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Abstract

In this work, we investigate the representation of numbers as sums of powers
of prime numbers. It is shown that all sufficiently large integers are sums of some
ascending even prime powers.
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1 Introduction

Roth [11] proved that all sufficiently large positive integers N can be expressed

s∑
i=1

xi+1
i = N, (1.1)

with s = 50. Many predecessors, among them Thanigasalam [13, 14], Vaughan [15, 16],
Brüdern [1, 2] and Ford [5, 6], struggled for half a century to improve the above result.
The sharpest result was due to Liu and Zhao [10] (s = 13).

In [14], Thanigasalam also considered the equation (1.1) for prime powers and proved
that

N1 =

23∑
i=1

pi+1
i , N2 =

24∑
i=1

pi+1
i ,

for sufficiently large odd integers N1, and even integers N2.
In [3], Brüdern considered the equation (1.1) with even powers only. His result

implies in particular that the set of integers representable as

N = x21 + x42 + x63 + x84, x1, x2, x3, x4 ∈ N,

has positive density, but less than 1.
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In 2020, Kuan et al. [9] proved that

N = x21 + x42 + · · ·+ x346173, x1, x2, · · · , x173 ∈ N,

for all sufficiently large natural number N .
Incorporating a powerful admissible exponents method developed by Davenport [4]

and Thanigasalam [14], we establish the following theorem.

Theorem 1.1 Let N1 ≡ 1 (mod 3), N2 ≡ 2 (mod 3), N3 ≡ 0 (mod 3). All sufficiently
large integers N1, N2, and N3 are representable in the forms

N1 =

s∑
k=1

p2kk , N2 =

s+1∑
k=1

p2kk , N3 =

s+2∑
k=1

p2kk , (1.2)

where s=2224 and the p’s are primes.
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2 Preliminaries

Definition 1 [14, Definition A] Given natural numbers k1, · · · , ks with 2 ≤ ks ≤ · · · ≤
k2 ≤ k1 (s ≥ 2) and real numbers ν1, · · · , νs with 0 < νi ≤ 1 (i = 1, · · · , s), the pairs
(k1, ν1), (k2, ν2), · · · , (ks, νs) are said to form admissible exponents, if for every large
positive Z and every ε > 0, the number of solutions of the equation

xk11 + xk22 + · · ·+ xkss = yk11 + yk22 + · · ·+ ykss

subject to

Zνi/ki ≤ xi ≤ 2Zνi/ki , Zνi/ki ≤ yi ≤ 2Zνi/ki , (i = 1, 2, · · · , s),

is

� Z(
∑s
i=1 νi/ki)+ε.

Let
K1 = {12, 14, · · · , 40}, K2 = {42, 44, · · · , 4446}. (2.1)

By [14, Theorem 3], we get the following lemma.
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Lemma 2.1 There exist numbers νk (k ∈ K1 ∪K2) satisfying

α1 =
∑
k∈K1

νk
k
> 0.508926, α2 =

∑
k∈K2

νk
k
> 0.905733, (2.2)

such that
(1) {k, νk} with k ∈ K1 form pairs of admissible exponents;
(2) {k, νk} with k ∈ K2 form pairs of admissible exponents.

Let K3 = {8, 10} ∪K2. We have the following lemma.

Lemma 2.2 There exist numbers ν
′
k (k ∈ K3) satisfying

0 < ν
′
k ≤ 1, ν

′
8 = 1, 0.876157 < ν

′
10 < 0.876158,

∑
k∈K3

ν
′
k

k
= α3 >

89

96
+

1

106
(2.3)

such that {(k, ν ′k)} (k ∈ K3) form pairs of admissible exponents.

Proof By [4, Theorem 2], we obtain this lemma.

2.1 Notation

p denotes a prime number. Let θ be a small positive constant. α, β denote real numbers,
and ε is a small positive number. N is a large positive number, and we write L = logN .
C0, C1, . . . , are positive constants. We use the abbreviations

e(α) := e2πiα, eq(α) := e(a/q).

νk (k ∈ K1 ∪ K2) be defined in Lemma 2.1, ν
′
k (k ∈ K3) be defined in Lemma 2.2

and
ν2 = ν4 = ν6 = 1.

We define (a ≤ q, and (a, q) = 1)

2Pk := N
νk
k , fk := fk(α) =

∑
Pk≤x≤2Pk

e(αxk),

Jk := Jk(β) =
∑

(Pk)k≤y≤(2Pk)k

1

k
y

1
k
−1e(βy), Sk := Sk(a, q) =

q∑
x=1

eq(ax
k), (2.4)

hk := hk(α, a, q) = q−1Sk(a, q)Jk

(
α− a

q

)
.

Define (for k ∈ K3)

uk := uk(α) =
∑

P
′
k≤x≤2P

′
k

e(αxk), 2P
′
k = Nν

′
k/k,

Gk := Gk(β) =
∑

(P
′
k)
k≤y≤(2P ′k)k

1

k
y

1
k
−1e(βy),

(2.5)
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tk := tk(α, a, q) = q−1Sk(a, q)Gk

(
α− a

q

)
.

We denote by
F (α) := F1(α)F2(α) (2.6)

with

F1(α) := f2

( ∏
k∈K1

fk

)
, F2(α) := f4f6F3(α), F3(α) := f8u10

( ∏
k∈K2

uk

)
. (2.7)

Let

Q := N7/8+θ, τ := 1/8− 2θ, (2.8)

and subdivide the interval
Q−1 ≤ α ≤ 1 +Q−1 (2.9)

as follows: For q ≤ N τ , let Ma,q denote the interval α = a
q + β, |β| ≤ (qQ)−1, and

denote the aggregate of all Ma,q’s by M. It can be proved in the standard way that any
two Ma,q’s are disjoint. Let m denote the complement of M in (2.9). Also denote the
complement of Ma,q in (2.9) by ma,q(q ≤ N τ ).

We define

B1(q) =
∑∗

q−5−3/4−1/5|S6|2|S8|2; B2(q) =
∑∗

q−5−5/12−1/5|S8|2;

B3(q) =
∑∗

q−5−7/12−1/5|S6||S8|2; B4(q) =
∑∗

q−4+2θ−1/5|S6|2;

B5(q) =
∑∗

q−3−2/3+2θ−1/5; B6(q) =
∑∗

q−4+1/6−1/5+2θ|S6|;

B7(q) =
∑∗

q−5−1/5|S4|2|S8|2; B8(q) =
∑∗

q−3−1/4−1/5|S4|2;

B9(q) =
∑∗

q−5−3/4−1/5+θ|S4|2|S6|2; B10(q) =
∑∗

q−6−1/5|S4|2|S6|2|S8|2,

(2.10)

where the notation
∑∗ means

∑
1≤a≤q
(a,q)=1

.

Lemma 2.3 [15, Lemma 4.1] Suppose that p - a and k ≥ 3. Then

|Sk(a, p)| ≤ k
√
p.

Lemma 2.4 [15, Lemma 4.4] Suppose that k ≥ 3 and (a, q) = 1. Then Sk(a, q) �
q1−1/k.

Lemma 2.5 [15, Lemma 4.5] Suppose that (a1, q1) = (a2, q2) = (q1, q2) = 1. Then

Sk(a1q2 + a2q1, q1q2) = Sk(a1, q1)Sk(a2, q2).

Lemma 2.6 [15, Lemma 10.1] Suppose that f(q) is a non-negative multiplicative func-
tion of q and

∑∞
h=0 f(ph) exists for every prime p. Then, when X ≥ 1,∑

l≤X
f(l) ≤

∏
p≤X

∞∑
h=0

f(ph).
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Lemma 2.7 B1(q), B2(q), · · · , B10(q) are multiplicative.

Proof If follows easily from (2.10) and Lemma 2.5.

Lemma 2.8 For k = 4, 6 and 8, |β| ≤ 1/2,

Jk(β)� min(N1/k, N1/k−1|β|−1), hk(α, a, q)� q−1/kN1/k min(1, N−1|β|−1),

fk(α)− hk(α, a, q)� q1−1/k+θ (if q ≤ N1/k−θ, |β| ≤ q−1N1/k−1−θ),

and
t10(α, a, q)� q−1/10Nν

′
10/10 min(1, N−ν

′
10 |β|−1).

Proof See Lemma 5 in [14].

Lemma 2.9 ∑
1≤x≤P

eq(ax
k)− P

q
Sk(a, q)� q1/2+ε.

Proof See the main theorem in [7].

Lemma 2.10 For k = 4, 6 and 8,

fk(α)− hk(α, a, q)� q1/2+ε{max(1, N |β|)},

and
u10(α)− t10(α, a, q)� q1/2+ε max(1, Nν

′
10 |β|).

Proof The lemma can be proved by a partial summation with Lemma 2.9.

Lemma 2.11 On m,

f4(α)� N7/32+θ/4, f6(α)� N31/192+θ/6.

Proof It follows a similar argument from [15, Lemma 8.2].

Lemma 2.12 [14, Lemma 21] Let K1 = {12, 14, · · · , 40} and t =
∑

k∈K1
(xkk − ykk) with

Pk ≤ xk ≤ 2Pk, Pk ≤ yk ≤ 2Pk for k ∈ K1.

Then ∑
t 6=0

d(|S|)� Nα1(logN)C1 ,

where d(n) denotes the divisor function and α1 is defined in (2.2).
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Lemma 2.13 The number of solutions of

x22 +

( ∑
k∈K1

xkk

)
= y22 +

( ∑
k∈K1

ykk

)
(2.11)

with the xk’s, yk’s subject to

Pk ≤ xk ≤ 2Pk, Pk ≤ yk ≤ 2Pk

for k ∈ K1 and k = 2 is
� Nα1+1/2+ε(logN)C1 .

Proof Using Lemma 2.12 and [14, Lemma 22], we have this lemma.

Proposition 1 ∫ 1

0
|F1(α)|2 dα� N−1(logN)C1{F1(0)}2,

where C1 is a positive contant.

Proof By N2(α1+1/2) � {F1(0)}2, this proposition follows from Lemma 2.13.

By (2.5) and Lemma 2.2, since Nβ2 � F3(0),∫ 1

0
|F3(α)|2 dα� Nβ2+ε � N−β2+ε{F3(0)}2. (2.12)

By (2.5), (2.12) and Lemma 2.11, since N1/4 � f4(0), N1/6 � f6(0),∫
m
|F2(α)|2 dα� N2×(7/32+θ/4)N2×(31/192+θ/6)

∫ 1

0
|F3(α)|2 dα

� N−1+2/4+2/6{F3(0)}2 � N−1{F2(0)}2.
(2.13)

Lemma 2.14 On Ma,q,

u10 � q−1/10Nν
′
10/10.

Proof The lemma now follows from (2.3) and Lemma 2.8.

Lemma 2.15 On Ma,q,

fk − hk � q−1/2N1/8; hk � N1/kq−1|Sk|min(1, |N |−1|β|−1); (k = 4, 6, 8)

f4 + h4 � q−1/4N1/4; f6 + h6 � q−1/6N1/6; f8 + h8 � q−1/8N1/8;

f26 � |h6|2 + q−1N1/4 + |h6|q−1/2N1/8; f28 � |h8|2 + q7/4+2θ.
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Proof The lemma is deduced from Lemmas 2.14 and 2.8.

Lemma 2.16 On Ma,q,

(f24 f
2
6 f

2
8 − h24h26h28)u210 � q−1/5N2ν

′
10/10(L1 + L2 + L3),

where

L1 =(f4 − h4)(f4 + h4)f
2
6 f

2
8

�N2%
{
q−5−3/4|S6|2|S8|2 + q−5−5/12|S8|2 + q−5−7/12|S6||S8|2

+ q−4+2θ|S6|2
}

min(1, |N |−1|β|−1)2 +N2/4+2/6+1/8
{
q−8/3+2θ + q−2−5/6+2θ|S6|

}
,

L2 =(f6 − h6)(f6 + h6)h
2
4f

2
8 � N2%

{
q−5|S4|2|S8|2 + q−3−1/4|S4|2

}
min(1, |N |−1|β|−1)2,

L3 =(f8 − h8)(f8 + h8)h
2
4h

2
6 � q−5−3/4+θN2%|S4|2|S6|2 min(1, |N |−1|β|−1)2,

and % := 1/4 + 1/6 + 1/8.

Proof This is deduced in a standard way from the above two lemmas.

Lemma 2.17 For i = 1, 2, · · · , 10, ∑
q≤Nτ

Bi(q)� 1. (2.14)

Proof By Lemma 2.4 and (2.10),

0 ≤ B1(q)� q−5−3/4−1/5+7/4+5/3+1 � q−23/15. (2.15)

In fact, we can get the desired bound from this upper bound since the power is less than
−1. But it is not the case for some of others, B8 for example. Thus, we write here a
general argument suitable for all.

It follows that
∑∞

h=0B1(p
h) exists for every prime p and

∞∑
h=2

B1(p
h)� p−46/15. (2.16)

By Lemma 2.3 and (2.10),

0 ≤ B1(p)� p−5−3/4−1/5(
√
p)2(
√
p)2p� p−59/20. (2.17)

Clearly B1(1) = 1. Hence, by (2.16) and (2.17),

∞∑
h=0

B1(p
h)� 1 + C2p

−59/20. (2.18)

By Lemmas 2.6, 2.7 and (2.18), we have∑
q≤Nτ

B1(q) ≤
∏
p≤Nτ

∞∑
h=0

B1(p
h) ≤

∏
p≤Nτ

(1 + C2p
−59/20)� 1.

The other terms in (2.14) can be treated in the same way.
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Lemma 2.18 ∑
q≤Nτ

∑
1≤a≤q
(a,q)=1

∫
Ma,q

|(f24 f26 f28 − h24h26h28)u210| dα� N2η−1,
(2.19)

and ∑
q≤Nτ

∑
1≤a≤q
(a,q)=1

∫
Ma,q

|h24h26h28u210| dα� N2η−1.
(2.20)

where η := 1/4 + 1/6 + 1/8 + ν
′
10/10.

Proof (2.19) follows in a similar manner from Lemmas 2.16 and 2.17. (2.20) is again
deduced in a standard way from Lemmas 2.14, 2.15, and 2.17 using the estimate

h24h
2
6h

2
8u

2
10 � N2ηq−6−1/5|S4|2|S6|2|S8|2 min(1, N−1|β|−1)2.

Thus we have the result.

It now follows from Lemma 2.18 that,∑
q≤Nτ

∑
1≤a≤q
(a,q)=1

∫
Ma,q

|f24 f26 f28u210| dα� N−1 {f4(0)f6(0)f8(0)u10(0)}2
(2.21)

by Nη � f4(0)f6(0)f8(0)u10(0).
Now, using the trivial estimate∏

k∈K2

uk(α)�
∏
k∈K2

uk(0),

we have from (2.21), ∫
M
|F2(α)|2 dα� N−1{F2(0)}2. (2.22)

Proposition 2 ∫ 1

0
|F2(α)|2 dα� N−1{F2(0)}2.

Proof With Q defined by (2.8), we make the same subdivision of the interval Q−1 ≤
α ≤ 1 +Q−1 ( into M and m ).
Write ∫ 1+Q−1

Q−1

|F2(α)|2 dα =

∫
M
|F2(α)|2 dα+

∫
m
|F2(α)|2 dα.

The required result follows from (2.13) and (2.22).
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3 Proof of Theorem 1.1

Let

2P4448 = N1/4448, Uk =

{
Pk, if k ∈ {2, 4, 6, 4448} ∪K1;

P
′
k, if k ∈ {8, 10} ∪K2,

(3.1)

where K1, K2, Pk and P
′
k are defined by (2.1), (2.4) and (2.5).

Write

f̂k = f̂k(α) =
∑

Uk≤p≤2Uk

e(αpk) for k = 2i, 1 ≤ i ≤ 2224, (3.2)

and

C2 = C1/2, C3 = 26×4448(C2 + 2226), L = logN, F̂ (α) =
2224∏
i=1

f̂2i(α). (3.3)

Subdivide the interval

N−1LC3 ≤ α ≤ 1 +N−1LC3 (3.4)

into basic intervals M†a,q for q ≤ LC3 with α = a/q+β, |β| ≤ q−1N−1LC3 and denote the

union of M†a,q’s (these being disjoint) by M†; the supplementary intervals m† denotes
the complement of M† in (3.4).

Let

R†(N) :=

∫ 1+N−1LC3

N−1LC3

F̂ (α)e(−Nα) dα

=

∫
M†

F̂ (α)e(−Nα) dα+

∫
m†
F̂ (α)e(−Nα) dα.

(3.5)

As in Lemma 7 and its corollary in [12] (with slight modifications), we have on m†,

f̂4448(α)� N1/4448L−C2−2225. (3.6)

Replacing (33) and (34) in [12] by Propositions 1 and 2, and arguing as in section 8 of
[12], we have from (3.3) and (3.6)∫

m†
|F̂ (α)| dα� N−1+1/4448{F1(0)F2(0)}L−2225. (3.7)

Also, by (2.4), (2.5) and (3.1),

LC3 � (logUk)
C3 � LC3 and N−1LC3 � U−kk (logUk)

C3 ,

for 1 ≤ i ≤ 2224, k = 2i.
Let ϕ(q) be Euler’s totient function, we have by Lemma 8 of [12], on M†,

f̂k(α)− ĥk(α)� Ne−C4

√
L for 1 ≤ i ≤ 2224, k = 2i (C5 > 0), (3.8)
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where ĥk(α) is the approximating function corresponding to f̂k given by

ĥk(α, a, q) = {ϕ(q)}−1
{ q∑

x=1
(x,q)=1

eq(ax
k)
}{ ∑

Ukk≤y≤(2U
k
k )
k

y1/k−1(log y)−1e(βy)
}
.

Let Ms(p
γ , N) = Ms(p

γ , N ; k1, k2, · · · , ks) denote the number of solutions of the congru-
ence

xk11 + xk22 + xk33 + · · ·+ xkss ≡ N (mod pγ), (3.9)

where 0 < xi < pγ and p - x1x2 · · ·xs.
Let pλi ||ki, and write

γi =

{
λi + 2, if p = 2 and 2|ki;
λi + 1, otherwise,

and γ = min(γ1, γ2, · · · , γs). (3.10)

Then γ = 3 for p = 2 and ki ∈ {2, 4, · · · , 4448}. Also, γ = 1 for p ≥ 3 and ki ∈
{2, 4, · · · , 4448}. Hence if M2224(p

γ , N) > 0 for each prime p (note that the premises of
Lemmas 16, 19, 20 in [12] are satisfied), it would follow as in [12] that

<
(∫

M†
F̂ (α)e(−Nα) dα

)
� N−1+1/4448{F1(0)F2(0)}L−2224. (3.11)

Then, from (3.5), (3.7) and (3.11) we get R†(N) > 0 for large N provided M2224(p
γ , N) >

0 for each prime p.
The argument is completed as follows: Let N1 ≡ 1 (mod 3), and p ≥ 5. M2224(p,N)

denotes the number of solutions of the congruence

( 2224∑
k=1

x2kk

)
≡ N (mod p), 0 < xk < p for 1 ≤ k ≤ 2224. (3.12)

By Lemma 8.4 of [8], for each prime p, x2kk (0 < xk < p) has p−1
(2k,p−1) distinct residue

classes mod p (1 ≤ k ≤ 2224). Hence, applying Lemma 8.4 of [8] repeatedly (2223
times), we see that the number J(p) of distinct residue classes mod p of (

∑2224
k=1 x

2k
k )

(0 < xk < p) satisfies

J(p) ≥ min

(
2224∑
k=1

{
p− 1

(2k, p− 1)

}
− 2223, p

)
. (3.13)

Now
p− 1

(2k, p− 1)
≥ p− 1

2k
and

2224∑
k=1

1

2k
> 4.

Hence, from (3.13),
J(p) ≥ min (4(p− 1)− 2223, p) . (3.14)
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Also 4(p− 1)− 2223 > p if p ≥ 743; so that by (3.14),

M2224(p,N) > 0 for p ≥ 743. (3.15)

For primes 5 ≤ p < 743, it is an easy verification (by use of Lemmas 8.4 and 8.7 of
[8]) that

M2224(p,N) > 0. (3.16)

For p = 3, by use of Lemma 8.4 in [8], when xk runs through 1, 2 (mod 3), x2kk runs
through (3−1)/(2k, 3−1) mutually incongruent numbers mod 3 (for 1 ≤ k ≤ 2224). We
see that

x2kk ≡ 1 (mod 3) for 1 ≤ k ≤ 2224, xk ≡ 1 or 2 (mod 3).

Hence
x21 + x42 + x63 + · · ·+ x44482224 ≡ N1 (mod 3), (3.17)

where N1 ≡ 1 (mod 3).
For p = 2, we note that 12 ≡ 1 (mod 8), 22 ≡ 4 (mod 8), 32 ≡ 1 (mod 8), 42 ≡ 0

(mod 8), 52 ≡ 1 (mod 8), 62 ≡ 4 (mod 8), 72 ≡ 1 (mod 8). The congruence

x21 + x42 + x63 + · · ·+ x44482224 ≡ N1 (mod 23) (3.18)

has solutions for all sufficiently large integers N1.
Combining (3.15), (3.16), (3.17) and (3.18), we can get M2224(p

γ ,N1) > 0 for all
sufficiently large integers N1.

Similar argument holds for the cases N2 ≡ 2 (mod 3) and N3 ≡ 0 (mod 3).
Thus, all sufficiently large integers N1 ≡ 1 (mod 3), N2 ≡ 2 (mod 3), N3 ≡ 0

(mod 3) are representable in the forms

N1 =
s∑

k=1

p2kk , N2 =
s+1∑
k=1

p2kk , N3 =
s+2∑
k=1

p2kk ,

where s = 2224 and the p’s are primes.
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