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Abstract

We study the Initial-Boundary Value problem(IBVP) for a nonlinear Dirac equation with
vector self-interaction (Thirring model), and obtain local existence, uniqueness, and continuous
dependence on initial data in low-regularity spaces. Moreover, we get the global existence for
initial data in R x R™.
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1 Introduction

In this paper, we study the low-regularity for the initial-boundary value problem (IBVP) of the
nonlinear Dirac equation(Thirring model)

(=i 8 + m)p = NpyFpyp,  (x,t) € R x (0,7),
¥(0,2) = o (x), x>0, (1.1)
¢2(t,0) = h(t)a t > 0.

The matrices «, 8 are given by
0 -1 —i 0
() =)

and the v*’s are 2 x 2 Dirac matrices in the representation

01 0 -1

0_ 1_

=) =0 0)

Take expansion for (1.1), we have
_iath + 0,2 + my = 2>\W1‘2¢27 (x7t) € Rt x (OaT)a
—i0in — 10yt + mapy = 2\WhaPyr,  (w,t) €RT x (0,7),

¢(07$) = ¢0($)a T > 07
Yo (t,0) = h(t), t>0,

(1.2)

with compatibility condition h(0) = 192(0), where
_ ¢01($)>
pole) = (1002(1“) '
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For more details about Dirac equation, we can refer to [7]-[13].

Notation:

(Y= VI+] 2 a(r,8) = g eyt z) dtda.
The characteristic function on [0, c0) is defined by x. A ~ B means that there exists constant
C1 and C5 such that C1B < A < Oy,B.

Let a,b € R, define:
lull oo = 14€)4r & £%(r, Ol z2

el e = 1€ {I7] = I€1Y°a(r. )l 2

and
H*(R") = {g € D(R™) : there exists g € H*(R) with gx =g},

gl s m+y = inf {NGll =y : Gx = 9} -
Lemma 1.1. (see [1]) Let 1/2 <b<1,a € R,0<T <1 and0<§ <1—0b. Then for all data
Fe X$P (S and f € HY, the Cauchy problem
—i(0y £ 0x)u = F(t,z) in (0,T) x R,u(0,z) = f(x)
has unique solution u € Xi’b(ST). Moreover,
Jullges sy < COFllze +T1F gaoros s, ) (13)

where C' depends only on b and St = (0,00) x (0,T).
To obtain the result, we need the following two lemmas, we can see the details in [1].

Lemma 1.2. If aj,a2,a3 € R satisfying
1
a1—|—a2+a3>§,a1+a220,a1+a320,a2+a320, (1.4)

then
1 f gl rr—as S N Fllrea[lgllmres- (1.5)

Moreover, we can allow a1 + a2 + ag = % if aj # % for1<j<3.

Lemma 1.3. Suppose ai,az,a3 € R satisfying (1.4), let o, B,y > 0 with o+ 4+ v > % Then
[uv]| g-a5.— S l[ullgarel|o]l oz (1.6)

Moreover, we can allow a1 4+ as + ag = % if aj # % for1 <35 <3.

Denote
Fe=7+E Or=A+n, Si=X-7+(n-9).

Then,
3
[€] < 5 max(|Tt], O], [E=]).
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Remark 1.4. Naturally, there is a question that why we only give one boundary value problem?
By I.P.Naumkin [6] we have that

&E—1

(€

where L denotes the Laplace transform, that

(Lon) (6,0) + S (Latbon) () — (Latbon)(E)),

Etwl (570) = <£>

(£:0)(p) = /O T e o(e)dr, 1<p< oo,

(£:6)(q) = /0 T et 1<q< .

To obtain (1.2), we begin by constructing the solution of the linear initial-boundary-value
problem:

—i0pg + 10,02 = 2A\|[Y1|%ba,  (x,t) € RT x (0,7T),
(0,) = o) = 6(x), >0, (1.7)
a(t,0) = h(t), L>0,

For extension ¢’ to the full line R of the function ¢. p € C™ be a cut-off function such that

_ 1a [0700)7 _
p= { 0 (<o00,0), supp p C [—1,00).

n € C* be a bump function such that

1, [—1,1],
n=1<{ const, [-2,—1)U(1,2],
0, (=00, —2) U (2, +00).

Dy represents evaluation at z = 0, i.e.,
Dou(z,t)] = u(0,t).
Denote the solution of (1.7) by W¢(¢, h),
WG, h) = W5 (0. h = pa) + W (6™),

pa(t) = Do[W/(6F)], W[ is the Fourier multiplier operator with multiplier Re e’l¢l, W2 is the
Fourier multiplier operator with multiplier Re e~#¢2, I/VtRl is the Fourier multiplier operator with
multiplier Re e,

We decompose the solution operator as a sum of a modified boundary operator and the free
propagator defined on the whole real line. Note that Wé(O,h) is the solution of the following
problem:

—104po + 10,9 = 2)\|1/)1|2’l/}2, (z,t) € Rt x (0,7),
¥(0,2) = vo(x) = ¢(x), x>0, (1.8)
Yo (t,0) = h(t), t>0.

W{(0, hy) is the solution of the following problem:

=0 — 10,01 = 2A| o2, (z,t) € RT x (0,T),
¥(0,x) = o(z) = (), x>0, (1.9)
¥1(£,0) = hq(2), t>0,

where hq(t) can be expressed by h(t).
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Lemma 1.5. Suppose h is a Schwartz function, the solution to (1.8) on RT x RY can be written
in the form:
1 [ _
o(x,t) = —/ he™ "2 p(x)dwa,
27 J_»

oo

1 .
o w1 T
Pi(z,t) = o / h1e™ p(x)dw;.

—00

Proof. Taking the Laplace transform in time of (1.8) yields the equation

—7otn(2,7) = Oppa(,7) =0,
Yo(7,0) = h(T), 7> 0.

The characteristic equation of this is —m — & = 0, which has root satisfying & = —m».
So, . }
Yoz, T) = he®?® & e C.

Because we are interested in solution which decay at infinity, so, Re m > 0.
By Mellin inversion, we have for any ¢ > 0 the equality,

1 ctioco _
Yo(x,t) = —/ hes2% et dry,
2mi c—100

analogously,

1 ct+ico
Pi(z,t) = / hie $1%e Tty .

% c—100
We can write this as an integral along the imaginary axis plus integrals along a key hole contour

about the branch cut and integrals along s + iR for s € [0, ¢] with R — 0.
By Jordan’s lemma, we have

1 900
o(x,t) = 2Re—,/ he ™% e dry,
2mi Jo
Make the change of variable 75 = iuo, then dme = idus. On the positive imaginary axis

1 oL ;
Yo(x,t) = ;Re/(; heﬂ””e%mtdug

1 [ . 0o
= *(/ he™ "% dyuy +/ he'"**dps)
27'(' 0 0
1 0 _ o _
= %(/ he™ "% dyuy +/ he™ "2 dpuz)
0 —
1 o[> . , N
=5 he™ 2% e=w2t () dawyy,
—0Q0

where po = p(z)wa.
O

The explicit form will be used to establish bound on W{(0, h) in the subsequent sections. It is
clear that the solution to (1.8) satisfies ®4(1)2) = 12, where the operator ®4 is given by

t ¢ t t t—t! !/
Balia(e.0) = ol WO +1(7) [ Wit Galuyi L)

t
+ U(T)WS(Q h — p2),
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Go(1hg) = —imby + 2i\|ep1 [*hs. (1.11)

Analogously, we have the equation ®1,

101 (2,1) = ) WheF) ) [ Wit Gatwnsar

. (1.12)
W(T)WS(Oa hi —p1),
where
pi(6) = 1) DolWh(OM], pat) = n(e) Dol (65, (113)
G1(¢1) = —imbg + 2i\|tha|*¢hy. (1.14)

Next, we will use the fixed point argument to obtain the unique solution to ®4(v1) = 1
and ®y(1h2) = 12 separately in a suitable function space on R x R for sufficiently small 7. The
restriction of 1,19 to RT x R is a distributional solution of (1.9) and (1.8) separately.

We will argue the contraction in Bourgain spaces X*?. To obtain the solution to the linear
Dirac on R and Duhamel term, we will use the following estimates:

In@)Wh(S) s = In(t)e™ o] xon < 6] 1 (1.15)

for any s and b.
Next, we will give the Duhamel estimate:

Lemma 1.6. For any —l <V <0<b<V+1,and0<T <1, we have
In(z / W (2)dt! | e S T M(Go(¥2)) | e

where (M(f))(fz) = \52\f~
Proof. Since

0(t/T) /O W Gy ()t

= e "n(t/T) /Ot ' Fy (—imapy + 20N|1h|2ho)dt'] = e "2 Frws(t, &),
therefore,
Fualalt/1) [ Wi! Galva)d (. 62) = Tl + 62.2).
Analogously,
Foalot/T) [ Wh it (€0 = i~ €1.6)

Now using the definition of X*? we have
t

Inte/T) | Wi Gatie s

o0 o0 ,\_/
S/ / (&2)* (12 — &) P|wa(&, 72)|PdEadrs

—00 —00

o0 o0 N
s [ ] e mie) Mme, w Pdsadr,
S / <§2>25+2b||]:zw2||i[fd§2

<im0t / / (12 + &) (£2) 25| Fy y(—imapy + 20|91 [P1h2) | dEadrs,
RZ
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hence we have

t
||77(t/T)/ Wit Ga()dt || o S TP ING(G2(42)) | oo (1.16)
0

where
Fe(N2(f))(&2) = —&f(t, &) = M(f),

similarly, we have

t
In(t/T) /0 W G1()dt || xeo S TP NG (1)) | o

t
||77(1t/T)/0 Wi " Gr(yn)dt || oo S T MG D)) grew

where

M(f)(&) = |&lf (& 1)

From [4], we have the following two lemmas.
Lemma 1.7. :
||7I(T)F||H51,b1 S, TbQ_bl ||F||HS2J72

for any —% <b <by < %

Lemma 1.8. Assume h € H5(R*),
(i) If =3 < s < 3, then |xhllg=@) < 7l gs@sy:
(ii) If 5 <s <3, h(0) =0, then || xh|lgs@) S |1P]l s @t)-

2 The a-prior estimates

The estimates include two parts: linear estimates and nonlinear estimates. First, we will give the
linear estimates.

2.1 Linear estimates
Lemma 2.1. (Kato Smoothing) For any s € R,
In(t)Wk(9)

<
HL;othﬁéfl S ol

Proof. In the following we only consider the evaluation at x = 0, since Sobolev norm is invariant
under translations,

Fe(mWh,(6))(0,7) = F(n(t)e ™ $(£2))(0,7)
- /R e~ (t)e 12 (£ ) des

- /]R i + £)6(€)d
- / A+ E2)B(E)der + / A+ E2)d(E2)ds.
[€2]<1

[§2|>1

2541
On the first region, the term can easily be bounded in H, * , since 7 is a Schwartz function. When

|€2] > 1, it is obvious to obtain the result.

O
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Lemma 2.2. For any compactly supported smooth function n and any s > —% with b < %,

InEW 0, M)l gz < lxhll s )-

Proof. By Lemma 1.1, we obtain that
0 ~ . .
2o :/ h(iwg)e™ 2% e "2t (1) dwsy
—00

— Et/ ﬁ(wg)efiwﬂp(x)dwg =Lida,

—00

where £, is the laplace transform in time, ¢4 = h(wy).
Because of (1.15),
[nOLeAl g S 1Al 1z

Now,
N2 (2
Al = [ G i) S Inb(o) ey
—00
O
Lemma 2.3. For any s > 0 and initial data (h,h1) such that (xh,xh1) € H*(R) x H*(R), we

have
W0, h) € COHE, Wi(0,hy) € CYH,

Proof. Note that

QWWS(O, h)y=A= £t/ ﬁ(wg)efiwﬂp(x)dwg = Lida(w),

—00
and

oo
H¢An%;=L/ ()2 () Pdw < [l
—00

L; is the Fourier multiplier operator with multiplier e=%¢.

linear operator Ly, it suffices to show that the map

Thus, using time continuity of the

m+T@»:/wgmwmmmw

—00

is bounded from H® to H®, where f(x) = e . Consider first s = 0. Rewrite T'g(x) as follows

(z =iwr) = w = Z,

1

1T

Tow) = [ fuogtwite = [~ 1@ e

1116117
e ’ ZI Z.Z‘ x ’

and expanding the L2 norm, combining Z =y, we obtain

iz P 21 o) )
§(—)|*=dx < g d
[l s [ ik
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II/ Flwz)g(w)dw|7z < Nlgl72lxio (w) f(wo)lgs |

1 00
1
Nl [ ] P pdvdu < ol
0 Jo w
Thus completes the proof that
27WE(0,h) € CYHE for s =0.

For any s € N and s > 0, we have

9:Tg(x) = /O " 0 1) (wa)g () duw.

This and interpolation imply the desired bounds for positive s.
It remains to prove that nW{(0,h) € COHF. Applying Lemma 1.1 we obtain the result. O
2.2 Nonlinear Estimates

Lemma 2.4. (bilinear H*" estimate) Let M be the Fourier multiplier operator with multiplier &.
For % — b > 0 sufficiently small, we have

HM\u|2v’

X5, —b < HU||§<s,b }UHXSJ"

Proof. By duality, it suffices to show that
| [ P oyddedt| < fulfeslolxesllél - (21)

for any ¢ € X~ (sta)b,
The left hand side of (2.1) is equal to

| [, ~€uPoye.ndie rdsar
| [[ [[[=sal’t€ 1.7 = myutes. mte. mite Pdernasar]
=| // // //RG —&u(€ — &o, 7 — m)u(éa — &1, 10 — 7'1)7)(51,7‘1)(577—)(2)(5’T)d£2d7—2d£1d7_1d£d7_‘.

Now we define

FET) =% =&, 7), g(&T)= (% -, ),

h(E, ) = (€)°(r = €'0(€,7), r(€,7) = () — (€, 7).
Then the inequality (2.1) is equivalent to

' /]Rﬁ M(£7£1>€277—7 7—177_2)f(£1:7—1)g(£2 - 51;7—2 - Tl)h(é- - 5277_ - 7—2)
(6. r)derdgadedndradr| S £l gl Ilsz vl

where

E1(€)° T (€1) (€2 — &1) (€ — &2)~°
(T =%(r2 —m1) = (2 = &)1 —12) — (£ = &))¥

M =



96 F. Liu et al.

By Cauchy Schwartz and Young’s inequalities, we have

LHS of (2.2) Ssup [M|lzz W fllzz llgllcz [IAllzz
0.2 1:71 &7 &7 3%

then it suffices to show that

(s+a) s B e e
bup////w (r—¢ 2b2 FOPE) (& — &) 7F(E — &) P dE d&didr S L

T2 —71) = (&2 = §))?((7 = 72) = (§ = §2))*" (11 — &)
Using the triangular inequality (a)(b) > (a + b) we have

Hska)+2(e) =28 (¢) — &) 726 — &) 25d§1d52d72
LHS of (2:3) 5 Sup///uv (19 — &) (my — (£ — &) — &)

Applying lemma A.l of Erdogan([5] in 7 integral, we are reduced to prove

2o+ 2(e) 72 (6 — &) ¢ — &) P dE1d
"¢ //R @=¢+ent

< sup / / (e)20Ha+21e V=28 gy) — £1) (e — &) "B dg ey S 1.
13 R2

(2.3)

(2.4)

(2.5)

Due to the symmetry of &1, & — £1,€ — &2, we may assume that |§1] < &2 — &1] S € — &af. We

will discuss (2.5) in the following cases,
Case I:  [&] > 1,|€ — &| ~ |&1 — &2f ~ €] ~ |&1]. Combining triangular inequality,

LHS of (2.5) < sup(€)? - / (€)1 g <
I3 R

provided that s > %

Case II: [ — &1 > 1, & < [& — & ~ [€ — & ~ €] ~ [&.
Case II-a: |&;]| < 1. Then,

LHS of(2.5) < sup<§>_23+1/<§1>—28d£1 < sup<§>_23+1 <1
3 R ¢

provided s > %
Case II-b: |§] > 1.

LHS of (2.5) < sup(¢)2(@=9)+1 / (&1)725dg,.
13 R

o If s <0, then(&;) ™2 < ()72,

LHS of (2.5) < sup(¢)2(@=29)+1 < 1,
3

e Ifs>0,
LHS of (2.5) < /<51>*4"‘“d£1 <1
R
provided s > %

Case III: 6| > 1, [¢] < [&1] ~ [€ — &2l
Case III-a: || > 1. Then,

LHS of (2.5) S sup(&)*¢+ / (&) 7% ae Ssup(e) 2 <1
13 R I3
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provided s > %
Case III-b: |¢| < 1.

LHS of (2.5) < /R<£1>‘6s‘1d£1 S1

provided s > 0. So, from above estimates we have s > %

Lemma 2.5. For % — b > 0 sufficiently small, we have

t
||77(t)/ Wio Gdt'l|  y SIM(G)|lxsv, 5 <s<1.
o v LyeH, 2

t

Proof. Tt suffices to consider evaluation at x = 0. We have
t o—it—t')¢ + i(t—t')¢
/ Wi L Gdt’ = / / G(¢&,t)dt' de

t —i(t— t)§+€(t t') it
//Rz/ G(&, 7)dt' drde

t it (r6) gy et (T£8) 1t eft(T£8) _ 1
/06 ’i(fig)‘o’ i(r£6)

//R”i(jz G(&,7)drdeg.

Define 9 being a smooth cut-off function such that
w o 17 [_17 1}7
10, (=00, —2) U (2,400).

zt(Tif 7_ :tf)

t)/W,g;Gdt_n(t //Rz Tig > dedr
eTHYC (1 £ €)

//R2 0 ———————>2dédr

//R? mwfif )dde

and

Thus, we will bound

Then,

=14 114 III
By Taylor Expanding, we have
eltT _ eﬂpz’tf " > (—it)k o1
D R 17 + —
i(r &) ¢ ; o TS

Therefore, ||I]|; is bounded by

ad k|, . .
> IO [ cnirs ot 60 e,

Z _1),II<T>S_§/(Ti§)k W (r £ )G T)dE] 2

k:l

< Iy / (r £ )G(E, 7)dE] 2.

97
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Using the Cauchy-Schwartz inequality in 7, this can be banded by

(farif o @*ieenPaar)
R ==3ke ==35

Sow (07 [ @) M@l

S MG xs-,

[SIES

where we have used that 1

The supreme bound holds since

Tl <1

25—1 725
T> /Ti§|<1<£> 5 {< 25— 1f‘rt§|<1< > 28d£7 ‘7_| > 1,

the latter bound comes from |7| — [€].
Next, consider II. When [¢] < 1, since b < %7 we have

eTHYC (1 £ €)
I [, s,

||77(t)€¥”£|IH‘,% .
< - - 7_ i
//§|<1 |7+ €| ¥ ( i§)|M( )(€,7)|déd

< [[ X NG € s

snM(G)HXs,fbHXg e e LY Py

1
=3
t

To control the part of IT where |£| > 1,

CE 4,

O (r £ €)
o) [, g el S [ AR

By Cauchy-Schwartz inequality in the 7 integral, using the fact that b < %, this is bounded by

Ligi>1

- 11G(E(2),7)

2 |
ey e e o

the above is bounded by || M (G)]| xs,—b-
It remains to bound III.

.y S e CED] e,
s

ey IGE T
<||/><R|T| e S el

+1 [ xnelirl - I >Sf(’5’ i' el 2

=A+B.
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For the first term of the right hand side of the above inequality,

AZ ||/XR<T>S_§<§>5—;|<GT(i7§'§|

<||/ 1= 3(6) G (e 7| 2
< rye=3+( /R () Hr — &)1 G(E ) PdE) | 2

_3
< sup(r)° 2 M (G xo 0 S IM(G)llxo-,

d€]| 2

this is finite for % <s<1.
The second term can be bounded by

|| /R € N7 — &7 — \G(E, 7 dE 2

< / ()23 (r — €)2=2dg) % / (2 (7 — )P |G(E, 7)Pde) 7 2
R R

< IM(G)|xes,

provided that sup, [ (€)% 73(r — )% ~2d¢ < oo, since b < 1, |7| < [¢], then (r —£)?*72 < (1)272 <
1, then the above is bounded by sup, [ (€)2573d¢ < 1 provided % <s<1.
O

Lemma 2.6. (sce [4/) Assume h € H*(R™),

(i) ]f—* < s < &, then |xhllgs@) S 7l s)

(i) 1Y < s <3 h(0) =0, then |xhlmem) < Il
3 Proof of theorem

We will first show that the map ®; defined in (1.10) has a unique fixed point in X*°. Let
¢ € H*(R) be the extension of ¢ such that ||¢*| Hs®) S S 9l s (ry- Recall that

D3 (a(a,1)) = ( )WR2(¢2 ( )/W Gy (1) d

+77<T> W5(07h_p2)a

where Gy (1) and py are defined in (1.11) and (1.13). To bound the first term in ®9, apply (1.15)

to obtain .
¢ R
Hﬂ <T> WR,2 (¢2) .

For the Duhamel term, we apply (1.16) and lemma 2.4 to obtain

. S HﬁbRHHs(R) S 9l s -

STV | M (11 PY2) || o

ST 2 llxen 1920y -

Finally, for the W{¢ term, we apply lemma 2.2 and lemma 2.6 to obtain

In(t/TYWE (0.1 = p2) llxon S Il (h = p2)l| 200
H, (R)

Sth=pl .y

Hn<t/T> / t Wiy Ga (1) dt"

Xs:b

(®+)
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By Kato smoothing, lemma 2.1, we have

e L Py PR

t

Combining these estimates. we find that

1y
[@2(2)ll x50 < lld2ll = r) + HhHH#(Rﬂ + T2 1R 1902l o -

t

Analogously, we have

- 2
[P1(¥1)llxs0 S lallms ey + IIthHt@(Rﬂ + 1277 lhallxsn (19l xo0 -

This, together with similar estimates for the difference @4 (¢2) — ®9 (1&2), yields the existence of
a fixed point of ®o of T5 sufficiently small:

7o = 3o (ol Wl 2 ).

t

To obtain the uniqueness, we should show that,
1. 1hg ¢ ®g (1hg) is onto X =P,
2. the map 9 +> @5 (12) is a contraction in X,

From the above estimates, we obtain the uniqueness easily.

Proof of Global well-posedness:

It suffices to show that if 0 < T < oo and
(wlan) € C([OaT)7HS) X C([O>T>aHS)

solves (1.2) on St, then
910l oo g5y + 1¥2]] oo 57y < 00 (3.1)

Indead, if (3.1) is satisfied then global existence can be shown as follows: Denote
A@) = [l s + 12Ol s »
then we have
4D < A0+ [ (4@ + flen @)+ e ()] )
Now, we use the inequality (Ponce, 1993, lemma 1)

1fgllms S Nz ligllzee + | fllzeellgllms  for s >0,

e S0P @) lor ) + ol () e [ ()]
S (#) e () laaelin (¢) s + 1 () W el (F) D

to obtain

1221 (1)

For the term |||1|?42(t')|| 775, we have the similar result. So we have

Il P () e + 1201 () ]z S (ln@llzge + 12tz )* A (£) -
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Therefore,
t
2
A() £ AO)+C (14 il iqsny + Wallicsn)” [ 4 () ar.
Gronwall’s Lemma then implies
At) < A060(1+H¢1HLOO(ST)HIWIILOO(ST))%
for 0 <t < T, hence supg<;7(|[¢1(t) || s + ||¢2(t)[| zs) < oo allowing us to extend the solution to
[0,T +¢] x R,e > 0, global existence then follows.
Finally, we will prove (3.1). By (1.2), we derive
(0 + 00) 91" = —2mIm (Y1952) (3:2)
(0 — 9y) [o)* = 2mIm (1192) . (3.3)

By Duhamel formula,

t
1 (t,2)* = [¥1 (0,2 — £)* — 2m1m/0 (V1te) (¢, —t +t') dt’,

t
[a(t, )” = [¢ha(0, 2+ )* + 2m1m/ (Vrtha) (' +t—t) dt’.
0
We then estimate

[l t.2P)

et ol < 100,20 + ll20,2)]| e

t
o [ (Jloateo] + flatear], ) ar
< 110, ) e + 200, 2) 2
Lg) dt,

ram [ (oo, + leator]
ntt |+t )] S (0.l + 0,21,
H L3 L2

Lge

Gronwall’s lemma implies

hence
112 sy + [ 102620 S (192020 + (0,2l ) €™,

therefore (|41 | oo (gy) + [1¥2]| oo (s55) < 00 for 0 < T' < co. Here, the proof is completed.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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