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Abstract

The concepts of ∆-convergence and ∆L-convergence of a net are introduced in
∆-space defined by Zhang et.al. The characterization of the continuity of the ∆-
space is obtained in terms of the ∆-convergence of the nets. The result that the
continuity of the ∆-space implies the ∆L-convergence being topological in ∆-space is
given. An example is supplied to illustrate that the converse of the above result does
not hold. Meantime, we prove that the ∆-space X is continuous if and only if the
∆L-convergence is topological in X, X is meet-continuous and O(X)

∨
ω(X) = τ∆L

.
Moreover, we put forward the concept of weak continuity of the ∆-space and show
that a sufficient and necessary condition for the ∆-space being weak continuous is
that the ∆L-convergence is topological.
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1 Introduction

The theory of T0-spaces is a combination of order theory and general topology, each
playing a crucial role, and each interacting with other in ways that both are enriched.
In [1], the authors discussed the Scott topology and its connection with the convergence
given in order theoretic terms by S-convergence and lower limits in directed complete
posets(dcpos). They obtained the characterization of the continuity of the dcpos by the
S-convergence structure, that is, a dcpo is continuous if and only if the S-convergence is
topological. Afterwards, B. Zhao and D. Zhao gave a sufficient and necessary condition
for the posets to be continuous utilizing the S-convergence structure in [2]. Moreover,
there were many kinds of convergence class proposed to characterize various kinds of
continuity of the posets or the dcpos in the papers [3, 4, 6–10]. As a generalization
of the posets endowed with Scott topology, Z. Zhang et.al introduced the concept of
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the ∆-space in [13]. They also defined the continuity of the ∆-space and presented
topological characterizations of the continuity. The notions of a domain, a continuous
poset, a quasi-continuous domain, an s2-continuous poset given by Erne [6], an s2-quasi-
continuous poset introduced by Zhang and Xu [5], a strongly continuous poset proposed
by Xu and Mao [12], and a θ-continuous poset defined by Zhang et.al [11] are special
cases of the continuity of the ∆-space. It is natural to ask: Can we make use of the
convergence of the nets to characterize the continuity of the ∆-space?

In this paper, we introduce the concepts of ∆-convergence and ∆L-convergence of
a net in ∆-space. The characterization of the continuity of the ∆-space is obtained in
terms of the ∆-convergence of the nets. This result answers the above question. We
obtain that the continuity of the ∆-space implies that the ∆L-convergence is topological
in ∆-space, but the converse does not hold. Meantime, we prove that the ∆-space X is
continuous if and only if the ∆L-convergence is topological in X, X is meet-continuous
and O(X)

∨
ω(X) = τ∆L

. At last, we put forward the concept of the weak continuity of
the ∆-space and shows that a sufficient and necessary condition for the ∆-space being
weak continuous is that the ∆L-convergence is topological.

2 Preliminary

The following definitions can be seen in [1] and [14].
Let L be a poset, A ⊆ L. Let Au = {b ∈ L : ∀a ∈ A, b > a} be the set of

upper bounds of A, Al = {b ∈ L : ∀a ∈ A, b 6 a} be the set of lower bounds of A,
↓A = {b ∈ L : ∃a ∈ A, b 6 a} and ↑A = {b ∈ L : ∃a ∈ A, b > a}. A subset A is called
a lower set(upper set) if A =↓A(A =↑A). A subset D is called directed(filtered) if it is
non-empty and for every non-empty and finite subset F of D, F u∩D 6= ∅(F l∩D 6= ∅).
L is called a dcpo if every directed subset has a sup. A subset A is called a filter if
it is a filtered upper set. We call the topology generated by {L\ ↑x | x ∈ L} ∪ {L}
the lower topology, and we denote it by ω(L). For a subset A of L, a net (xi)i∈I ∈ A
usually if for all i ∈ I, there exists a i0 ∈ I with i0 ≥ i such that xi0 ∈ A. And a
net (xi)i∈I ∈ A eventually if there exists a i0 ∈ I such that xi ∈ A for all i ≥ i0. For
any topological space (X,O(X)), a net (xi)i∈I in X converges to an element x in X if
(xi)i∈I ∈ U eventually for all U in O(X) with x ∈ U .

For a space (X,O(X)), the specialization order ≤ on X is defined by

x ≤ y if and only if x ∈ cl({y}).

In this paper, unless other stated otherwise, whenever an order-theoretical concept
is mentioned in the context of a space X, it is to be interpreted with respect to the
specialization order on X.

Lemma 2.1 [15] Let L be a class of some pairs ((xi)i∈I , x) of a net (xi)i∈I and an
element x in a poset L. Then the class L is topological, that is, there exists a topology
τ on L such that ((xi)i∈I , x) ∈ L iff the net (xi)i∈I converges to x with respect to the
topology τ , if and only if it satisfies the following four conditions:
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(Constants) If (xi)i∈I is a constant net, that is, for all i ∈ I, xi = x, then ((xi)i∈I , x) ∈
L.
(Subnets) If ((xi)i∈I , x) ∈ L and (yj)j∈J is a subnet of (xi)i∈I , then ((yj)j∈J), x) ∈ L.
(Divergences) If ((xi)i∈I , x) /∈ L, then there exists a subnet (yj)j∈J , which has no sub-
net (zk)k∈K so that ((zk)k∈K), x) ∈ L.

(Iterated limits) If ((xi)i∈I , x) ∈ L, ((xi,j)j∈J(i), xi) ∈ L for all i ∈ I, then ((xi,f(i))(i,f)∈I×M
, x) ∈ L, where M =

∏
i∈I J(i). The order of M is defined as follows, f1 ≤ f2 if and only

if f1(i) ≤ f2(i) for all i ∈ I, the order of I ×M is defined as follows, (a, f1) ≤ (b, f2) if
and only if f1 ≤ f2 and a ≤ b.

3 ∆-space

Recall that a topological space (X,O(X)) is called a weak monotone convergence space
if and only if O(X) ⊆ σ(X). And a space X is called a monotone determined space if
a subset U of X is open if and only if for any directed subset D of X, cl(D) ∩ U 6= ∅
implies D ∩ U 6= ∅.

Definition 1 [13] A space X is called a ∆-space if it is both a weak monotone conver-
gence space and a monotone determined space.

Example 1 Examples of ∆-spaces:

(1) Any poset with Scott topology(Posets endowed with the Scott topology);

(2) Sober C-spaces;

(3) Sober locally finitary compact space.

Definition 2 [13] Let X be a ∆-space, and x, y ∈ X. We say that x approximates y,
in symbols x ≺ y, if for any directed D ⊆ X, y ∈ cl(D) implies x ∈ ↓D. We write
⇓x = {a ∈ X : a ≺ x}, ⇑x = {a ∈ X : x ≺ a}.

Proposition 1 [13] Let X be a ∆-space. For any a, b, c, d ∈ X, the following statements
hold:

(1) a ≺ b implies a ≤ b.

(2) a ≤ b ≺ c ≤ d implies a ≺ d.

Definition 3 [13] A ∆-space X is said to be continuous if ⇓x is directed and x =
∨
⇓x

for all x ∈ X.

Proposition 2 A ∆-space X is continuous if and only if there exists a directed subset
D of ⇓x such that ∨D = x for all x ∈ X.
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Proof The necessity is obvious. Conversely, let x ∈ X and suppose that there exists a
directed subset D of ⇓x such that

∨
D = x for all x ∈ X. Suppose x1, x2 ∈ ⇓x. Since

x = ∨D ∈ cl(D), we have that x1, x2 ∈ ↓D, i.e., there exist d1, d2 ∈ D such that x1 ≤ d1

and x2 ≤ d2. Thus, x1 ≤ d1 ≤ d and x2 ≤ d2 ≤ d for some d ∈ D by the directness of
D. Hence, the set ⇓x is directed. Besides,

∨
⇓x = x by the assumption

∨
D = x and

D ⊆ ⇓x ⊆ ↓x. Therefore, X is continuous.

Proposition 3 [13] If ∆-space X is continuous, then ⇑x is open and U =
⋃
{⇑u : u ∈

U} for all x ∈ X and U ∈ O(X).

Definition 4 [13] A ∆-space X is meet− continuous if for any x ∈ X and directed set
D ⊆ X, x ∈ cl(D) implies x ∈ cl(↓x ∩ ↓D).

Definition 5 [13] A ∆-space X is called quasicontinuous if for all x ∈ X and U ∈
O(X), x ∈ U implies that there is a finite subset F ⊆ X such that x ∈ int(↑F ) ⊆ ↑F ⊆
U .

Theorem 3.1 [13] A ∆-space X is continuous if and only if X is quasicontinuous and
meet-continuous.

Next we will characterize the continuity of ∆-space by Galois connections.

Definition 6 Let X be a ∆-space. A filter F in X is said to converge to x ∈ X denoted
by F −→ x if there exists a non-empty directed subset D of X such that

(1) x ∈ cl(D);

(2) for each d ∈ D, ↑d ∈ F .

Let θ(X) denote the family of all lower set of X. Then θ(X) is a completely dis-
tributive lattice under set inclusion. Define α : θ(X) −→ θ(X) by α(A) = {y ∈ X :
∃ a proper filter F −→ y and A ∈ F} for each A ∈ θ(X), and β : θ(X) −→ θ(X)
by β(B) = ⇓B =

⋃
{⇓b : b ∈ B} for each B ∈ θ(X). Then both α and β are order-

preserving.

Lemma 3.1 Let X be a continuous ∆-space and A ∈ θ(X).
Then cl(A) = {y ∈ X : ∃ a proper filter F −→ y and A ∈ F}

Proof Obviously.

Theorem 3.2 Let X be a ∆-space, the following statements are equivalent:

(1) X is continuous.

(2) α and β form an adjunction,i.e, β(α(A)) ⊆ A ⊆ α(β(A)) for all A ⊆ X.
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Proof (1) ⇒ (2): Let x ∈ β(α(A)), then there exists y ∈ α(A) such that x ≺ y. Thus
y ∈ cl(A) and y ∈ ⇑x. Obviously, ⇑x is open in X by the continuity of X. It follows
that ⇑x

⋂
A 6= ∅. Since A is a lower set, we have that x ∈ A.

Let x ∈ A. We need to show that x ∈ α(β(A)) = cl(⇓A). In fact, since X is
continuous, we have that x =

∨
⇓x. Hence, x ∈ cl(⇓x) ⊆

⋃
a∈A cl(⇓a) = cl(⇓A).

(2) ⇒ (1): First, we claim that ⇓x is directed for all x ∈ X. In fact, let F be a finite
subset of ⇓x, we want to show that F u

⋂
⇓x 6= ∅. By (2), x ∈ ↓x ⊆ α(β(↓x)) = α(⇓x),

which implies that there exists a proper filter F such that F −→ x and ⇓x ∈ F . Hence,
there exists a directed subset D of X such that x ∈ cl(D) and ↑d ∈ F for all d ∈ D.
We conclude that F ⊆ ↓D,i.e, ↑a ∈ F for all a ∈ F . And there exists Fa ∈ F such that
a ∈ F la, which implies F ⊆ (∩Fa)l. Let E = ∩Fa, it is obvious that E ∈ F and E ⊆ F u.
Thus F u ∈ F and F u

⋂
⇓x ∈ F . Since F is proper, F u

⋂
⇓x 6= ∅. Second, it is obvious

that ↓x ⊆ α(⇓x) ⊆ (⇓x)ul ⊆ (↓x)ul = ↓x, thus x =
∨
⇓x. Therefore, X is continuous.

4 ∆-convergence in ∆-spaces

In this section, we introduce and study the ∆-convergence in ∆-spaces. It is proved that
a ∆-space is continuous if and only if the ∆-convergence is topological.

Definition 7 Let X be a ∆-space. A net (xi)i∈I in X is said to ∆-converge to x ∈ X
if there exists a non-empty directed subset D of X such that

(1) x ∈ cl(D);

(2) for each d ∈ D, xi ∈ ↑d eventually.

In this case, we write (xi)i∈I
∆−→ x.

Remark 4.1 Let X be a ∆-space. Then

(1) The constant net (xi)i∈I in X with value x ∆-converges to x.

(2) For any net (xi)i∈I in X. If (xi)i∈I
∆−→ x, then (xi)i∈I

∆−→ y for every y ≤ x.

(3) For any U ∈ O(X), U = ↑U .

Definition 8 Let X be a ∆-space. We consider the following family of the subset of X.

τ∆ = {U ⊆ X : whenever (xi)i∈I
∆−→ x and x ∈ U, then xi ∈ U eventually}. It

is easy to prove that τ∆ is a topology. It is called the ∆-topology on X. Each U ∈ τ∆ is
called ∆-open set. Complements of ∆-open sets are called ∆-closed sets.

Proposition 4 Let X be a ∆-space and A ⊆ X. Then A is a ∆-closed set if and only

if for any net (xi)i∈I in A, if (xi)i∈I
∆−→ x, then x ∈ A.
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Proof (⇒): Assume (xi)i∈I ⊆ A and (xi)i∈I
∆−→ x. Suppose that x ∈ X \A. Since A is

∆-closed, we have that X\A is ∆-open. Thus (xi)i∈I ∈ X\A eventually, a contradiction.
(⇐):Suppose not, A is not ∆-closed. Then X \ A is not ∆-open. Thus there exists

x ∈ X \ A and a net (xi)i∈I such that (xi)i∈I
∆−→ x, but (xi)i∈I is not eventually in

X \A. It follows that (xi)i∈I ∈ A usually.

Proposition 5 Let X be a ∆-space and U ⊆ X. Then U ∈ τ∆ if and only if for any
directed subset D of X, cl(D) ∩ U 6= ∅ implies D ∩ U 6= ∅.

Proof (⇒): Assume that U ∈ τ∆. Let D be a directed subset of X and cl(D) ∩ U 6= ∅.
Then there exists x ∈ U such that x ∈ cl(D). Obviously, (d)d∈D

∆−→ x. Hence, (d)d∈D ∈
U eventually. It follows that D ∩ U 6= ∅.

(⇐): Assume that for any directed subset D of X, cl(D)∩U 6= ∅ implies D∩U 6= ∅.
Let (xi)i∈I

∆−→ x and x ∈ U . By the definition of ∆-convergence, there exists a directed
subset D0 of X such that x ∈ cl(D0) and for each d ∈ D0, d ≤ xi holds eventually.
From the assumption, we can see easily that U is an upper set. And x ∈ cl(D0)∩U 6= ∅.
Hence, there exists d0 ∈ D0 such that ↑d0 ⊆ U . It is tantamount to xi ∈ ↑d0 ⊆ U
eventually. Thus U ∈ τ∆.

Remark 4.2 Let X be a ∆-space. Then O(X) ⊆ τ∆.

Proposition 6 Let X be a ∆-space. Then for x, y ∈ X, x ≺ y if and only if for every

net (xi)i∈I in X, (xi)i∈I
∆−→ y implies xi ∈ ↑x eventually.

Proof (⇒): Assume that x ≺ y. Let the net (xi)i∈I
∆−→ y. By the definition of ∆-

convergence, there exists a directed subset D of X such that y ∈ cl(D) and for all d ∈ D,
xi ∈ ↑d eventually. Since x ≺ y, we have that x ≤ d0 for some d0 ∈ D. Moreover,
xi ∈ ↑d0 ⊆ ↑x eventually.

(⇐): Let D0 be a directed subset of X with y ∈ cl(D0). Obviously, (d)d∈D0

∆−→ y.
By assumption, (d)d∈D0 ∈ ↑x eventually. It follows that x ∈ ↓D. Hence, x ≺ y.

Lemma 4.1 If the ∆-space X is continuous. Then (xi)i∈I
∆−→ x if and only if (xi)i∈I

O(X)−→
x.

Proof (⇒): Suppose that (xi)i∈I
∆−→ x and x ∈ U ∈ O(X). By the definition of ∆-

convergence, there exists a directed set D of X such that x ∈ cl(D) and for all d ∈ D,
xi ∈ ↑d eventually. Since x ∈ cl(D) ∩ U 6= ∅, we have that D ∩ U 6= ∅, i.e, there exists

d0 ∈ D ∩ U such that xi ∈ ↑d0 ⊆ U eventually. Thus (xi)i∈I
O(X)−→ x.

(⇐): Suppose that (xi)i∈I
O(X)−→ x. Since X is continuous, ⇓x is directed and x =∨

⇓x. It follows that x ∈ cl(⇓x). Let a ∈ ⇓x. By Proposition 3.7, x ∈ ⇑a ∈ O(X).

Hence, we have that xi ∈ ⇑a ⊆ ↑a eventually and (xi)i∈I
∆−→ x.
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Lemma 4.2 If the ∆-space X is continuous. Then (xi)i∈I
∆−→ x if and only if (xi)i∈I

τ∆−→
x.

Proof From the proof of Lemma 4.8 and Remark 4.6, it is easy to show that.

Corollary 4.3 If the ∆-space X is continuous. Then the ∆-convergence is topological
in X. In particular, O(X) = τ∆.

Lemma 4.3 Let X be a ∆-space. If the ∆-convergence is topological in X. Then X is
continuous.

Proof Since the ∆-convergence is topological. We have that there exists a topology τ

such that (xi)i∈I
∆−→ x ⇔ (xi)i∈I

τ−→ x. Let x ∈ X. Set I = {(U, a) ∈ N (x) ×X : a ∈
U}, where N (x) = {U ∈ τ : x ∈ U}. Define an order on I as follows:

∀(U1, a1), (U2, a2) ∈ I, (U1, a1) ≤ (U2, a2) if and only if U1 ⊇ U2.

Then (I,≤) is a preordered set. Obviously, I is directed. Let xi = a for any i =

(U, a) ∈ I. Then it is easy to see that (x(U,a))(U,a)∈I
τ−→ x. Thus (x(U,a))(U,a)∈I

∆−→ x.
By the definition of ∆-convergence, we conclude that there exists a directed subset D of
X such that x ∈ cl(D) and for any d ∈ D, x(U,a) ∈ ↑d eventually. In particular, for any
d ∈ D, there exists Wd ∈ τ such that x ∈Wd ⊆ ↑d.

We claim that D ⊆ ⇓x.
Assume that a ∈ D. We need to prove a ≺ x. In fact, for any net (xi)i∈I with

(xi)i∈I
∆−→ x, we know that there exists Wa ∈ τ such that x ∈ Wa ⊆ ↑a. Thus xi ∈

Wa ⊆ ↑a eventually. By Proposition 4.7, a ≺ x. Moreover,
∨
D = x.

By the Proposition 3.6, X is continuous.

Theorem 4.4 Let X be a ∆-space. Then X is continuous if and only if the ∆-convergence
is topological in X.

Proof It follows from Corollary 4.10 and Lemma 4.11.

5 ∆L-convergence in ∆-spaces

In this section, the concept of ∆L-convergence in ∆-spaces is introduced. It is proved that
a ∆-spaceX is continuous if and only if the ∆L-convergence is topological, O(X)

∨
ω(X) =

τ∆L
, and X is meet-continuous. Moreover, we give a characterization for the ∆L-

convergence being topological.

Definition 9 Let X be a ∆-space. A net (xi)i∈I in X is said to ∆L-converge to x ∈ X
if there exists a non-empty directed subset D of X such that

(1) ∨D exists and x = ∨D;
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(2) for each d ∈ D, xi ∈ ↑d eventually;

(3) for each a ∈ X, if xi ∈ ↑a usually, then x ∈ ↑a.

In this case, we write (xi)i∈I
∆L−→ x.

Definition 10 Let X be a ∆-space. We consider the family of subsets of X below.

τ∆L
= {U ⊆ X : whenever (xi)i∈I

∆L−→ x and x ∈ U, then xi ∈ U eventually}.
Obviously, it is a topology. It is called the ∆L-topology on X. Each U ∈ τ∆L

is called
∆L-open set. Complements of ∆L-open sets are called ∆L-closed sets.

Proposition 7 Let X be a ∆-space. Then O(X) ⊆ τ∆L
and ω(X) ⊆ τ∆L

.

Proof First, let U ∈ O(X) and (xi)i∈I
∆L−→ x ∈ U . By the definition of the ∆L-

convergence, there exists a directed subset D of X such that

(1) ∨D exists and x = ∨D;

(2) for each d ∈ D, xi ∈ ↑d eventually;

(3) for each a ∈ X, if xi ∈ ↑a usually, then x ∈ ↑a.

Since x ∈ cl(D) ∩ U 6= ∅, we have that D ∩ U 6= ∅, i.e., there exists a ∈ D ∩ U such
that xi ∈ ↑a ⊆ U eventually. Thus O(X) ⊆ τ∆L

.
Second, let x ∈ X. Suppose that (xi)i∈I is a net and it ∆L-converges to an element

y ∈ X \ ↑x. Then (xi)i∈I is not usually in ↑x; otherwise, y ∈ ↑x. So we conclude that
the net (xi)i∈I ∈ X \ ↑x eventually. Therefore, X \ ↑x ∈ τ∆L

and ω(X) ⊆ τ∆L
.

Theorem 5.1 Let X be a ∆-space. If X is continuous, then (xi)i∈I
∆L−→ x if and only

if (xi)i∈I
τ∆L−→ x.

Proof The necessity is obvious. Conversely, let x ∈ X and suppose that the net

(xi)i∈I
τ∆L−→ x. Since X is continuous, we have that ⇓x is directed and x =

∨
⇓x. Let

a ∈ ⇓x. It follows that x ∈ ⇑a ∈ O(X) ⊆ τ∆L
by Proposition 5.3. Thus xi ∈ ⇑a ⊆ ↑a

eventually. Let b ∈ X, xi ∈ ↑b usually. Suppose that x /∈ ↑b i.e., x ∈ X \ ↑b ∈ ω(X).
We conclude that xi ∈ X \ ↑b eventually by Proposition 5.3, which is a contradiction.

Hence, x ∈ ↑b. In a word, (xi)i∈I
∆L−→ x.

Theorem 5.2 Let X be a ∆-space. If X is continuous, then (xi)i∈I
∆L−→ x if and only

if (xi)i∈I
O(X)

∨
ω(X))−→ x.

Proof It can be proved by Theorem 5.4 and Proposition 5.3.

Immediately, we obtain the following conclusion.
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Corollary 5.3 If the ∆-space X is continuous. Then the ∆L-convergence is topological
in X. In particular, O(X)

∨
ω(X) = τ∆L

.

From the above corollary, we know that if the ∆-space X is continuous, then the
∆L-convergence is topological in X and O(X)

∨
ω(X) = τ∆L

. The following example
shows that the converse does not hold.

Example 2 Let L = N ∪ {a, ω1, ω2} and X = (L, σ2(L)). (See Figure 1). The partial
order 6 on L is defined as follows:
• n 6 ω1 and n 6 ω2 for all n ∈ N
• 0 6 1 6 2... 6 n 6 ...
• a 6 ω1, a 6 ω2

• x 6 x for all x ∈ L
(1) X is a ∆-space;
(2) X is not continuous.
Claim 1: cl(N) = N ∪ {a}. In fact, ω1, ω2 /∈ cl(N), because {ω1, ω2} ∈ σ2(L) and

{ω1, ω2}
⋂
N = ∅. Hence, cl(N) ⊆ N∪ {a}. Conversely, we only to prove that a ∈ cl(N).

Let U ∈ σ2(L) with a ∈ U . Since Nul = N ∪ {a}, we have that N
⋂
U 6= ∅. Thus

a ∈ cl(N).
Claim 2: a 6≺ a. Indeed, a ∈ cl(N) = N ∪ {a}, but a /∈↓ N.
So ⇓ a = ∅ and a 6=

∨
⇓ a. Thus X is not continuous.

(3) The ∆L-convergence is topological in X.

Claim 1: (xi)i∈I
∆L−→ x if and only if xi ∈ {x} eventually. In fact, suppose that

xi ∈ {x} eventually. Let D = {x}. We have that x = ∨D, xi ∈ ↑d eventually for
all d ∈ D and for each y ∈ X,xi ∈ ↑y usually implies x ∈ ↑y. By the definition of

∆L-convergence, (xi)i∈I
∆L−→ x. Conversely, assume that (xi)i∈I

∆L−→ x. Then there
exists a directed subset D ⊆ X such that x = ∨D, xi ∈ ↑d eventually for all d ∈ D and
for each y ∈ X,xi ∈ ↑y usually, so x ∈ ↑y. Next we discuss the following situations.
Suppose x ∈ N. Since x + 1 6≤ x, we have that xi is not usually in ↑{x + 1} and thus
xi ∈ X \ ↑{x + 1} eventually. From x = ∨D, max(D) exists, we have that x ∈ D.
Thus xi ∈ ↑x eventually. Hence we can conclude that xi ∈ ↑x

⋂
X \ ↑{x + 1} = {x}

eventually. If x = a, then xi ∈ ↑a eventually. Since ω1 6≤ a and ω2 6≤ a, we have that
xi ∈ X \ ↑ω1

⋂
X \ ↑ω2 eventually. Thus xi ∈ ↑a

⋂
X \ ↑ω1

⋂
X \ ↑ω2 = {x} eventually.

If x ∈ {ω1, ω2}, without loss of generality, suppose x = ω1, then xi ∈ ↑ω1 eventually,
that is xi ∈ {x} eventually.

It is easy to prove the following results. τ∆L
= P(X) and (xi)i∈I

τ∆L−→ x if and only if
xi ∈ {x} eventually.

From the claim 1 and the results above, we have that (xi)i∈I
τ∆L−→ x if and only if

(xi)i∈I
∆L−→ x, and thus the ∆L-convergence is topological in X.

(4) P(X) = σ2(X)
∨
ω(X). Let x ∈ X. If x ∈ {ω1, ω2}, then {x} ∈ σ2(X). Suppose

x ∈ N. Since ↑n ∈ σ2(X) and X \ ↑{n+ 1} ∈ ω(X), we have that {n} = ↑n \ ↑{n+ 1} =
↑n

⋂
X \ ↑{n + 1} ∈ σ2(X)

∨
ω(X). If x = a, then {a} = X \ ↑ 0 ∈ ω(X). Hence,

P(X) ⊆ σ2(X)
∨
ω(X). So by the Proposition 5.3, P(X) = σ2(X)

∨
ω(X).
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Figure 1: a ∆-space in which ∆L-convergence is topological but not continuous

Definition 11 Let X be a ∆-space. For x, y ∈ X, define x ≺∆L
y if for every net (xi)i∈I

in X which ∆L-converges to y, xi ∈ ↑x eventually. We write ⇓∆L
x = {a ∈ X : a ≺∆L

x},
⇑∆L

x = {a ∈ X : x ≺∆L
a}.

Proposition 8 Let X be a ∆-space. For all x, y ∈ X, x ≺∆L
y if and only if for any

directed subset D of X, cl({y}) = cl(D) implies x ∈ ↓D.

Proof Suppose that x ≺∆L
y. Let D be a directed subset of X and cl({y}) = cl(D).

Clearly, (d)d∈D
∆L−→ y. Thus x ∈ ↓D. Conversely, suppose that for any directed subset

D of X, cl({y}) = cl(D) implies x ∈ ↓D. Let the net (xi)i∈I
∆L−→ y. Then there exists a

directed subset D of X such that

(1) ∨D exists and y = ∨D;

(2) for each d ∈ D, xi ∈ ↑d eventually;

(3) for each a ∈ X, if xi ∈ ↑a usually, then y ∈ ↑a.

Since y = ∨D, we have that cl({y}) = cl(D). By assumption, x ∈ ↓D, which implies
xi ∈ ↑d0 ⊆ ↑x eventually for some d0 ∈ D. Thus x ≺∆L

y.

Definition 12 A ∆-space X is called ∆L-continuous if for any x ∈ X, there exists a
directed subset Dx of ⇓∆L

x and ∨Dx = x.

Theorem 5.4 If the ∆L-convergence is topological in a ∆-space X. Then X is ∆L-
continuous.

Proof Since the ∆L-convergence is topological, there exists a topology τ such that (xi)i∈I
∆L−→

x ⇔ (xi)i∈I
τ−→ x. Let x ∈ X. Set I = {(U, a) ∈ N (x) × X : a ∈ U}, where

N (x) = {U ∈ τ : x ∈ U}. Define an order on I as follows:

∀(U1, a1), (U2, a2) ∈ I, (U1, a1) ≤ (U2, a2) if and only if U1 ⊇ U2.

Then (I,≤) is a preordered set. Obviously, I is directed. Let xi = a for any i =

(U, a) ∈ I. Then it is easy to see that (x(U,a))(U,a)∈I
τ−→ x. Thus (x(U,a))(U,a)∈I

∆L−→ x.
By the definition of ∆L-convergence, we can conclude that there exists a directed subset
D of X such that
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(1) ∨D exists and x = ∨D;

(2) for each d ∈ D, x(U,a) ∈ ↑d eventually;

(3) for each t ∈ X, if x(U,a) ∈ ↑t usually, then x ∈ ↑t.

In particular, for any d ∈ D, there exists Wd ∈ τ such that x ∈Wd ⊆ ↑d.
We claim that D ⊆ ⇓x. Assume d0 ∈ D. Then we need to prove d0 ≺ x. In fact,

for any net (xi)i∈I with (xi)i∈I
∆L−→ x, there exists Wd0 ∈ τ such that x ∈ Wd0 ⊆ ↑d0.

Thus xi ∈ Wd0 ⊆ ↑d0 eventually. So d0 ≺ x. Moreover,
∨
D = x. Therefore, X is

∆L-continuous.

From the above theorem, we know that if the ∆L-convergence is topological in a
∆-space X, then X is ∆L-continuous. However, the example below reveals that the
converse does not hold.

Example 3 Let L = (N× (N ∪ {w})) ∪ {a, ω1, ω2} ∪ N and X = (L, σ(L)) (See Figure
2). The order on L is defined as follows:
• (n1,m1) 6 (n2,m2) if n1 = n2 and m1 6 m2 for all n1,m1, n2,m2 ∈ N
• (n1,m1) 6 (n2, w) if n1 ≥ n2 for all n1, n2 ∈ N and m1 ∈ N
• a 6 (n, ω) for all n ∈ N
• (n1, ω) 6 (n2, ω) if n1 ≥ n2 for all n1, n2 ∈ N
• n 6 ω1 and n 6 ω2 for all n ∈ N
• 0 6 1 6 2... 6 n 6 ...
• (n, ω) 6 ω1, (n, ω) 6 ω2 for all n ∈ N
• x 6 x for all x ∈ L
(1) X is a ∆L-continuous ∆-space. Indeed, for all n ∈ N, ⇓∆L

(n,w) = {(n,m) : m ∈
N}, ⇓∆L

a = {a}, and for all n,m ∈ N, ⇓∆L
(n,m) = ↓(n,m) , ⇓∆L

n = ↓n, ⇓∆L
ω1 = ↓ω1,

⇓∆L
ω2 = ↓ω2. Obviously, X is ∆L-continuous.

(2) The ∆L-convergence is not topological in X. Let xn = (n,w) for all n ∈ N. It is

easy to show that (xn)n∈N
∆L−→ a and ⇑∆L

a = {a, ω1, ω2} /∈ τ∆L
. By Theorem 5.20 and

Corollary 5.21, the ∆L-convergence is not topological in X.

132             F. Feng and Q. Li



(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(1,ω)

(2,0)

(2,1)

(2,2)

(2,ω)

(3,0)

(3,1)

(3,2)

(3,ω)

a

(0,ω)

ω1 ω2

0

1

2

Figure 2: A ∆-space is ∆L-continuous but the ∆L-convergence is not topological in it

Theorem 5.5 Let X be a ∆-space, the following statements are equivalent:

(1) The ∆L-convergence is topological, O(X)
∨
ω(X) = τ∆L

, and X is meet-continuous.

(2) X is continuous.

Proof (1) ⇒ (2): It suffices to prove that ⇓∆L
x = ⇓x for all x ∈ X. Let y ∈ X,

suppose that y ∈ ⇓∆L
x. Let D be a directed subset of X and x ∈ cl(D). Since X is

meet-continuous, we have that x ∈ cl(↓D ∩ ↓x). Define

I = {(U, a) ∈ N (x)×X : a ∈ U ∩ ↓D ∩ ↓x}, where N (x) = {U ∈ O(X) : x ∈ U},

and a preorder ≤ on I as follows, ∀(U1, a1), (U2, a2) ∈ I, (U1, a1) ≤ (U2, a2) if and
only if U1 ⊇ U2. Let xi = a for any i = (U, a) ∈ I. Then it is self-evident that

(x(U,a))(U,a)∈I
O(X)−→ x and (x(U,a))(U,a)∈I ⊆ ↓x. Thus (x(U,a))(U,a)∈I ⊆ X \ ↑m for all x ∈

X\↑m. This implies (x(U,a))(U,a)∈I
ω(X)−→ x. So (x(U,a))(U,a)∈I

O(X)
∨
ω(X)−→ x. Since the ∆L-

convergence is topological and O(X)
∨
ω(X) = τ∆L

, we have that (x(U,a))(U,a)∈I
∆L−→ x.

We conclude that x(U, a) ∈ ↑y eventually by y ≺∆L
x, i.e., there exists (U0, a0) ∈ I such

that x(U,a) ∈ ↑y for all (U, a) ≥ (U0, a0). In particular, we have (U0, a) ≥ (U0, a0) for all
a ∈ U0 ∩ ↓D ∩ ↓x and then U0 ∩ ↓D ∩ ↓x ⊆ ↑y. Hence, y ∈ ↓D. It follows that y ∈ ⇓x.
Conversely, suppose that y ∈ ⇓x. Let the net (xi)i∈I in X which ∆L-converges to x.
Then there exists a directed subset D of X such that

(1) ∨D exists and x = ∨D;
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(2) for each d ∈ D, xi ∈ ↑d eventually;

(3) for each a ∈ X, if xi ∈ ↑a usually, then x ∈ ↑a.

Since x = ∨D ∈ cl(D) and y ∈ ⇓x, we have that y ∈ ↓D, which implies that there exists
d0 ∈ D such that xi ∈ ↑d0 ⊆ ↑y eventually. Thus y ∈ ⇓∆L

x. X is ∆L-continuous by
Theorem 5.11, we conclude that X is continuous.

(2) ⇒(1): It can be proved by Theorem 3.10 and Corollary 5.6.

Definition 13 Let X be a ∆-space. For x, y ∈ X, define x ≺∆ y if for every net (xi)i∈I
in X which ∆L-converges to y, xi ∈ ⇑∆L

x eventually. We write ⇓∆x = {a ∈ X : a ≺∆

x}, ⇑∆x = {a ∈ X : x ≺∆ a}.

The following example illustrates that ≺∆ and ≺ are different:

Example 4 Let L = (N∪{ω}×N∪{ω}) and X = (L, σ(L)). (See Figure 3). The order
on L is defined by the following rules:
• (n1,m1) 6 (n2,m2) if n1 = n2 and m1 6 m2 or m2 = ω for all n1, n2 ∈ N,m1,m2 ∈

N ∪ {ω}
• (ω, n1) 6 (ω, n2) if n1 6 n2 or n2 = ω for all n1, n2 ∈ N ∪ {ω}
• (ω,m) 6 (n, ω) if m ≤ n for all m,n ∈ N
(1) We claim that ≺6⊆≺∆. It is easy to see that (ω, 0) ≺ (ω, ω), but (ω, 0) 6≺∆ (ω, ω).

In fact, let xn = (n, ω) for all n ∈ N, then (xn)n∈N
∆L−→ (ω, ω) and ⇑∆L

(ω, 0) = {(ω, n) :
n ∈ N ∪ {ω}}. However, (xn)n∈N is not in ⇑∆L

(ω, 0) eventually. Thus we have that
(ω, 0) 6≺∆ (ω, ω).

(2) We need to prove that ≺∆ 6⊆≺. First, we claim that (ω, 0) ≺∆ (ω, 1). Indeed,

for any net (xi)i∈I with (xi)i∈I
∆L−→ (ω, 1), since O(X)

∨
ω(X) ⊆ τ∆L

, we have that
X \ ↑ (ω, 2) ∈ τ∆L

and (ω, 1) ∈ X \ ↑ (ω, 2). Thus xi ∈ X \ ↑ (ω, 2) eventually. Since
(ω, 1) ≺∆L

(ω, 1), we have that xi ∈ ↑ (ω, 1) eventually. By the fact that (1, ω) 6≤ (ω, 1),
we can conclude that xi ∈ X \ ↑ (1, ω) eventually. Hence, xi ∈ (X \ ↑ (ω, 2))

⋂
(X \

↑ (1, ω))
⋂
↑ (ω, 1) = {(ω, 1)} ⊆ ⇑∆L

(ω, 0) eventually. Let D = {(1, n) : n ∈ N}. It is
easy to see that (ω, 1) ∈ cl(D), but (ω, 0) /∈ ↓D. Thus (ω, 0) 6≺ (ω, 1).
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Proposition 9 Let X be a ∆-space. Then the following statements hold for all x, y, z ∈
X.

(1) x ≺∆ y implies x ≺∆L
y;

(2) z ≤ x ≺∆ y implies z ≺∆ y.

Proof It is obvious.

Definition 14 We call a ∆-space X weak continuous if ⇓∆x is directed and
∨
⇓∆x = x

for all x ∈ X.

Lemma 5.1 If the ∆-space X is weak continuous. Then X is ∆L-continuous.

Proof Since ⇓∆x ⊆ ⇓∆L
x and ⇓∆x is directed, we have that X is ∆L-continuous.

Proposition 10 A ∆-space X is weak continuous if and only if there exists a directed
subset Dx of ⇓∆x such that

∨
Dx = x for all x ∈ X.

Proof The necessity is easy to be proved. Conversely, let x ∈ X and suppose that there
exists a directed subset Dx of ⇓∆x such that

∨
Dx = x for all x ∈ X. Let x1, x2 ∈ ⇓∆x.

It is obvious that (d)d∈D
∆L−→ x, and hence, (d)d∈D ∈ ⇓∆L

x1 ∩ ⇓∆L
x2. It follows that

x1 ≤ d and x2 ≤ d. Hence, the set ⇓∆x is directed. Meanwhile,
∨
⇓∆x = x since∨

Dx = x and Dx ⊆ ⇓∆x ⊆ ↓x. Therefore, X is weak continuous.

Theorem 5.6 Let X be a ∆-space. Then X is weak continuous if and only if the ∆L-
convergence is topological in X.

Proof Suppose that X is weak continuous.
Step 1: We claim that ⇑∆L

x ∈ τ∆L
for all x ∈ X.
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Let y ∈ ⇑∆L
x. For any net (xi)i∈I in X with (xi)i∈I

∆L−→ y, we need to prove that
xi ∈ ⇑∆L

x eventually. Since X is weak continuous, we have that ⇓∆y is directed and∨
⇓∆y = y. Thus there exists d ∈ ⇓∆y such that x ≤ d by Proposition 5.9. Hence,

x ≤ d ≺∆ y. It follows that ⇑∆L
d ⊆ ⇑∆L

x. So xi ∈ ⇑∆L
d ⊆ ⇑∆L

x eventually.
Step 2: The ∆L-convergence is topological in X.

Let (xi)i∈I be a net in X and x ∈ X. It suffices to prove that (xi)i∈I
∆L−→ x if and

only if (xi)i∈I
τ∆L−→ x. Suppose that (xi)i∈I

τ∆L−→ x. Since X is weak continuous, we
have that X is ∆L-continuous by Lemma 5.18. Thus, y =

∨
⇓∆L

y. Let a ∈ ⇓∆L
y, i.e.,

y ∈ ⇑∆L
a. From (xi)i∈I

τ∆L−→ x, we conclude that xi ∈ ⇑∆L
a ⊆ ↑a eventually. For any

b ∈ X, if the net (xi)i∈I ∈ ↑b usually, then x ∈ ↑b because X \ ↑b ∈ τ∆L
. Therefore,

(xi)i∈I
∆L−→ x. Conversely, suppose that (xi)i∈I

∆L−→ x, it is obvious that (xi)i∈I
τ∆L−→ x.

So the ∆L-convergence is topological in X.
Conversely, suppose that the ∆L-convergence is topological in X. It follows that X

is ∆L-continuous from Theorem 5.11. It is enough to prove that ⇓∆L
x ⊆ ⇓∆x for any

x ∈ X. In fact, assume y ∈ ⇓∆L
x. Then for any net (xi)i∈I with (xi)i∈I

∆L−→ x, we have

that (d)d∈Di

∆L−→ xi for all i ∈ I. From Lemma 2.1, we have that (x(i,f(i)))(i,f)∈I×M
∆L−→

x, where M =
∏
i∈I Dxi and x(i,f(i)) = f(i) for all (i, f) ∈ I × M . Meanwhile,

(x(i,f(i)))(i,f)∈I×M ∈ ↑y eventually. Thus there exists (i0, f0) ∈ I×M such that x(i,f(i)) ∈
↑y for all (i, f) ≥ (i0, f0). So all i ≥ i0, y ≤ x(i,f) �∆L

xi; hence, y �∆L
xi for all

i ≥ i0. We conclude that xi ∈⇑∆L
y eventually and y ∈ ⇓∆x. Since X is ∆L-continuous,

there exists a directed subset Dx such that Dx ⊆ ⇓∆L
x ⊆ ⇓∆x and ∨Dx = x. Therefore,

X is weak continuous by Proposition 5.19.

Corollary 5.7 Let X be a ∆-space. Then X is weak continuous if and only if the
following statements hold:

(i) X is ∆L-continuous.

(ii) ⇑∆L
x ∈ τ∆L

for all x ∈ X.
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