formed by columns in set S.

We use synthetic datasets to validate the effectiveness of the modified approach in
terms of task clustering, feature selection, and robustness against outlier tasks. The
data generation procedure is exactly the same as the sparse condition in section 4.1,
except we add five outliers tasks, each of which has 10 nonzero coefficients generated
from ¢[0.5,1]. As a result, we have total T = 65 tasks. We set D = 100 and 200.

We compare the modified approach with the two baseline methods, LASSO and
VSTG-MTL. Table 6 reports the simulation results for the three methods. It can be
observed that the modified approach outperforms the two baseline methods in terms of
prediction, estimation, and feature selection.
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6 Conclusion

This study proposes a novel task clustering approach STCMTL, which can simulta-
neously learn an overlapping structure among tasks and perform feature selection. Al-
though it is similar in spirit to the existing task clustering methods, it is also significantly
more advanced. In the classification of pure and mixed tasks, it produces an identifiable
and interpretable task cluster structure and selects relevant features.

STCMTL factorizes the coefficient matrix into a product of the cluster coefficient
matrix and membership matrix, and it imposes some constraints on the membership
matrix values and sparsities on the cluster coefficient matrix. T4edhe resulting con-
strained optimization problem is challenging to solve. To circumvent this, a new alter-
nating algorithm is developed, which repeats a three-step process: identifying the set of
pure tasks and estimating the membership matrix; updating the cluster coefficient ma-
trix; and updating coefficient matrix until convergence. The tuning of hyper-parameters
with validation is conducted inside the algorithm, leading to substantial improvements
in computational efficiency. The experimental results show that the proposed STCMTL
approach outperforms the baseline methods using synthetic and real-world datasets.
Moreover, STCMTL can be extended to other, more complex task clustering problems,
such as robust task clustering.

An important limitation of this study is its lack of theoretical investigation. This
will be deferred to future research. We also defer additional possible extensions of the
proposed approach to future research.
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