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Abstract

We evaluate the first three moments of central values of a family of qudratic
Hecke L-functions in the Gaussian field with power saving error terms. In particular,
we obtain asymptotic formulas for the first two moments with error terms of size
O(X1/2+ε). We also study the first and second mollified moments of the same
family of L-functions to show that at least 87.5% of the members of this family have
non-vanishing central values.
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1 Introduction

The study on moments of quadratic twists of L-functions at central values has important
applications to problems such as class numbers of imaginary quadratic fields, ranks of
elliptic curves and the existence of Landau-Siegel zeros. For the central values of the
family of quadratic Dirichlet L-functions, M. Jutila evaluated the first two moments in
[9] to show that there are infinitely many L-functions in this family with non-vanishing
central values. This approach was further advanced by K. Soundararajan in [14], who
computed the first and second mollified moments of the family of primitive quadratic
Dirichlet L-functions to show that at least 87.5% of such L-functions have non-vanishing
central values.

In the same paper [14], Soundrarajan also obtained the third moment of the family
of primitive quadratic Dirichlet L-functions. Under the assumption of the Generalized
Riemann Hypothesis (GRH), Q. Shen obtained an asymptotic formula in [12] for the
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fourth moment of the same family. Analogue to quadratic twists by Dirichlet characters,
there is also an intensive study on moments of various families of modular forms. Results
on the first moments can be found in [10, 11]. Assuming GRH, the second moment of
quadratic twists of modular L-functions was computed by K. Soundararajan and M. P.
Young in [15].

Other than obtaining the main terms of the moments of families of L-functions, a
lot of attention has been drawn upon the improvement of the error terms. For the first
moment of the family of quadratic Dirichlet L-functions, the error term obtained in
Jutila’s result is of size O(X3/4+ε) (with the main term being about X logX). An error
term of the same size is obtained by A. I. Vinogradov and L. A. Takhtadzhyan [16] and
was improved to X19/32+ε by D. Goldfeld and J. Hoffstein in [6]. In fact, an error term
of size O(X1/2+ε) is essentially implicit in [6] (see the remarks in the paragraph below
Theorem 1.1 of [17]).

The result of Goldfeld and Hoffstein is obtained via the usage of Eisenstein series of
metaplectic type. Using a different approach which involves with more classical tools
from analytical number theory, M. P. Young in [18] was able to establish the same
estimation for the error term for a smoothed first moment. Young’s approach builds
on the previous work of Soundararajan, who developed a type of Poisson summation
formula for smoothed quadratic Dirichlet character sums. In the meanwhile, Young also
introduced novel techniques such as using a recursive relation to lower down the error
term successively as well as performing an intricate analysis of certain subsidiary terms
whose sizes are difficult to control individually. These techniques have been successfully
applied by Young later in [18] to improve the error term in the smoothed third moment
of the family of primitive quadratic Dirichlet L-functions and by K. Sono [13] for the
smoothed second moment of the same family.

Inspired by the work of Soundararajan and Young, we expect to apply the methods
in [14, 17, 18] to study moments of other quadratic twists of L-functions. In this paper,
we focus on the moments of a family of quadratic Hecke L-functions in the Gaussian
field. Thus, we denote K = Q(i) for the Gaussian field throughout the paper and we
denote OK = Z[i] for its ring of integers and UK = {±1,±i} for the group of units
in OK . Recall that every ideal in OK co-prime to 2 has a unique generator congruent
to 1 modulo (1 + i)3 (see the definition above Lemma 8.2.1 in [1]). These generators
are called primary. We shall denote ω for a prime number in OK , by which we mean
that the ideal (ω) generated by ω is a prime ideal. We write N(n) for the norm of any
n ∈ K. We further denote χ for a Hecke character of K and we say that χ is of trivial
infinite type if its component at infinite places of K is trivial. We write L(s, χ) for the
L-function associated to χ and we denote ζK(s) for the Dedekind zeta function of K.

For any element n ∈ OK , we say n is odd if (n, 2) = 1 and we say n is square-free
if the ideal (n) is not divisible by the square of any prime ideals. We further denote
χc =

(
c
·
)
, where

( ·
·
)
is the quadratic residue symbol defined in Section 2.1. Similar to the

arguments in Section 2.1 of [5], the symbol χ(1+i)5d defines a primitive quadratic Hecke
character modulo (1 + i)5d of trivial infinite type when d ∈ OK is odd and square-free.

We can thus consider the moments of the family of quadratic Hecke L-functions
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L(12 , χ(1+i)5d) with d varying over odd and square-free elements in OK . The aim here is
not only to obtain valid asymptotic formulas, but also to obtain error terms as good as
those given by Young and Sono for the classical case. Our first result is the following

Theorem 1.1. Let Φ : R+ → R be a smooth function of compact support. Then for
1 ≤ j ≤ 3 and any ε > 0, we have∑∗

(d,2)=1

L(12 , χ(1+i)5d)
jΦ

(
N(d)

X

)
= XPi(logX) +O(Xθi+ε), (1.1)

for some polynomials Pi of degree i(i+1)/2 (depending on Φ) and θi = 1/2 for i = 1, 2,
θ3 = 3/4. Here the “∗” on the sum over d means that the sum is restricted to square-free
elements d in OK .

In order to establish Theorem 1.1, we shall use recursive arguments to obtain the
desired error terms in (1.1), starting from much larger error terms. This process actually
requires us to consider a more general situation, namely the following “twisted” moments
for primary l ∈ OK :

Mα(l) =
∑∗

(d,2)=1

L(12 + α, χ(1+i)5d)χ(1+i)5d(l)Φ

(
N(d)

X

)
, (1.2)

Mα,β(l) =
∑∗

(d,2)=1

L(12 + α, χ(1+i)5d)L(
1
2 + β, χ(1+i)5d)χ(1+i)5d(l)Φ

(
N(d)

X

)
, (1.3)

Mα,β,γ(l) =
∑∗

(d,2)=1

L( 12 + α, χ(1+i)5d)L(
1
2 + β, χ(1+i)5d)L(

1
2 + γ, χ(1+i)5d)χ(1+i)5d(l)Φ

(
N(d)

X

)
.

(1.4)

It is certainly expected that the case i = 1 of (1.1) is the easiest to study compared to higher
moments. In fact, we shall only need to evaluate Mα(l) for l being square-free while for higher
moments, we need to evaluate Mα,β(l) and Mα,β,γ(l) for a general l. In order to state our results
concerning Mα(l),Mα,β(l) and Mα,β,γ(l), we need to first introduce a few notations. For Φ given
as in the statement of Theorem 1.1, we shall set

F (x) = Φ(
x

X
).

We recall that the Mellin transform f̂ for any function f is defined to be

f̂(s) =

∞∫
0

f(t)ts
dt

t
.

It follows from this that we have

F̂ (s) = XsΦ̂(s).
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For a sequence of complex numbers α1, · · · , αj and a primary n ∈ OK , we define

σα1,··· ,αj
(n) =

∑
a1···aj=n

ai≡1 mod (1+i)3,1≤i≤j

j∏
i=1

N(ai)
−αi . (1.5)

For any primary l ∈ OK , we shall use l1, l2 for the unique primary elements in OK such that
l = l1l2 with l1 being square-free and l2 a square. We shall use the notation l∗ for l1 as well.
Using this notation, we define for each l,

Aα1,··· ,αj
(l) =

∑
n≡1 mod (1+i)3

(n,2)=1

σα1,··· ,αj (l
∗n2)

N(n)

∏
ϖ≡1 mod (1+i)3

ϖ|nl

(1 +N(ϖ)−1)−1.

We further define Bα(l), Bα,β(l) and Bα,β,γ(l) such that

Aα(l) =ζK,2(1 + 2α)Bα(l), (1.6)

Aα,β(l) =ζK,2(1 + 2α)ζK,2(1 + 2β)ζK,2(1 + α+ β)Bα,β(l), (1.7)

Aα,β,γ(l) = ζK,2(1 + 2α)ζK,2(1 + 2β)ζK,2(1 + 2γ)ζK,2(1 + α+ β)

×ζK,2(1 + α+ γ)ζK,2(1 + β + γ)Bα,β,γ(l),
(1.8)

where we define the function ζK,l(s) for l ∈ OK by removing the Euler factors from ζK(s) at
prime ideals (ϖ) with ϖ|l. We define similarly Ll(s, χ) for any Hecke character χ of K, so that

Ll(s, χ) = L(s, χ)
∏
(ϖ)
ϖ|l

(
1− χ(ϖ)

N(ϖ)s

)
.

We note here (see also the discussions below Lemma 2.9) that Bα(l), Bα,β(l) and Bα,β,γ(l)
have absolutely convergent Euler products for the parameters α, β, γ in a neighborhood of the
origin. For example, we have

Bα(l) = N(l∗)−α/2
∏

ϖ≡1 mod (1+i)3

ϖ|l

1

(1 +N(ϖ)−1

∏
ϖ≡1 mod (1+i)3

ϖ∤2l

(
1−N(ϖ)−2−2α(1 +N(ϖ)−1)−1

)
.

We define further that

Γα =

(
32

π2

)−α Γ
(
1
2 − α

)
Γ
(
1
2 + α

) . (1.9)

Now, we are ready to state our recursive results concerning the error terms for the asymptotic
expressions of Mα(l), Mα,β(l) and Mα,β,γ(l).
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Theorem 1.2. Suppose that for any primary l ∈ OK , we write l = l1l2 such that both l1, l2 are
primary and that l1 is square-free and l2 is a square. If we have uniformly for α, β, γ lying in
the rectangle |ℜ(s)| ≤ ε

logX , |ℑ(s)| ≤ Xε that

Mα(l) =π
∑

ϵ1∈{±1}

Aϵ1α(l)Γ
δ1
α

F̂ (1− δα)

2ζK,2(2)
√
N(l)

+O(Xf
√
N(l)(N(l)X)ε) for l square-free,

(1.10)

Mα,β(l) =π
∑

ϵ1,ϵ2∈{±1}

Aϵ1α,ϵ2β(l)Γ
δ1,δ2
α,β

F̂ (1− δ1α− δ2β)

2ζK,2(2)
√

N(l∗)
+O(Xf

√
N(l)(N(l)X)ε), (1.11)

Mα,β,γ(l) = π
∑

ϵ1,ϵ2,ϵ3∈{±1}

Aϵ1α,ϵ2β,ϵ3γ(l)Γ
δ1,δ2,δ3
α,β,γ

F̂ (1− δ1α− δ2β − δ3γ)

2ζK,2(2)
√

N(l∗)
(1.12)

+O(Xf
√
N(l)(N(l)X)ε),

(1.13)

for f > 1/2 in (1.10), (1.11) and for f > 3/4 in (1.12), then the expression (1.10) holds for
f replaced by 1

4 + f
2 , the expression (1.11) holds for f replaced by 1 − 1

4f and the expression

(1.12) holds for f replaced by 3
4 +

f− 3
4

2f . Here, we define Γδ1,δ2,δ3
α,β,γ to be Γδ1

α Γδ2
β Γδ3

γ , where δi = 0

if ϵi = +1, and δi = 1 if ϵi = −1. Similar definitions apply to Γδ1
α and Γδ1,δ2

α,β .

We note here that our condition in Theorem 1.2 for Mα(l) is slightly different compared to
those for Mα,β(l) and Mα,β,γ(l). This is because that we only need l to be square-free in the proof
for the case of Mα(l) while for the other cases, a general l is involved. We also note that in [2],
J. B. Conrey, D. Farmer, J. Keating, M. Rubinstein and N. Snaith produced a recipe that allows
one to conjecture the asymptotics for the integral moments of families of L-functions. Modifying
their recipe, one may obtain conjecturally the main terms for Mα(l),Mα,β(l) and Mα,β,γ(l) given
in (1.10)-(1.12), as Young and Sono did in [13, 17, 18] for the case of Dirichlet L-functions. We
can also obtain the the same main terms here by going directly through the arguments in the
proof of Theorem 1.2 in the paper.

Applying the convexity bound that (see [8, Exercise 3, p. 100]) for ℜ(s) = ε,

L(1/2 + s, χ(1+i)5d) ≪ ((1 + |s|)2N(d))1/4+ε,

we deduce that expressions (1.10)-(1.12) are valid for f = 1+ j/4 as an initial estimate. Arguing
as the proof of Conjecture 3.3 in [17], we see that this leads to a valid expression of (1.10) and
(1.11) for f = 1

2 , as well as a valid expression of (1.12) for f = 3
4 . We summarize this in the

following result.

Theorem 1.3. Let Mα(l),Mα,β(l) and Mα,β,γ(l) given in (1.10)-(1.12). For any primary l ∈ OK

and any complex number α, β, γ lying in the rectangle |ℜ(s)| ≤ ε
logX , |ℑ(s)| ≤ Xε, the expression

(1.10) holds with an error of size N(l)1/2+εX
1
2+ε for any ε > 0, when l is square-free. For

general l, the expression (1.11) holds with an error of size N(l)1/2+εX
1
2+ε for any ε > 0 and the

expression (1.12) holds with an error of size N(l)3/4+εX
1
2+ε for any ε > 0.
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In Section 3, we shall prove Theorem 1.2 by assuming that each α, β, γ lies in a punctured
rectangle of the form |ℜ(s)| ≤ c1/ logX, |ℑ(s)| ≤ c2X

ε minus |ℜ(s)| ≤ c1/(2 logX), |ℑ(s)| ≤
(c2/2)X

ε for suitable ci depending on α, β, γ such that the distances between the parameters
are at least ≫ 1/Xε. One then deduces the result for other cases following the arguments made
in the paragraph above Section 3.3 in [17] and the two paragraphs below Lemma 3.6 in [18].
By considering the limit case of α, β, γ → 0, l = 1 in Theorem 1.3, we recover the statement of
Theorem 1.1. Note that we do not run into singularities here, see Lemma 2.3 in [13] and the
paragraph above it for an explanation.

Note that the “twisted” moments Mα(l),Mα,β(l) and Mα,β,γ(l) appear naturally when mol-
lifying central values. Thus, our result in Theorem 1.3 also paves a way for us to consider the
mollified moments of the same family of L-functions. We shall in fact evaluate the first and
second mollified moments of this family in Section 4 to establish the following non-vanishing
result on central values.

Theorem 1.4. We have for all large x, and any fixed ε > 0,∑
N(d)≤x
(d,2)=1

L(
1
2 ,χ(1+i)5d)≠0

µ[i](d)
2 ≥

(
7

8
− ε

) ∑
N(d)≤x
(d,2)=1

µ[i](d)
2.

Thus, for at least 87.5% of the odd square-free elements d ∈ OK , L( 12 , χ(1+i)5d) ̸= 0.

Our proof of Theorem 1.2 follows largely the line of treatment of Young in [17, 18], as well
as the approach of Sono in [13] for the evaluation of Mα,β(l). We shall apply the approximate
functional equation for L(s, χ(1+i)5d) obtained in Section 2.5 to express products involving L( 12 +
α, χ(1+i)5d) into two smoothed sums. Then we apply a two dimensional Poisson summation to
convert the sum over d into a dual sum. Shifting the contour of integrals leads to a contribution
of poles, which in turn gives us two types of main terms, with the second type being contributed
by non-zero squares in the dual sum. On the new line of the integration, we apply the recursive
argument to obtain “tails” of these main terms, so that some of them combine naturally together.
This leads to the main terms given in (1.10)-(1.12) with desired error terms of smaller sizes.
The most intricate part of the above approach involves with representing the second type main
terms so that they can be combined with certain terms coming from the recursive process. This
requires a careful analysis on the Archimedean parts of functional equations of the corresponding
L-functions as well as the two dimensional Fourier transforms of the weight functions involved.

On the other hand, our proof of Theorem 1.4 owes much to the work of Soundararajan in
[14]. In fact, the error term in the asymptotic expression for Mα,β(l) given in Theorem 1.3 is
not strong enough in the l aspect for us to choose a mollifier that is long enough to derive our
result. We need thus to follow the original treatment of Soundararajan in [14] to handle the
second mollified moment. The proof of Theorem 1.4 is then made much easier, thanks to the
existing approach available in [14].

2 Preliminaries

In this section, we include some auxiliary results needed in the proofs of our theorems.

2.1 Quadratic residue symbol, Gauss sum and Poisson Summation

Recall that K = Q(i) and it is well-known that K have class number one. We denote (DK) for
the discriminant of K and recall that DK = −4. For n ∈ OK , (n, 2) = 1, we denote the symbol
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( ·
n

)
for the quadratic residue symbol (mod n) in K. For a prime ϖ ∈ Z[i] with N(ϖ) ≠ 2,

the quadratic symbol is defined for a ∈ OK , (a,ϖ) = 1 by
(

a
ϖ

)
≡ a(N(ϖ)−1)/2 (mod ϖ), with(

a
ϖ

)
∈ {±1}. When ϖ|a, we define

(
a
ϖ

)
= 0. Then the quadratic symbol can be extended to

any composite n with (N(n), 2) = 1 multiplicatively. We further define
( ·
c

)
= 1 when c ∈ UK .

We note that the following quadratic reciprocity law (see [5, (2.1)]) holds for two co-prime
primary elements m,n ∈ OK : (m

n

)
=
( n

m

)
. (2.1)

Moreover, we deduce from Lemma 8.2.1 and Theorem 8.2.4 in [1] that the following supple-
mentary laws hold for primary n = a+ bi with a, b ∈ Z:(

i

n

)
= (−1)(1−a)/2 and

(
1 + i

n

)
= (−1)(a−b−1−b2)/4. (2.2)

For any n, r ∈ OK , (n, 2) = 1, we define the quadratic Gauss sum g(r, n) by

g(r, n) =
∑

x mod n

(x
n

)
ẽ
(rx
n

)
, (2.3)

where

ẽ(z) = exp
(
2πi

( z

2i
− z̄

2i

))
.

When r = 1, we shall denote g(n) for g(1, n). Recall from [4, (2.2)] that for primary n, we have

g(n) =

(
i

n

)
N(n)1/2. (2.4)

Let φ[i](n) denote the number of elements in the reduced residue class of OK/(n), we now
recall from [5, Lemma 2.2] some explicitly evaluations of g(r, n) for n being primary.

Lemma 2.2. (i) We have

g(rs, n) =
( s
n

)
g(r, n), (s, n) = 1,

g(k,mn) = g(k,m)g(k, n), m, n primary and (m,n) = 1.

(ii) Let ϖ be a primary prime in OK . Suppose ϖh is the largest power of ϖ dividing k. (If
k = 0 then set h = ∞.) Then for l ≥ 1,

g(k,ϖl) =



0 if l ≤ h is odd,

φ[i](ϖ
l) if l ≤ h is even,

−N(ϖ)l−1 if l = h+ 1 is even,(
ikϖ−h

ϖ

)
N(ϖ)l−1/2 if l = h+ 1 is odd,

0, if l ≥ h+ 2.

We quote the following Poisson summation formula from [5, Lemma 2.7].
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Lemma 2.3. Let n ∈ Z[i], n ≡ 1 (mod (1 + i)3) and
( ·
n

)
be the quadratic residue symbol

(mod n). For any Schwartz class function W , we have

∑
m∈Z[i]

(m,1+i)=1

(m
n

)
W

(
N(m)

X

)
=

X

2N(n)

(
1 + i

n

) ∑
k∈Z[i]

(−1)N(k)g(k, n)W̃

(√
N(k)X

2N(n)

)
,

where

W̃ (t) =

∞∫
−∞

∞∫
−∞

W (N(x+ yi))ẽ (−t(x+ yi)) dxdy, t ≥ 0.

2.4 Evaluation of certain integrals

We will require an evaluation on W̃ (t) for special choices of W (t). First note that W̃ (t) ∈ R in
general for any t ≥ 0, since we have

W̃ (t) =

∫
R2

cos(2πty)W (x2 + y2) dxdy. (2.5)

We evaluate the above integral in polar coordinates to get

W̃ (t) =4

π/2∫
0

∞∫
0

cos(2πtr sin θ)W (r2) rdrdθ = 2

π/2∫
0

∞∫
0

cos(2πtr1/2 sin θ)W (r) drdθ.

We now take Φ(t) as given in Theorem 1.1. Fix a positive integer m, we let Gj(s), 1 ≤ j ≤ m
be entire, even functions, bounded in any strip −A ≤ ℜ(s) ≤ A for some A > 2 such that
Gj(0) = 1, 1 ≤ j ≤ m. We further let αj , 1 ≤ j ≤ m be complex numbers and denote (αj) for
the sequence (α1, · · · , αj). We define further for t > 0,

V(αj)(t) =
1

2πi

∫
(2)

Gj(s)

s
g(αj)(s)t

−sds, (2.6)

where g(αj)(s) =
∏j

i=1 gαi
(s) with

gα(s) =

(
25/2

π

)s
Γ( 12 + α+ s)

Γ( 12 + α)
.

The functions V(αj)(t) appear naturally in the approximation functional equations involving

products of L(1/2 + αj , χ(1+i)5d) (see Section 2.5). In our process, we need to evaluate F̃n,j (t)
for 1 ≤ j ≤ 3 for a primary n, where

Fn,j(t) = Φ(t)V(αj)

(
N(n)

(Xt)j/2

)
. (2.7)

To do so, we first note that for any real number cu, we have

Φ (t) =
1

2πi

∫
(cu)

Φ̂(u)t−udu.
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Applying this together with (2.6), we see that for t > 0,

F̃n,j (t) =
2

(2πi)2

π/2∫
0

∞∫
0

cos(2πtr1/2 sin θ)

∫
(cu)

∫
(cs)

Φ̂(1 + u)
g(αj)(s)

ru

(
(Xr)j/2

N(n)

)s

du
Gj(s)ds

s

dr

r
dθ.

We reverse the order of the three inner integrations above to arrive, after some changes of
variables (first r1/2 → r, then 2πtr sin θ → r), at

F̃n,j (t) =
4

(2πi)2

π/2∫
0

∫
(cs)

∫
(cu)

Φ̂(1 + u)g(αj)(s)

(
N(n)

Xj/2

)−s
∞∫
0

cos(r)
( r

2πt sin θ

)js−2u

du
Gjds

s

dr

r
dθ

=
4

(2πi)2

∫
(cs)

∫
(cu)

Φ̂(1 + u)g(αj)(s)

(2πt)(js−2u)

(
Xj/2

N(n)

)s π/2∫
0

dθ

(sin θ)(js−2u)

∞∫
0

cos(r)dr

r2u−js+1
du

Gj(s)ds

s
.

We note that for ℜ(s) < 1, we have (see [7, Formula 2, Section 8.380])

π/2∫
0

(sin θ)−sdθ =
1

2
B(

1− s

2
,
1

2
) =

√
π

2

Γ( 1−s
2 )

Γ( 2−s
2 )

, (2.8)

where B(x, y) is the Beta function such that when ℜ(x),ℜ(y) > 0 (see [7, Formula 2, Section
8.384])

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

and that (see [7, Formula 2, Section 8.338]) Γ( 12 ) =
√
π.

We also note that (see [7, Formula 9, Section 3.761]) for any 0 < ℜ(s) < 1:

∞∫
0

cos(r)rs
dr

r
= Γ(s) cos

(πs
2

)
. (2.9)

We now combine (2.8), (2.9) and the following relation (see chapter 10 of [3])

π− 1
2 21−u cos(π2 s)Γ(s) =

Γ
(
s
2

)
Γ
(
1−s
2

)
to see that

π/2∫
0

(sin θ)−udθ

∞∫
0

cos(r)ru
dr

r
=

π

2
2u−1 Γ

(
u
2

)
Γ
(
2−u
2

) .
This implies that

π/2∫
0

(sin θ)−(js−2u)dθ

∞∫
0

cos(r)rjs−2u dr

r
=

π

2
2js−2u−1 Γ

(
js−2u

2

)
Γ
(
2−js+2u

2

) .
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We then conclude that

F̃n,j (t) =
π

(2πi)2

∫
(cs)

∫
(cu)

Φ̂(1 + u)g(αj)(s)

(
N(n)

Xj/2

)−s

(πt)−(js−2u) Γ
(
js−2u

2

)
Γ
(
2−js+2u

2

)duGj(s)ds

s
.

(2.10)

Lastly, for any primary l and n, we evaluate F̃n2l,j (0) by applying (2.5) directly to see that

F̃n2l,j (0) =

∞∫
−∞

∞∫
−∞

Φ (N(x+ yi))V(αj)

(
N(ln2)

(XN(x+ yi))j/2

)
dxdy

=
1

2πi

∫
(2)

g(αj)(s)

(
Xj/2

N(ln2)

)s
 ∞∫
−∞

∞∫
−∞

Φ (N(x+ yi))N(x+ yi)js/2dxdy

 Gj(s)ds

s

=
π

2πi

∫
(2)

g(αj)(s)

(
Xj/2

N(ln2)

)s

Φ̂(1 +
js

2
)
Gj(s)ds

s
,

(2.11)

since we have

∞∫
−∞

∞∫
−∞

Φ (N(x+ yi))N(x+ yi)js/2dxdy =

∫ 2π

0

∫ ∞

0

Φ(r2)rjsrdrdθ = πΦ̂(1 +
js

2
).

2.5 The approximate functional equation

Let χ be a primitive quadratic Hecke character (mod m) of trivial infinite type defined on OK .
As shown by E. Hecke, L(s, χ) admits analytic continuation to an entire function and satisfies
the functional equation ([8, Theorem 3.8])

Λ(s, χ) = W (χ)(N(m))−1/2Λ(1− s, χ),

where |W (χ)| = (N(m))1/2 and

Λ(s, χ) = (|DK |N(m))s/2(2π)−sΓ(s)L(s, χ).

We now take χ = χ(1+i)5d for an odd, square-free d ∈ OK and we note that it follows from
[8, Theorem 3.8] that we have W (χ(1+i)5d) = g(χ(1+i)5d). Our next lemma evaluates g(χ(1+i)5d)
exactly.

Lemma 2.6. For any odd, square-free d ∈ OK , we have

g(χ(1+i)5d) = N((1 + i)5d)1/2. (2.12)

Proof. It suffices to prove (2.12) with d replaced by jd, where j = 1 or i and d is primary and
square-free. It follows from the Chinese remainder theorem that x = j(1 + i)5y + dz varies over
the residue class modulo (1+ i)3d when y and z vary over the residue class modulo d and (1+ i)5,
respectively. We then deduce that

g(χj(1+i)5d) =
∑

z mod (1+i)5

∑
y mod d

(
j(1 + i)5

j(1 + i)5y + dz

)(
d

j(1 + i)5y + dz

)
ẽ

(
jy

d

)
ẽ

(
z

(1 + i)5

)
.

Moments and non-vanishing of central values of quadratic Hecke             157



As χj(1+i)5 is a Hecke character of trivial infinite type modulo (1 + i)5, we deduce that(
j(1 + i)5

j(1 + i)5y + dz

)
= χj(1+i)5(j(1 + i)5y + dz) = χj(1+i)5(dz). (2.13)

On the other hand, we denote s(z) to be the unique element in UK such that s(z)z is primary
for any (z, 2) = 1. It follows from the quadratic reciprocity law (2.1) that(

d

j(1 + i)5y + dz

)
=

(
s(z)(1 + i)5jy

d

)
. (2.14)

We then conclude from (2.13) and (2.14) that

g(χ(1+i)5d) =
∑

z mod (1+i)5

∑
y mod d

(
j(1 + i)5

dz

)(
s(z)(1 + i)jy

d

)
ẽ

(
jy

d

)
ẽ

(
z

(1 + i)5

)

=
∑

z mod (1+i)5

(
j(1 + i)5

z

)(
s(z)j

d

)
ẽ

(
z

(1 + i)5

) ∑
y mod d

(
jy

d

)
ẽ

(
jy

d

)

=N(d)1/2
∑

z mod (1+i)5

(
j(1 + i)5

z

)(
s(z)ij

d

)
ẽ

(
z

(1 + i)5

)
,

(2.15)

where the last equality above follows from (2.4).
In order to evaluate the last sum in (2.15), we note that it suffices to take z to vary over the

reduced residue class modulo (1 + i)5. One representation of such class consists of the following
16 elements (note that ±1,±i consists of the reduced residue class modulo (1 + i)3 and 0, 1
consists of the residue class modulo 1 + i):

{±1,±i}+ l(1 + i)3 + k(1 + i)4, l ∈ {0, 1}, k ∈ {0,−1}.

We further write d = a + bi with a, b ∈ Z (recall that a ≡ 1 (mod 4), b ≡ 0 (mod 4) or a ≡ 3
(mod 4), b ≡ 2 (mod 4)) and check by direct calculations using (2.2) to see that (2.12) is valid
with d replaced by jd, where j = 1 or i and d is primary and square-free. This completes the
proof of the lemma.

We now fix χ = χ(1+i)5d for an odd, square-free d ∈ OK , then it follows from Lemma 2.6
that we have

W (χ) = N((1 + i)5d)1/2.

Thus, the functional equation in this case becomes

Λ(s, χ) = Λ(1− s, χ). (2.16)

Let sj , 1 ≤ j ≤ n be complex numbers for some positive integer n. Write s = (s1, · · · , sn)
and 1 − s = (1 − s1, · · · , 1 − sn). Let Gn(s) be an entire, even function, bounded in any strip
−A ≤ ℜ(s) ≤ A for some A > 2 such that Gn(0) = 1. For some c > 1, consider the integral

I(s, χ) =
1

2πi

∫
(c)

n∏
j=1

Λ(sj + u, χ)Gn(u)
du

u
.
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Moving the contour of integral to ℜ(u) = −c, we see that

n∏
j=1

Λ(sj , χ) = I(s, χ)− 1

2πi

∫
(−c)

n∏
j=1

Λ(sj + u, χ)Gn(u)
du

u
.

We now apply the functional equation (2.16) to obtain

n∏
j=1

Λ(sj , χ) =I(s, χ)− 1

2πi

∫
(−c)

n∏
j=1

Λ(1− sj + u, χ)Gn(u)
du

u

=I(s, χ) +
1

2πi

∫
(−c)

n∏
j=1

Λ(1− sj + u, χ)Gn(u)
du

u

=I(s, χ) + I(1− s, χ),

(2.17)

where the second equality follows from a change of variable u → −u in the first integral above.
Upon expanding Λ(si + u), 1 ≤ i ≤ n into convergent Dirichlet series, we have

I(s, χ) =
1

2πi

∫
(c)

 ∑
0≠A1,··· ,An⊂OK

n∏
j=1

χ(Aj)

N(Aj)sj+u

(|DK |N(m))(u+sj)/2Γ(sj + u)

(2π)u+sj

Gn(u)
du

u
,

I(1− s, χ) =
1

2πi

∫
(c)

 ∑
0̸=A1,··· ,An⊂OK

n∏
j=1

χ(Aj)

N(Aj)1−sj+u

(|DK |N(m))(1−sj+u)/2Γ(1− sj + u)

(2π)(1−sj+u)


Gn(u)

du

u
.

Applying these expressions and dividing through
∏n

j=1(|DK |N(m))sj/2(2π)−sjΓ(sj) on both
sides of (2.17), we obtain

n∏
j=1

L(sj , χ)

=
1

2πi

∫
(c)

 ∑
0̸=A1,··· ,An⊂OK

n∏
j=1

χ(Aj)

N(Aj)sj+u

(|DK |N(m))u/2Γ(sj + u)

(2π)uΓ(sj)

Gn(u)
du

u

+
1

2πi

∫
(c)

 ∑
0≠A1,··· ,An⊂OK

n∏
j=1

χ(Aj)

N(Aj)1−sj+u

(|DK |N(m))(1−2sj+u)/2Γ(1− sj + u)

(2π)(1−2sj+u)Γ(sj)

Gn(u)
du

u
.

Recalling that DK = −4, we then deduce from the above by setting sj =
1
2 +αj , χ = χ(1+i)5d

for d odd and square-free that

n∏
j=1

L( 12 + αj , χ)

=
∑

0̸=A⊂OK

χ(A)σ(αn)(A)

N(A)1/2
V(αn)

(
N(A)

N(d)n/2

)

Moments and non-vanishing of central values of quadratic Hecke             159



+N(d)−
∑n

j=1 αj

n∏
j=1

Γαj

∑
0≠A⊂OK

χ(A)σ−(αn)(A)

N(A)1/2
V−(αn)

(
N(A)

N(d)n/2

)
.

where Γα is defined in (1.9), V(αn) is defined in (2.6) and

σ(αn)(A) =
∑

∏n
j=1 Aj=A

N(Aj)
−αj .

As χ(1+i)5d(A) ≠ 0 only when (A, 2) = 1, in which case we may replace A by its primary
generator. We thus deduce from the above discussions the following approximate functional
equation for products of quadratic Hecke L-functions.

Lemma 2.7 (Approximate functional equation). Let Gj(s), 1 ≤ j ≤ 3 be entire, even functions
with rapid decay in the strip |ℜ(s)| ≤ 10 such that Gj(0) = 1, 1 ≤ j ≤ 3. For χ(1+i)5d as above,
we have

j∏
i=1

L( 12 + αj , χ(1+i)5d)

=
∑

n≡1 mod (1+i)3

χ(1+i)5d(n)σα1,··· ,αj (n)

N(n)
1
2

V(αj)

(
N(n)

N(d)j/2

)

+N(d)−
∑j

i=1 αiΓα1,··· ,αj

∑
n≡1 mod (1+i)3

χ(1+i)5d(n)σ−α1,··· ,−αj (n)

N(n)
1
2

V−(αj)

(
N(n)

N(d)j/2

)
,

(2.18)

where Γα1,··· ,αj
=

j∏
i=1

Γαi
(s) and σα1,··· ,αj

(n) is defined in (1.5).

2.8 Analytical behaviors of certain Dirichlet series

In this section, we discuss the analytical behaviors of certain Dirichlet series that are needed in
our proofs. The first result concerns the analytical behaviors of Aα,β(l) and Aα,β,γ(l) given in
Theorem 1.2.

Lemma 2.9. Let l = l1l2 and let Aα,β(l), Aα,β,γ(l) be as in Theorem 1.2. Then both Aα,β(l) and
Aα,β,γ(l) have meromorphic continuations to ℜ(α),ℜ(β),ℜ(γ) > − 1

2 . In fact, for any positive
integer M ≥ 2 there exist integers da,b, da,b,c (possibly negative or zero) such that

Aα,β(l) =Cα,β(l)
∏

1≤a+b≤M−1
a,b,c≥0

ζK(a+ b+ 2aα+ 2bβ)da,b ,

Aα,β,γ(l) =Cα,β,γ(l)
∏

1≤a+b+c≤M−1
a,b,c≥0

ζK(a+ b+ c+ 2aα+ 2bβ + 2cγ)da,b,c ,
(2.19)

where for any δ > 0, Cα,β(l), Cα,β,γ(l) are given by absolutely convergent Euler products in the
region ℜ(α),ℜ(β),ℜ(γ) > 1−M

2M + δ. Moreover, in this region Cα,β(l), Cα,β,γ(l) satisfy the bound

Cα,β(l), Cα,β,γ(l) ≪
√
N(l1)N(l)ε.
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The proof of the above lemma is similar to that of [17, Lemma 4.1] and [13, Lemma 4.1], so
we shall omit it here. We only note here that when a + b = 1 or a + b + c = 1 then we have
da,b = da,b,c = 1 and this readily implies the analytical behaviors of Bα,β(l) and Bα,β,γ(l) defined
in (1.6).

To facilitate our treatments in the proof of Theorem 1.2, we shall make the following remark
similar to [17, Remark 2.2] and [18, Remark 2.2].

Remark 2.10. We choose G1 so that G1(±α) = G1(
1
2 ± α) = 0. We choose Gj(s), j = 2, 3

to vanish at the poles of all the ζK ’s which occur in (2.19) as numerators (i.e., with da,b > 0
or da,b,c > 0) in the corresponding factorization of Aα+s,β+s or Aα+s,β+s,γ+s, and also to be
divisible by all the ζK ’s which occur in (2.19) as denominators (i.e., with da,b < 0 or da,b,c <
0) in the corresponding factorization of Aα+s,β+s or Aα+s,β+s,γ+s for M large enough so that
Aα+s,β+s, Aα+s,β+s,γ+s have meromorphic continuations to ℜ(s) > − 1

2 +ε for a given ϵ > 0. We
also assume that Gj(s) is symmetric under any permutation of {α, β, γ}, and under switching
any α, β, γ with its negative, and under switching s with −s.

Let g(k, n) be defined as in (2.3). We now fix a generator for every prime ideal (ϖ) ∈
OK together with 1 as the generator for the ring Z[i] itself and extend to any ideal of OK

multiplicatively. We denote the set of such generators by G. Let k1 ∈ OK be square-free
and (l, a) = 1 for a primary element l ∈ OK . For fixed integer j ≥ 1 and complex numbers
αi, 1 ≤ i ≤ j, we define Jk1,j(v, w; l, a) as

Jk1,j(v, w; l, a) =
∑

n≡1 mod (1+i)3

(n,a)=1

∑
k2≠0

k2∈OK

σα1,··· ,αj (n)

N(n)wN(k2)v
g(k1k

2
2, ln)

N(ln)
, (2.20)

where we use the convention throughout the paper that all sums over k2 are restricted to k2 ∈ G.
Our next lemma gives the analytic properties of Jk1,j(v, w; l, a).

Lemma 2.11. Suppose that l is primary such that (l, 2a) = 1, k1 is square-free, and Jk1,j(v, w; l, a)
is given by (2.20) for ℜ(v) > 2 and ℜ(w) > 2. Then Jk1,j(v, w; l, a) has a meromorphic contin-
uation to ℜ(v) ≥ 2 and ℜ(w) > δ for any δ > 0, provided that αi, 1 ≤ i ≤ j are small enough
compared to δ. Moreover, in this region we have

Jk1,j(v, w; l, a) =

j∏
i=1

L2al(
1
2 + w + αi, χik1)Ik1,j(v, w),

where Ik1,j(v, w) is analytic in this region and satisfies the bound

Ik1,j(v, w) ≪δ,ε N(l)−
1
2+ε.

The proof of the above lemma is similar to that of [17, Lemma 5.1], [18, Lemma 5.2] and
[13, Lemma 4.3], so we omit it here.

3 Proof of Theorem 1.2

3.1 Initial Treatment

We fix α1 = α, α2 = β, α3 = γ throughout and we identify M(αj)(l) with Mα(l),Mα,β(l) and
Mα,β,γ(l) with j = 1, 2, 3, respectively. This applies to similar notations such as g(αj), σ(αj), V(αj)
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as well. We apply the approximate functional equation (2.18) for a fixed 1 ≤ j ≤ 3 to write
M(αj)(l) = M1((αj), l) +M−1((αj), l), where

M1((αj), l) =
∑∗

(d,2)=1

F (N(d))
∑

n≡1 mod (1+i)3

χ(1+i)5d(nl)σ(αj)(n)

N(n)
1
2

V(αj)

(
N(n)

N(d)j/2

)
,

M−1((αj), l) = Γ(αj)

∑∗

(d,2)=1

N(d)−
∑j

i=1 αiF (N(d))
∑

n≡1 mod (1+i)3

χ(1+i)5d(nl)σ−(αj)(n)

N(n)
1
2

× V−(αj)

(
N(n)

N(d)j/2

)
.

We shall make the convention that we may often drop the dependence on (αj) and l to simply
write M1, M2 and other expressions when there is no risk of confusion. We shall also mainly
focus on evaluating M1 as the evaluation of M2 can be done by noticing the following remark:

Remark 3.2. To derive an expression for M2 via a corresponding term from M1 involves swap-

ping αi and −αi, 1 ≤ i ≤ 3, replacing F (x) by F−(αj)(x) = x−
∑j

i=1 αiF (x), and multiplying by
Γ(αj), in that order.

We now apply the Möbius inversion to remove the square-free condition over d in M1 and
M2. Let µ[i] be the Möbius function in OK , we have

M1 =
∑

a≡1 mod (1+i)3

(a,2l)=1

µ[i](a)
∑

(d,2)=1

F (N(da2))
∑

n≡1 mod (1+i)3

(n,2a)=1

χ(1+i)5d(nl)σ(αj)(n)

N(n)
1
2

V(αj)

(
N(n)

N(a2d)j/2

)
.

Now we separate the terms with N(a) ≤ Y and with N(a) > Y (Y a parameter to be chosen
later), writing M1 = MN +MR, respectively. We similarly write M−1 = M−N +M−R.

3.3 Estimating MR: applying the recursion

We now make a change of variable by letting d → b2d with the new d being square-free to see
that

MR =
∑

a≡1 mod (1+i)3

(a,2l)=1
N(a)>Y

µ[i](a)
∑

b≡1 mod (1+i)3

(b,2l)=1

∑∗

(d,2)=1

F (N(d(ab)2))

×
∑

n≡1 mod (1+i)3

(n,2ab)=1

χ(1+i)5d(nl)σ(αj)(n)

N(n)
1
2

V(αj)

(
N(n)

N((ab)2d)j/2

)
.

We further let c = ab to obtain

MR =
∑

c≡1 mod (1+i)3

(c,2l)=1

∑
a≡1 mod (1+i)3

a|c
N(a)>Y

µ[i](a)
∑∗

(d,2)=1

F
(
N(dc2)

)
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×
∑

n≡1 mod (1+i)3

(n,2c)=1

χ(1+i)5d(nl)σ(αj)(n)

N(n)
1
2

V(αj)

(
N(n)

N(c2d)j/2

)
.

Using the definition of V(αj) as an integral representation given in (2.6), we see that the inner
sum over n above is∑

n≡1 mod (1+i)3

(n,2ab)=1

χ(1+i)5d(nl)σ(αj)(n)

N(n)
1
2

1

2πi

∫
(2)

Gj(s)

s
g(αj)(s)

N(c2d)js/2

N(n)s
ds.

We move the sum over n inside the integral to get

MR =
∑

c≡1 mod (1+i)3

(c,2l)=1

∑
a≡1 mod (1+i)3

a|c
N(a)>Y

µ[i](a)
∑∗

(d,2)=1

χ(1+i)5d(l)F
(
N(dc2)

)

× 1

2πi

∫
(
1
2+ε)

(N(c2d))js/2
j∏

i=1

L( 12 + αi + s, χ(1+i)5d)

·
j∏

i=1

∏
ϖj≡1 mod (1+i)3

ϖj |c

(
1−

χ(1+i)5d(ϖj)

N(ϖj)(1/2+α+s)

)Gj(s)

s
g(αj)(s)ds.

We now move the line of integration to ε without crossing any poles in this process by Remark

2.10. Then expanding
∏

ϖj≡1 mod (1+i)3

ϖj |c

(
1−

χ(1+i)5d(ϖj)

N(ϖj)(1/2+α+s)

)
, we obtain that

MR

=
∑

c≡1 mod (1+i)3

(c,2l)=1

∑
a≡1 mod (1+i)3

a|c
N(a)>Y

µ[i](a)
∑

ri≡1 mod (1+i)3

1≤i≤3
ri|c

j∏
i=1

µ[i](ri)

N(ri)
1
2+αi

× 1

2πi

∫
(ε)

∑∗

(d,2)=1

χ(1+i)5d(l

j∏
i=1

ri)
F js

2 ;N(c2)(N(d))

N(ri)s

j∏
i=1

L( 12 + αi + s, χ(1+i)5d)
Gj(s)

s
g(αj)(s)ds,

(3.1)

where Fν;y(x) = (xy)νF (xy) and ε ≍ (logX)−1.

Note that the inner sum over d above is of the form M(αj+s)(l
∏j

i=1 ri), but with a new
weight function with smaller support (N(d) ≍ X/N(c)2). Now we truncate the integral in (3.1)
so that |ℑ(s)| ≤ (log(X/N(c2))2. When N(c)2 ≤ X1−ε, the exponential decay of the integrand
implies that the error introduced by this truncation is negligible. While when N(c)2 ≥ X1−ε,
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the sum over d is almost bounded so that the convexity bound L(1/2 + α + s, χ(1+i)5d) ≪

((1 + |s|)2N(d))1/4+ε implies that the error introduced is of size O(X
1
2+ε). We can then apply

Theorem 1.2 to the truncated integral, and the same argument as above allows us to extend the
integral back to the whole vertical line, without introducing a new error. In this way, we can
express MR as the sum of 2j main terms plus an error of size

≪Xε
∑

c≡1 mod (1+i)3

(c,2l)=1

∑
a≡1 mod (1+i)3

a|c
N(a)>Y

|µ[i](a)|
∑

ri≡1 mod (1+i)3

1≤i≤3
ri|c

j∏
i=1

|µ[i](ri)|

N(ri)
1
2

N(l

j∏
i=1

ri)
1/2+ε

(
X

N(c)2

)f+ε

≪ Xf+ε

Y 2f−1
N(l)1/2+ε.

For the main terms, by a direct application of Theorem 1.2, we see that

MR(ϵ1, · · · , ϵj)

=π
∑

c≡1 mod (1+i)3

(c,2l)=1

∑
a≡1 mod (1+i)3

a|c
N(a)>Y

µ[i](a)
∑

ri≡1 mod (1+i)3

1≤i≤3
ri|c

j∏
i=1

µ[i](ri)

N(ri)
1
2+αi

1√
N((l

∏j
i=1 ri)

∗)

1

2ζK,2(2)

× 1

2πi

∫
(ε)

Aϵ1(α1+s),··· ,ϵj(αj+s)(l

j∏
i=1

ri)
Γ
δ1,··· ,δj
α1+s,··· ,αj+sF̂js/2;N(c2)(w)

N(
∏j

i=1 ri)
s

Gj(s)

s
g(αj)(s)ds,

where we denote w = 1− δ1(α1 + s)− · · · − δj(αj + s).
Now we apply the relation

F̂js/2;N(c2)(u) =

∫ ∞

0

(xN(c2))
js
2 F (N(c2)x)xu dx

x
= N(c)−2uF̂ ( js2 + u)

to see that

MR(ϵ1, · · · , ϵj)

=
π

2ζK,2(2)

∑
c≡1 mod (1+i)3

(c,2l)=1

1

N(c)2w

∑
a≡1 mod (1+i)3

a|c
N(a)>Y

µ[i](a)
1

2πi

∫
(ε)

Γ
δ1,··· ,δj
α1+s,··· ,αj+s

Gj(s)

s
g(αj)(s)

× F̂ ( js2 + w)
∑

ri≡1 mod (1+i)3

1≤i≤3
ri|c

j∏
i=1

µ[i](ri)

N(ri)
1
2+αi+s

1√
N((l

∏j
i=1 ri)

∗)
Aϵ1(α1+s),··· ,ϵj(αj+s)(l

j∏
i=1

ri)ds.

(3.2)

We summarize our discussions above in the following result.

Lemma 3.4. If Theorem 1.2 holds with a parameter f > 1/2 when j = 1, 2 and f > 3/4 when
j = 3, then

MR =
∑

ϵ1,···ϵj∈{±1}

MR(ϵ1, · · · , ϵj) +O(
√

N(l)
Xf+ε

Y 2f−1
) +O(X1/2+ε),

where MR(ϵ1, · · · , ϵj) is defined in (3.2).
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3.5 Estimating MR: further simplifications

In this section, we show that some of the main terms appearing in Lemma 3.4 can be treated as
error terms as well by establishing

Lemma 3.6. If at least two of the ϵi’s are −1, then for a special choice of Gj(s) described in
Remark 2.10, we have

MR(ϵ1, ϵ2) ≪ Y X1/2(N(l)X)ε, MR(ϵ1, ϵ2, ϵ3) ≪ Y X3/4(N(l)X)ε, (3.3)

and furthermore,
MR(−1,−1,−1) ≪ X3/4(N(l)X)ε. (3.4)

Proof. Since the proofs are similar, we prove (3.3) only for MR(−1,−1, 1) here. We extend the
sum over a to all primary integers in K, and subtract the contribution from N(a) ≤ Y , getting
MR(−1,−1, 1) = M ′(−1,−1, 1)−M ′′(−1,−1, 1), respectively. To treat M ′(−1,−1, 1), we note

that the sum over a becomes
∑

a≡1 mod (1+i)3

a|c

µ[i](a), which is not 0 only when c = 1. This implies

that c = r1 = r2 = r3 = 1 so that

M ′(−1,−1, 1) =
π

2ζK,2(2)

1

2πi

∫
(ε)

Γα+sΓβ+s
G3(s)

s
gα,β,γ(s)F̂ (1− α− β − s

2 )
A−α−s,−β−s,γ+s(l)√

N(l1)
ds.

In view of Lemma 2.9 and our choice of G3(s) described in Remark 2.10, we can move the
contour of integration to ℜ(s) = 1

2 − δ. Using the bound

F̂ (1− α− β − s
2 ) ≪ X1−σ

2 ,

we see that

M ′(−1,−1, 1) ≪ N(l1)
− 1

2N(l1)
1
2+εN(l)εX1−1/4+ε.

As for M ′′(−1,−1, 1), we write c = ab and note that the condition r1, r2, r3|ab is equivalent
to [r1, r2, r3]/(a, [r1, r2, r3])|b. We can then write b = kr1, r2, r3]/(a, [r1, r2, r3]) with k being
primary and (k, 2l) = 1. On summing over k first, we obtain that

M ′′(−1,−1, 1)

=
π

2ζK,2(2)

∑
a≡1 mod (1+i)3

(a,2l)=1
N(a)≤Y

µ[i](a)

N(a)2−2α−2β−4s

1

2πi

∫
(ε)

Γα+sΓβ+s
G3(s)

s
gα,β,γ(s)F̂ (1− α− β − s

2 )

×
∑

r1,r2,r3≡1 mod (1+i)3

(r1r2r3,2l)=1

µ[i](r1)µ[i](r2)µ[i](r3)

N(r1)
1
2+α+sN(r2)

1
2+β+sN(r3)

1
2+γ+s

(
N((a, [r1, r2, r3]))

N([r1, r2, r3])

)2−2α−2β−4s

× ζK,2l(2− 2α− 2β − 4s)
A−α−s,−β−s,γ+s(lr1r2r3)√

N((lr1r2r3)∗)
ds.

Again we move the contour of integration to ℜ(s) = 1
2 − δ and bound everything trivially to

see that

M ′′(−1,−1, 1)
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≪ X3/4+δ/2
∑

a≡1 mod (1+i)3

(a,2l)=1
N(a)≤Y

N(a)4δ
∑

r1,r2,r3≡1 mod (1+i)3

(r1r2r3,2l)=1

N(lr1r2r3)
ε|µ[i](r1)µ[i](r2)µ[i](r3)|
N(r1r2r3)1−δ

×
(
N((a, [r1, r2, r3]))

N([r1, r2, r3])

)4δ

.

We apply the bound N((a, [r1, r2, r3])) ≤ N(a) and note that the sums over r1, r2, r3 converge
absolutely for any δ > 0 by taking ε small enough compared to δ to see that

M ′′(−1,−1, 1) ≪ Y X3/4(N(l)X)ε.

Lastly, we bound MR(−1,−1,−1) by writing c = ab again to see that

MR(−1,−1,−1)

=
1

2ζK,2(2)

∑
a≡1 mod (1+i)3

(a,2l)=1
N(a)>Y

µ[i](a)
1

2πi

∫
(ε)

Γα+s,β+s,γ+s
G3(s)

s
gα,β,γ(s)F̂ (1− α− β − γ − 3s

2 )

×
∑

b≡1 mod (1+i)3

(b,2l)=1

1

N(ab)2(1−α−β−γ−3s)

∑
r1,r2,r3≡1 mod (1+i)3

r1,r2,r3|ab

µ[i](r1)µ[i](r2)µ[i](r3)

N(r1)
1
2+α+sN(r2)

1
2+β+sN(r3)

1
2+γ+s

× A−α−s,−β−s,−γ−s(lr1r2r3)√
N((lr1r2r3)∗)

ds.

We now move the contour of integration to ℜ(s) = 1
6 − δ. This leads to the desired bound given

in (3.4) by noting that the sums over a and b converge absolutely.

Combining Lemma 3.4 and Lemma 3.6, we deduce that

Lemma 3.7. If Theorem 1.2 holds with a parameter f > 1/2 when j = 1, 2 and f > 3/4 when
j = 3, then

MR(α, l) =MR(1) +MR(−1) +O(
√

N(l)
Xf+ε

Y 2f−1
) +O(X1/2+ε),

MR(α, β, l) =MR(1, 1) +MR(1,−1) +MR(−1, 1) +O(
√

N(l)
Xf+ε

Y 2f−1
) +O(Y X1/2(N(l)X)ε),

MR(α, β, γ, l) = MR(1, 1, 1) +MR(1, 1,−1) +MR(1,−1, 1) +MR(−1, 1, 1) +O(
√

N(l)
Xf+ε

Y 2f−1
)

+O(Y X3/4(N(l)X)ε).

3.8 Computing MN : applying Poisson summation

We recall that

MN =
∑

a≡1 mod (1+i)3

(a,2l)=1
N(a)≤Y

µ[i](a)
∑

n≡1 mod (1+i)3

(n,2a)=1

(
(1+i)5

nl

)
σ(αj)(n)

N(n)
1
2

∑
(d,2)=1

(
d

nl

)
Φ

(
N(da2)

X

)
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·V(αj)

(
N(n)

N(a2d)j/2

)
.

We now apply the Poisson summation formula given in Lemma 2.3 to see that∑
(d,2)=1

(
d

nl

)
Φ

(
N(da2)

X

)
V(αj)

(
N(n)

N(a2d)j/2

)
=

X

2N(a2nl)

(
1 + i

nl

) ∑
k∈Z[i]

(−1)N(k)g(k, nl)

·F̃n,j

(√
N(k)X

2N(a2nl)

)
,

where Fn,j(t) is given in (2.7). We then deduce that

MN =
X

2

∑
a≡1 mod (1+i)3

(a,2l)=1
N(a)≤Y

µ[i](a)

N(a)2

∑
n≡1 mod (1+i)3

(n,2a)=1

σ(αj)(n)

N(n)
1
2

∑
k∈Z[i]

(−1)N(k) g(k, ln)

N(ln)
F̃n,j

(√
N(k)X

2N(a2nl)

)
.

Now we write MN = MN (k = 0) +MN (k ̸= 0), where MN (k = 0) corresponds to the term
with k = 0.

3.9 Computing MN : the term MN(k = 0)

Note that by Lemma 2.2 we have g(0, ln) = φ[i](ln) if ln = □ (i.e. n = l1□), and 0 otherwise.
Thus we get

MN (k = 0) =
X

2

∑
a≡1 mod (1+i)3

(a,2l)=1
N(a)≤Y

µ[i](a)

N(a)2

∑
n≡1 mod (1+i)3

(n,2a)=1

σ(αj)(l1n
2)

N(l1n2)
1
2

φ[i](ln)

N(ln)
F̃n2l1 (0) .

We then apply (2.11) to deduce that

MN (k = 0) =
π

2

∑
a≡1 mod (1+i)3

(a,2l)=1
N(a)≤Y

µ[i](a)

N(a)2
× 1

2πi

∫
(2)

g(αj)(s)F̂ (1 +
js

2
)DN (k = 0; s)

Gj(s)ds

s
,

where

DN (k = 0; s) =
∑

n≡1 mod (1+i)3

(n,a)=1

σ(αj)(l1n
2)

N(l1n2)
1
2+s

ϕ[i](ln)

N(ln)
.

Lemma 3.10. For special choices of Gj(s), 1 ≤ j ≤ 3 described in Remark 2.10, we have for
j = 1, l primary and square-free,

MN (k = 0) +MR(1) =
π

2ζK,2(2)
√
N(l)

1

2πi

∫
(ε)

F̂ (1 + s
2 )

G1(s)

s
gα(s)Aα+s(l)ds. (3.5)

For j = 2, 3 and a general primary l,

MN (k = 0) +MR(1, · · · , 1) = πAα1,··· ,αj
(l)

F̂ (1)

2ζK,2(2)
√
N(l1)

+O(X(1− j
4 )+εN(l)ε). (3.6)
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Proof. The expression given in (3.5) can be established by proceeding similarly to the treatment
in Section 6.2 of [17]. To prove (3.6), we use the expression (3.2) by writing c = ab there to see
that

MR(1, · · · , 1) =
π

2

∑
a≡1 mod (1+i)3

(a,2l)=1
N(a)>Y

µ[i](a)

N(a)2
× 1

2πi

∫
(2)

gα1,··· ,αj (s)F̂ (1 +
3s

2
)DR(1, · · · , 1; s)

Gj(s)ds

s
,

where

DR(1, · · · , 1; s) =
1

ζK,2(2)

∑
b≡1 mod (1+i)3

(b,2l)=1

1

N(b)2

∑
ri≡1 mod (1+i)3

1≤i≤3
ri|c

j∏
i=1

µ[i](ri)

N(ri)
1
2+αi+s

×
∑

n≡1 mod (1+i)3

(n,2)=1

σα1,··· ,αj
((l
∏j

i=1 ri)
∗n2)

N((l
∏j

i=1 ri)
∗n2)

1
2+s

∏
ϖ≡1 mod (1+i)3

ϖ|nl
∏j

i=1 ri

(1 +N(ϖ)−1)−1.

Now the arguments given in [17, Section 6.2], [18, Section 6.1] and the proof of [13, Lemma
4.4] carry over to our case with simple modifications to show that we have

DN (k = 0; s) = DR(1, · · · , 1; s).

We then conclude that

MN (k = 0) +MR(1, · · · , 1)

=
π

2

∑
a≡1 mod (1+i)3

(a,2l)=1

µ[i](a)

N(a)2
1

2πi

∫
(2)

gα1,··· ,αj
(s)F̂ (1 +

js

2
)DN (k = 0; s)

Gj(s)ds

s
.

It follows from Lemma 2.9 and Remark 2.10 that we can move the contour of integration to
−1/2 + ε to cross a pole at s = 0 only in the process. The residue at s = 0 gives the desired
main term and the error term is easily estimated to be of the desired size.

3.11 Computing MN : the term MN(k ̸= 0)

Using the expression given in (2.10) for F̃n,j , we see that

MN (k ≠ 0)

=
X

2

∑
a≡1 mod (1+i)3

(a,2l)=1
N(a)≤Y

µ[i](a)

N(a)2
σα1,··· ,αj (n)

N(n)
1
2

∑
k∈Z[i]
k≠0

(−1)N(k) g(k, ln)

N(ln)
F̃n,j

(√
N(k)X

2N(a2nl)

)

=
π

2

∑
a≡1 mod (1+i)3

(a,2l)=1
N(a)≤Y

µ[i](a)

N(a)2
1

(2πi)2

∫
(cu)

∫
(cs)

F̂ (1 + u)gα1,··· ,αj
(s)

(
π

(√
1

2N(a2l)

))−(js−2u)
Γ
(
js−2u

2

)
Γ
(
2−js+2u

2

)
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×
∑

n≡1 mod (1+i)3

(n,a)=1

∑
k∈Z[i]
k≠0

(−1)N(k) σα1,··· ,αj
(n)

N(n)
1
2+(1−j/2)s+u

1

N(k)js/2−u

g(k, ln)

N(ln)
du

Gj(s)ds

s
,

where we set cs = cu > 3 satisfying cs − cu > 2.
Now, we let f(k) = g(k, n)/N(k)s and we write k = k1k

2
2 with k1 square-free and k2 ∈ G,

where we recall here that G is the set of generators of all ideals in OK defined in Section 2.8.
We break the sum over k1 into two sums, depending on (k1, 1 + i) = 1 or not, to get∑

k∈Z[i]
k≠0

(−1)N(k)f(k) =
∑∗

k1

(k1,1+i)̸=1

∑
k2

f(k1k
2
2) +

∑∗

k1

(k1,1+i)=1

∑
k2

(−1)N(k2)f(k1k
2
2)

=
∑∗

k1

(k1,1+i)̸=1

∑
k2

f(k1k
2
2) +

∑∗

k1

(k1,1+i)=1

(
2
∑
k2

f(2k1k
2
2)−

∑
k2

f(k1k
2
2)

)
,

where we note that (1+ i) is the only prime ideal in OK that lies above the integral ideal (2) ∈ Z.
Note that when (n, 1 + i) = 1, g(k, n) = g(2k, n) by Lemma 2.2. It follows that we have

f(2k1k
2
2) = 4−sf(k1k

2
2) so that∑

k∈Z[i]
k≠0

(−1)N(k)f(k) = (21−2s − 1)
∑∗

k1

(k1,1+i)=1

∑
k2

f(k1k
2
2) +

∑∗

k1

(k1,1+i)̸=1

∑
k2

f(k1k
2
2).

We apply the above expression to recast MN (k ≠ 0) as

MN (k ≠ 0) =
π

2

 ∑∗

k1

(k1,1+i)=1

1

N(k1)js/2−u
M1(s, u, k1, l) +

∑∗

k1

(k1,1+i)̸=1

1

N(k1)js/2−u
M2(s, u, k1, l)

 ,

where

M1(s, u, k1, l) =
∑

a≡1 mod (1+i)3

(a,2l)=1
N(a)≤Y

µ[i](a)

N(a)2
1

(2πi)2

∫
(cu)

∫
(cs)

F̂ (1 + u)gα1,··· ,αj
(s)

(√
2N(a2l)

π

)(js−2u)

× (21−2(js/2−u) − 1)
Γ
(
js−2u

2

)
Γ
(
2−js+2u

2

)Jk1,j(js− 2u,
1

2
+ (1− j

2
)s+ u; l, a)du

Gj(s)ds

s
,

(3.7)

and Jk1,j(v, w; l, a) is defined in (2.20). The formula for M2(s, u, k1, l) is identical to (3.7) except
that the factor 21−2(js/2−u) − 1 is omitted.

We move the contours to cs = 1
2 + ε and cu = j

4 − 1 retaining the relation jcs − 2u > 2. In
view of Lemma 2.11, Jk1,j remains analytic in the process. Again it follows from Lemma 2.11
and Remark 2.10 that we cross poles of the Hecke L-functions at u = −(1− j

2 )s−αi, 1 ≤ i ≤ j for
k1 = ±i only. For each αi, 1 ≤ i ≤ j, we denote MN (k1 = ±i, αi), 1 ≤ i ≤ 3 for the contribution
to MN (k1 ̸= 0) from the sums of the two residues corresponding to k1 = ±i. Note further that
by Lemma 2.2 and (2.20) that we have Ji,j(v, w; l, a) = J−i,j(v, w; l, a) so that we shall denote
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Jj(v, w; l, a) for Ji,j(v, w; l, a) or J−i,j(v, w; l, a) from now on. Using this notation, we have

MN (k1 = ±i, αi)

=π
∑

a≡1 mod (1+i)3

(a,2l)=1
N(a)≤Y

µ[i](a)

N(a)2
1

2πi

∫
(cs)

F̂ (1− (1− j

2
)s− αi)gα1,··· ,αj (s)

(√
2N(a2l)

π

)2(s+αi)

× (21−2(s+αi) − 1)
Γ(s+ αi)

Γ(1− s− αi)
Resw= 1

2−αi
Jj(2s+ 2αi, w; l, a)

Gj(s)ds

s
.

(3.8)

On the new lines of integration, we argue as in Section 5.3 of [18] using the following analogue
estimation of [4, (4.1)] for the second moment such that when |ℜ(α)| ≪ (logX)−1,∑∗

(d,2)=1
N(d)≤X

∣∣L2al(
1
2 + α, χ(1+i)5d)

∣∣2 ≪ N(al)ε (X(1 + |ℑ(α)|))1+ε

to see that the sum over k1 converges absolutely on these lines of integration and that with our
choices of cu and cs, the contribution to MN from these error terms is

≪
∑

N(a)≤Y

N(a)−2N(la2)1+εN(l)−
1
2+εXj/4+ε ≪ N(l)1/2+εY Xj/4+ε.

We then conclude from the above that

MN (k ̸= 0) =

j∑
i=1

MN (k1 = ±i, αi) +O(Xj/4+εY N(l)1/2+ε). (3.9)

3.12 Computing MN : gathering terms

In this section we show that for any fixed i, the term M±N (k1 = ±i, αi) combines naturally with
the term M±R(ϵ1, · · · , ϵj), where we have ϵi = −1 and ϵk = 1 for all k ̸= i. As a preparation, we
first establish an Archimedean-type identity.

Lemma 3.13. Let u be a complex number. Then

(21−u − 1)ζK(u)
Γ(u2 )

Γ(1− u
2 )

=
4

π

(
π2

2

)u/2

Γu/2ζK,2(1− u)

where Γu is defined by (1.9).

Proof. We use the functional equation (2.18) for ζK(u) to see that

π−uζK(u) = π−(1−u)Γ(1− u)

Γ(u)
ζK(1− u).

Next, we apply the formula (see [7, Formula 3, Section 8.335]):

Γ(
u

2
)Γ(

1 + u

2
) =

√
π

2u−1
Γ(u)
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to see that

Γ(1− u)

Γ(u)

Γ(u2 )

Γ(1− u
2 )

=
21−u

2u
Γ( 1−u

2 )

Γ( 1+u
2 )

.

Note also that

(21−u − 1)ζK(1− u) = 21−uζK,2(1− u).

From this we obtain that

(21−u − 1)ζK(u)
Γ(u2 )

Γ(1− u
2 )

=π−(1−2u) 2
2(1−u)

2u
Γ( 1−u

2 )

Γ( 1+u
2 )

ζK,2(1− u) =
4

π

(
π2

2

)u/2

Γu/2ζK,2(1− u),

as desired.

Now we are ready to prove the next result.

Lemma 3.14. For special choices of Gj(s), 1 ≤ j ≤ 3 described in Remark 2.10, we have

MN (k = 0) +M−N (k1 = ±i, α) +MR(−1) +M−R(1) =
πF̂ (1)

2ζK,2(2)
N(l)−1/2Aα(l), (3.10)

MN (k1 = ±i, α) +MR(−1, 1) +M−N (k1 = ±i, β) +M−R(−1, 1)

= πA−α,β(l)Γα
F̂ (1− α)

2ζK,2(2)
√

N(l1)
,

(3.11)

MN (k1 = ±i, α) +MR(−1, 1, 1) = πA−α,β,γ(l)Γα
F̂ (1− α)

2ζK,2(2)
√
N(l1)

+O(X3/4+εN(l)ε). (3.12)

The relations given in (3.11) and (3.12) are valid similarly if one replaces α by β or by γ (when
j = 3).

Proof. We begin our proof in general by applying Lemma 3.13 with u = 2(s+ αi) to (3.8), thus
obtaining

MN (k1 = ±i, αi)

=
π

2

∑
a≡1 mod (1+i)3

(a,2l)=1
N(a)≤Y

µ[i](a)

N(a)2
1

2πi

∫
(cs)

F̂ (1− (1− j

2
)s− αi)gα1,··· ,αj

(s)

(
π√
2

)−2(s+αi)

× 2N(la2)s+αiΓs+αi
ζK,2(1− 2αi − 2s)Res

w=
1
2−α

4Jj(2s+ 2αi, w; l, a)

πζK(2s+ 2αi)

Gj(s)ds

s
.

Recall that cs =
1
2 + ε and the residue of ζK(s) at s = 1 equals π/4. We replace the residue

of 4
πJj(2s+ 2α,w) at w = 1

2 − αi by the value of Jj(2s+ 2αi, w)/ζK( 12 +w+ αi) at w = 1
2 − αi

to see that

MN (k1 = ±i, αi) =
π

2

∑
a≡1 mod (1+i)3

(a,2l)=1
N(a)≤Y

µ[i](a)

N(a)2
1

2πi

∫
(cs)

F̂ (1− (1− j

2
)s− α)gα1,··· ,αj

(s)
Gj(s)

s
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× Γs+αi
N(a)2α+2sDN (k1 = ±i, αi; s)ds,

where

DN (k1 = ±i, αi; s) = 2N(l)s+αiζK,2(1− 2αi − 2s)
Jj(2s+ 2αi, w)

ζK(2s+ 2αi)ζK( 12 + w + αi)

∣∣∣
w=

1
2−αi

.

Next, by writing c = ab and setting ϵi = −1 and ϵk = 1 for all k ̸= i in (3.2), we deduce that

MR(ϵ1, · · · , ϵj) =
π

2

∑
a≡1 mod (1+i)3

(a,2l)=1
N(a)>Y

µ[i](a)

N(a)2
1

2πi

∫
(ε)

Gj(s)

s
gα1,··· ,αj (s)F̂ (1− (1− j

2
)s− αi)

× Γαi+sN(a)2αi+2sDR(ϵ1, · · · , ϵj ; s)ds,

where

DR(−1, 1, 1; s) =
1

ζK,2(2)

∑
b≡1 mod (1+i)3

(b,2l)=1

1

N(b)2(1−αi−s)

×
∑

ri≡1 mod (1+i)3

1≤i≤3
ri|ab

j∏
i=1

µ[i](ri)

N(ri)
1
2+αi+s

1√
N((l

∏j
i=1 ri)

∗)
Aϵ1(α1+s),··· ,ϵj(αj+s)(l

j∏
i=1

ri).

Using arguments similar to those used in the proof of [18, Lemma 6.2], we see that

DN (k1 = ±i, αi; s) = DR(ϵ1, · · · , ϵj ; s).

It follows from this that we have

MN (k1 = ±i, αi) +MR(ϵ1, · · · , ϵj) =
π

2

∑
a≡1 mod (1+i)3

(a,2l)=1

µ[i](a)

N(a)2
1

2πi

∫
(ε)

Gj(s)

s
gα1,··· ,αj

(s)

× F̂ (1− (1− j

2
)s− αi)Γαi+sN(a)2αi+2sDR(ϵ1, · · · , ϵj ; s)ds.

Grouping ab into a variable and applying the Möbius formula implies that only ab = 1 survives,
which implies that r1 = r2 = r3 = 1. Thus

MN (k1 = ±i, αi) +MR(ϵ1, · · · , ϵj)

=
π

2ζK,2(2)
√
N(l1)

1

2πi

∫
(ε)

Gj(s)

s
gα1,··· ,αj

(s)F̂ (1− (1− j

2
)s− αi)Γαi+sAϵ1(α1+s),··· ,ϵj(αj+s)(l)ds.

(3.13)

When j = 3, we can move the contour of integration to −1/2 + ε, crossing a pole at s = 0
only, in view of Lemma 2.9 and Remark 2.10. The residue at s = 0 gives the main term in (3.12),
and the error term is easily seen to be of the desired size.

For j = 1, 2, we further obtain an expression for M−N (k1 = ±i, αi) +M−R(ϵ1, · · · , ϵj) from
the above expression using Remark 3.2, where ϵ1, · · · , ϵj are the same as those in (3.13). Using

the relation that F̂−(αj)(w) = F̂ (w −
∑j

i=1 αi), we see that

M−N (k1 = ±i, αi) +M−R(ϵ1, · · · , ϵj)
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=
π

2ζK,2(2)
√
N(l1)

1

2πi

∫
(ε)

Gj(s)

s
g−α1,··· ,−αj (s)F̂ (1− (1− j

2
)s+ αi −

j∑
i=1

αi)

Γ−αi+sΓ(αj)Aϵ1(−α1+s),··· ,ϵj(−αj+s)(l)ds.

We apply a change of variable s → −s to recast the above as

M−N (k1 = ±i, αi) +M−R(ϵ1, · · · , ϵj)

= − π

2ζK,2(2)
√

N(l1)

1

2πi

∫
(−ε)

Gj(s)

s
g−α1,··· ,−αj

(−s)F̂ (1 + (1− j

2
)s+ αi −

j∑
i=1

αi)Γ−αi−sΓ(αj)

Aϵ1(−α1−s),··· ,ϵj(−αj−s)(l)ds.

We now deduce from the identity

g−α(−s)Γ−α−sΓα = gα(s)

and the identity Γα = Γ−1
−α that

g−α1,··· ,−αj
(−s)Γ−αi−sΓ(αj) = gα1,··· ,αj

(s)
Γ(αj+s)

Γαi+s
.

When j = 2, the above allows us to see that the two integrands on the right-hand sides of

(3.13) and (??) (with ai replaced by aj−i+1) are negative to each other, hence the sum of the two
integrals equals to the residue at s = 0 of the integrand in (3.13), thus proving (3.11). Applying
the above discussions similarly to the case j = 1 by taking note of (3.5) allows us to establish
(3.10) as well.

3.15 Completion of the proof

We are now able to complete the proof of Theorem 1.2. We first consider the case j = 1. In this
case, we note that it follows from Remark 3.2 that we also have

M−N (k = 0) +MN (k1 = ±i, α) +MR(−1) +MR(1) = Γα
πF̂ (1− α)

2ζK,2(2)
√

N(l)
A−α(l). (3.14)

Combining Lemma 3.7, (3.9) and taking note of Remark 3.2, we get

Mα(l)

=MN (k = 0) +M−N (k = 0) +MN (k1 = ±i, α) +M−N (k1 = ±i, α) +MR(1) +MR(−1)

+M−R(1) +M−R(−1) +O

(
Xf+ε

Y 2f−1
N(l)1/2+ε +X1/4+εY N(l)1/2+ε +X1/2+ε

)
.

(3.15)

Now applying (3.10) and (3.14) in the above expression and setting Y = X
1
4 in (3.15) allows us

to see that the statement of Theorem 1.2 is valid for j = 1.
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For the case j = 2, we combine Lemma 3.7 and (3.9) and Remark 3.2 to obtain

Mα,β(l) =MN (k = 0) +MR(1, 1) +M−N (k = 0) +M−R(1, 1) +M−N (k = 0)

+MN (k1 = ±i, α) +MR(−1, 1) +M−N (k1 = ±i, β) +M−R(−1, 1)

+MN (k1 = ±i, β) +MR(1,−1) +M−N (k1 = ±i, α) +M−R(1,−1)

+O

(
Xf+ε

Y 2f−1
N(l)1/2+ε +X1/2+εY N(l)1/2+ε

)
.

(3.16)

Now applying (3.6) and (3.11) in the above expression as well as Remark 3.2 and setting Y =

X
2f−1
4f in (3.16) allows us to see that the statement of Theorem 1.2 is valid for j = 2.
For the case j = 3, we combine Lemma 3.7 and (3.9) to see that

M1 =MN (k = 0) +MN (k1 = ±i, α) +MN (k1 = ±i, β) +MN (k1 = ±i, γ)

+MR(1, 1, 1) +MR(1, 1,−1) +MR(1,−1, 1) +MR(−1, 1, 1)

+O

(
Xf+ε

Y 2f−1
N(l)1/2+ε +X3/4+εY N(l)1/2+ε

)
.

We now apply (3.6) and (3.12) to recast the above as

M1 =πAα,β,γ(l)
F̂ (1)

2ζK,2(2)
√
N(l1)

+ πA−α,β,γ(l)Γα
F̂ (1− α)

2ζK,2(2)
√
N(l1)

+ πAα,−β,γ(l)Γβ
F̂ (1− β)

2ζK,2(2)
√
N(l1)

+ πAα,β,−γ(l)Γγ
F̂ (1− γ)

2ζK,2(2)
√

N(l1)

+O

(
Xf+ε

Y 2f−1
N(l)1/2+ε +X3/4+εY N(l)1/2+ε

)
.

(3.17)

We then obtain an asymptotic for M−1 using Remark 3.2, which gives the remaining four
main terms in (1.12) plus the same error as given in (3.17). We now readily deduce the assertion

of Theorem 1.2 for j = 3 by setting Y = X
f− 3

4
2f . This completes the proof of Theorem 1.2.

4 Proof of Theorem 1.4

We consider the following mollifier

M(d) =
∑

l≡1 mod (1+i)3

N(l)≤M

λ(l)
√
N(l)χ(1+i)5d(l). (4.1)

Our goal is to choose λ(l) optimally such that the following mollified first and second moments
(corresponding to j = 1, 2, respectively) are comparable:

S(L( 12 , χ(1+i)5d)
jM(d)j ; Φ) =

1

X

∑
d∈OK

(d,2)=1

µ2
[i](d)L(

1
2 , χ(1+i)5d)

jM(d)jΦ(
N(d)

X
).

Here we set M = (
√
X)θ for some θ < 1− ε and Φ is given in Theorem 1.1 such that we take Φ

to be an approximation to the characteristic function of (1, 2) so that Φ̂(1) ∼ 1. To specify λ(l),

174             P. Gao



we first make a linear change of variables to define for primary γ,

ξ(γ) =
∑

a≡1 mod (1+i)3

λ(aγ)

h(a)

N(a)d[i](a)

σ[i](a)
.

Note here that we can recover λ from ξ by the following relation:

λ(l) =
∑

a≡1 mod (1+i)3

µ[i](a)

h(a)

N(a)d[i](a)

σ[i](a)
ξ(la). (4.2)

Thus, in order to determine λ(l), it suffices to define ξ(γ). We shall assume that ξ(γ) is
supported on primary square-free elements γ satisfying N(γ) ≤ M . We then note that (4.2)
implies that λ(l) is also supported on primary square-free elements γ satisfying N(γ) ≤ M .

We shall further require that

|ξ(γ)| = 1

N(γ) log2 M

∏
ϖ≡1 mod (1+i)3

ϖ|γ

(
1 +O

(
1

N(ϖ)

))
. (4.3)

It is then easy to deduce from this and (4.2) that λ(l) ≪ N(l)−1+ε.

4.1 First mollified moment

Our evaluation of the first mollified moment requires us to evaluate M0(l) explicitly, where M0(l)
is defined in (1.2). This can be done directly from Theorem 1.3 by considering the limit as α → 0
of the asymptotic expression given in (1.10) for Mα(l) (with f = 1/2 there). In this way, we
obtain the following result analogue to [14, Proposition 1.2]:

Theorem 4.2. Let Φ be given in Theorem 1.1. For any primary square-free l ∈ OK and any
ε > 0, we have∑∗

(d,2)=1

L( 12 , χ(1+i)5d)Φ

(
N(d)

X

)
χ(1+i)5d(l)

=
π2

4

Φ̂(1)X

ζK(2)
√
N(l)

C

g(l)

log

√
X

N(l)
+ C2 +

∑
ϖ≡1 mod (1+i)3

ϖ|l

C2(ϖ) logN(ϖ)

N(ϖ)

+O(N(l)1/2+εX
1
2+ε),

where

C =
1

3

∏
ϖ≡1 mod (1+i)3

(
1− 1

N(ϖ)(N(ϖ) + 1)

)
,

g(l) =
∏

ϖ≡1 mod (1+i)3

ϖ|l

(
N(ϖ) + 1)

N(ϖ)

)(
1− 1

N(ϖ)(N(ϖ) + 1)

)
.

Moreover, C2 is a constant depending only on Φ and C2(ϖ) ≪ 1 for all ϖ.
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We then apply (4.1) and Theorem 4.2 to see that

S(L( 12 , χ(1+i)5d)M(d); Φ)

=
π2

4

CΦ̂(1)

ζK(2)

∑
l≡1 mod (1+i)3

N(l)≤M

λ(l)

g(l)

log

√
X

N(l)
+ C2 +

∑
ϖ≡1 mod (1+i)3

ϖ|l

C2(ϖ)

N(ϖ) logN(ϖ)

+O(X−ε).

We now define a multiplicative function g1(γ) on primary, square-free γ such that for any
primary prime ϖ, we have

g1(ϖ) =
1

g(ϖ)
− 2N(ϖ)

h(ϖ)(N(ϖ) + 1)
.

We note that g1(ϖ) = −1 +O(1/N(ϖ)). Using (4.2) to write λ in terms of ξ, we derive that

∑
l≡1 mod (1+i)3

N(l)≤M

λ(l)

g(l)
log

√
X

N(l)
=

∑
γ≡1 mod (1+i)3

g1(γ)

log(
√
XN(γ)) +O(

∑
ϖ≡1 mod (1+i)3

ϖ|γ

logN(ϖ)

N(ϖ)
)


=

∑
γ≡1 mod (1+i)3

g1(γ)
(
log(

√
XN(γ))

)
+O

(
1

logX

)
,

where the last estimation above follows from (4.3).
Similar arguments imply that

∑
l≡1 mod (1+i)3

N(l)≤M

λ(l)

g(l)

C2 +
∑

ϖ≡1 mod (1+i)3

ϖ|l

C2(ϖ)

N(ϖ) logN(ϖ)

≪ 1

logX
.

We then conclude from the above discussions that the first mollified moment is

S(L( 12 , χ(1+i)5d)M(d); Φ) =
π2

4

CΦ̂(1)

ζK(2)

∑
γ≡1 mod (1+i)3

g1(γ)
(
log
(√

XN(γ)
))

+O

(
1

logX

)
.

(4.4)

4.3 Second mollified moment

To evaluate the second mollified moment, we shall not apply an approach similar to our treatment
for the first mollified moment since the error term in the asymptotic expression for Mα,β(l) given
in Theorem 1.3 is too large in the l aspect (of size N(l)1/2+ε). This would not allow us to take
θ to be close to 1. Rather, we follow the approach of Soundararajan in [14] here.

Let Y be a parameter and we write µ2
[i](d) = MY (d) +RY (d) where

MY (d) =
∑
l2|d

N(l)≤Y

µ[i](l) and RY (d) =
∑
l2|d

N(l)>Y

µ[i](l).
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We then have

S(L( 12 , χ(1+i)5d)
2M(d)2; Φ) = SM (L( 12 , χ(1+i)5d)

2M(d)2; Φ) + SR(L(
1
2 , χ(1+i)5d)

2M(d)2; Φ),

where

SM (L( 12 , χ(1+i)5d)
2M(d)2; Φ) =

1

X

∑
d∈OK

(d,2)=1

MY (d)L(
1
2 , χ(1+i)5d)

jM(d)jΦ(
N(d)

X
),

SR(L(
1
2 , χ(1+i)5d)

2M(d)2; Φ) =
1

X

∑
d∈OK

(d,2)=1

RY (d)L(
1
2 , χ(1+i)5d)

jM(d)jΦ(
N(d)

X
).

Similar to [14, Proposition 1.1], we can show that when N(l) ≪ N(1)−1+ε,

SR(L(
1
2 , χ(1+i)5d)

2M(d)2; Φ) ≪ Xε

Y
+

M j/2

X1/2−ϵ
. (4.5)

To evaluate SM (L( 12 , χ(1+i)5d)
2M(d)2; Φ), we introduce a few notations now. For n ∈ OK ,

we let d[i](n) and σ[i](n) denote the analogues of the usual divisor function and sigma function in
Z. In particular, we note that when n is primary, d[i](n) = σ−1,0(n), where σ0, σ−1,0 are defined
in (1.5). Explicitly, for a primary n, we have

d[i](n) =
∑

d≡1 mod (1+i)3

d|n

1, σ[i](n) =
∑

d≡1 mod (1+i)3

d|n

N(d).

We also denote for any integer j ≥ 0,

Φ(j) = max
0≤i≤j

∫
R

|Φ(i)(t)|dt.

Moreover, for all integers j ≥ 0, we define Λj(n) to be the function defined on integral ideals of

K which equals the coefficient of N(n)−s in the Dirichlet series expansion of (−1)jζ
(j)
K (s)/ζK(s).

In particular, Λ1(n) is the usual von Mangoldt function Λ(n) on K. We note that Λj(n) is
supported on elements n in OK such that ((n)) has at most j distinct prime ideal factors, and
Λj(n) ≪j (logN(n))j .

Now, we are ready to state our result on SM (L( 12 , χ(1+i)5d)
2M(d)2; Φ). We omit its proof

here since it is similar to that of [14, Proposition 1.2]. We only point out here the that triple
pole of ζK(1 + 2s)3 at s = 0 contributes a factor of (π/4)3. One can also derive the main term
given in (4.6) below from Mα,β(l) defined in (1.2) using Lemma 2.3 in [13].

Theorem 4.4. Let Φ be given in Theorem 1.1. For any primary l ∈ OK such that l = l1l
2
2 such

that l1 is primary and square-free, we have for any ε > 0,

SM (L( 12 , χ(1+i)5d)
2M(d)2; Φ)

=
π4

43
DΦ̂(1)

36ζK(2)

d[i](l1)√
N(l)

N(l1)

σ[i](l1)h(l)

(
log3

X

N(l1)
− 3

∑
ϖ≡1 mod (1+i)3

ϖ|l1

log2 N(ϖ) log
X

N(l1)
+O(l)

)

+O

Φ(2)Φ
ϵ
(3)

N(l)
1
2+εY 1+ε

X
1
2+ε

+
N(l)εXε√
N(l1)Y

+
N(l)εXε

(N(l1)X)1/4

 ,

(4.6)
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where h is the multiplicative function defined on primary prime powers by

h(ϖk) = 1 +
1

N(ϖ)
+

1

N(ϖ)2
− 4

N(ϖ)(N(ϖ) + 1)
, (k ≥ 1)

and

D =
1

8

∏
ϖ≡1 mod (1+i)3

(
1− 1

N(ϖ)

)
h(ϖ).

Also,

O(l) =
3∑

j,k=0

∑
m≡1 mod (1+i)3

m|l1

∑
n≡1 mod (1+i)3

n|l1

Λj(m)

N(m)

Λk(n)

N(n)
D(m,n)Qj,k(log

X

N(l1)
)

− 3(A+B
Φ̂′(1)

Φ̂(1)
)

∑
ϖ≡1 mod (1+i)3

ϖ|l

log2 N(ϖ).

where A and B are absolute constants and D(m,n) ≪ 1 uniformly for all m and n. The
Qj,k are polynomials of degree ≤ 2 whose coefficients involve only absolute constants and linear

combinations of Φ̂(j)(1)

Φ̂(1)
for 1 ≤ j ≤ 3.

Combining (4.5) and (4.6) and setting Y = Xε, we see that

S(L( 12 , χ(1+i)5d)
2M(d)2; Φ)

=
π4

43
DΦ̂(1)

36ζK(2)

∑
l≡1 mod (1+i)3

 ∑
r,s≡1 mod (1+i)3

rs=l

λ(r)λ(s)


√

N(l)

h(l)

d[i](l1)√
N(l1))

N(l1)

σ[i](l1)

×

log3
X

N(l1)
− 3

∑
ϖ≡1 mod (1+i)3

ϖ|l1

log2 N(ϖ) log
X

N(l1)
+O(l)

+O(X−ε).

We write r = aα and s = bα where a and b are co-prime primary elements. As λ is assumed
to be supported on square-free elements, we deduce that α = l2 and l1 = ab. Thus we obtain
from the above that

S(L( 12 , χ(1+i)5d)
2M(d)2; Φ)

=
π4

43
DΦ̂(1)

36ζK(2)

∑
α≡1 mod (1+i)3

N(α)

h(α)

∑
a,b≡1 mod (1+i)3

(a,b)=1

λ(aα)

h(a)

λ(bα)

h(b)

ad[i](a)

σ[i](a)

bd[i](a)

σ[i](b)

×

log3
X

N(ab)
− 3

∑
ϖ≡1 mod (1+i)3

ϖ|ab

log2 N(ϖ) log
X

N(ab)
+O(α2ab)

+O(X−ε).
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Using the Möbius function to remove the condition that (a, b) = 1, we see that

S(L( 12 , χ(1+i)5d)
2M(d)2; Φ)

=
π4

43
DΦ̂(1)

36ζK(2)

∑
α≡1 mod (1+i)3

N(α)

h(α)

∑
β≡1 mod (1+i)3

µ[i](β)

h(β)2
β2d[i](β)

2

σ[i](β)2

×
∑

a,b≡1 mod (1+i)3

λ(aαβ)

h(a)

λ(bαβ)

h(b)

ad[i](a)

σ[i](a)

bd[i](a)

σ[i](b)

×

log3
X

N(abβ2)
− 3

∑
ϖ≡1 mod (1+i)3

ϖ|abβ

log2 N(ϖ) log
X

N(abβ2)
+O(α2β2ab)

+O(X−ε).

(4.7)

We further define a multiplicative function H(n) on primary, square-free n such that for any
primary prime ϖ,

H(ϖ) = 1− 4N(ϖ)

h(ϖ)(N(ϖ) + 1)2
= 1 +O(

1

N(ϖ)
).

By setting γ = αβ in (4.7) and proceeding similarly to the arguments in Section 6.2 of [14],
we deduce that the second mollified moment is

S(L( 12 , χ(1+i)5d)
2M(d)2; Φ)

=
π4

43
DΦ̂(1)

36ζK(2)

∑
γ≡1 mod (1+i)3

N(γ)H(γ)

h(γ)

∑
a,b≡1 mod (1+i)3

(a,b)=1

λ(aγ)

h(a)

λ(bγ)

h(b)

ad[i](a)

σ[i](a)

bd[i](a)

σ[i](b)

×
(
log3

X

N(ab)
− 3 log

X

N(ab)

( ∑
ϖ≡1 mod (1+i)3

ϖ|a

log2 N(ϖ) +
∑

ϖ≡1 mod (1+i)3

ϖ|b

log2 N(ϖ)
))

+O(
1

logX
).

(4.8)

4.5 Optimizing the mollified moments

It follows from (4.8) that the second mollified moment looks like

π4

43
DΦ̂(1)

36ζK(2)
log3 X

∑
γ≡1 mod (1+i)3

N(γ)H(γ)

h(γ)
ξ(γ)2. (4.9)

As the above is a diagonal quadratic form of ξ(γ), we see that in order to choose a mollifier
to minimize (4.9) for fixed (4.4), we need to choose ξ(γ) so that it is proportional to

h(γ)g1(γ)

N(γ)H(γ)
log(

√
Xγ).

We shall here follow the choice made in [14, (6.8)] to choose for primary square-free γ ≤ M
such that

ξ(γ) =
C

D log3 M

h(γ)g1(γ)

N(γ)H(γ)
log(

√
Xγ).
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We notice that the above choice of ξ does satisfy the condition (4.3).
Similar to [14, (6.8)], we see have that (keeping in mind that the residue of ζK(s) at s = 1 is

π/4)

C2

D log3 M

∑
γ≡1 mod (1+i)3

N(γ)≤x

µ2
[i]((1 + i)γ)

h(γ)g1(γ)
2

N(γ)H(γ)

=
π

4

C2

2D

∏
ϖ≡1 mod (1+i)3

(
1− 1

N(ϖ)

)(
1 +

h(ϖ)g1(ϖ)2

N(ϖ)H(ϖ)

)
(log(X) +O(1))

=
π

4

4

9
(log(X) +O(1)).

(4.10)

We apply (4.10) to (4.4) via partial summation to see that the first mollified moment is

S(L( 12 , χ(1+i)5d)M(d); Φ) ∼π2

4

C2Φ̂(1)

DζK(2) log3 M

∑
γ≡1 mod (1+i)3

N(γ)≤M

µ2
[i]((1 + i)γ)

h(γ)g1(γ)
2

N(γ)H(γ)
log2(

√
Xγ)

∼
(π
4

)2 2

9

((
1 +

1

θ

)3

− 1

θ3

)
2πΦ̂(1)

3ζK(2)
.

(4.11)

Now, we proceed to evaluate the second mollified moment for the chosen ξ. For this, we
define for rational integers j ≥ 0,

ξj(γ) =
∑

a≡1 mod (1+i)3

λ(aγ)

h(a)

d[i](a)

σ[i](a)
(logN(a))j .

Similar to [14, (6.11a)-(6.11c)], we see that for primary square-free element γ satisfying
N(γ) ≤ M , we have

ξ1(γ) = − C

D log3 M

h(γ)g1(γ)

N(γ)H(γ)

(
2 log

M

N(γ)
log(

√
XN(γ)) + log2

M

N(γ)

+O
(
logM(1 +

∑
q≡1 mod (1+i)3

q|γ

logN(q)

N(q)

))
,

ξ2(γ) =
C

D log3 M

h(γ)g1(γ)

N(γ)H(γ)

(
log2

M

N(γ)
log(

√
XN(γ)) +

2

3
log3

M

N(γ)

+O
(
log2 M(1 +

∑
q≡1 mod (1+i)3

q|γ

logN(q)

N(q)

))
,
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ξ3(γ) ≪
|h(γ)g1(γ)|
N(γ)H(γ)

1 +
∑

q≡1 mod (1+i)3

q|γ

logN(q)

N(q)

 .

We now expand log3(X/N(ab)) in terms of logX, logN(a) and logN(b) to recast

π4

43
DΦ̂(1)

36ζK(2)

∑
γ≡1 mod (1+i)3

N(γ)H(γ)

h(γ)

∑
a,b≡1 mod (1+i)3

(a,b)=1

λ(aα)

h(a)

λ(bα)

h(b)

ad[i](a)

σ[i](a)

bd[i](a)

σ[i](b)
log3

X

N(ab)

(4.12)

as a linear combination of terms

π4

43
DΦ̂(1)

36ζK(2)

∑
γ≡1 mod (1+i)3

N(γ)H(γ)

h(γ)
ξj(γ)ξk(γ) log

l X,

where j + k + l = 3.
We can evaluate these terms using the expressions for ξi(γ), 1 ≤ i ≤ 3. Then applying (4.10)

and partial summation, we see that

(4.12) ∼
(π
4

)4( 2

81
+

28

135θ
+

11

18θ2
+

70

81θ3
+

16

27θ4
+

4

27θ5

)
2πΦ̂(1)

3ζK(2)
. (4.13)

This treats one of the terms given in (4.8). To treat the other terms, we proceed similarly to
the treatments done on [14, p. 485] to see that for primary, square-free γ such that N(γ) ≤ M ,

∑
a≡1 mod (1+i)3

λ(aα)

h(a)

ad[i](a)

σ[i](a)

( ∑
ϖ≡1 mod (1+i)3

ϖ|a

log2 N(ϖ)
)

=− C

D log3 M

h(γ)g1(γ)

N(γ)H(γ)

(
log2

M

N(γ)
log(

√
XN(γ)) +

2

3
log3

M

N(γ)
+O(log2 X)

)
,

and that ∑
a≡1 mod (1+i)3

λ(aα)

h(a)

ad[i](a)

σ[i](a)
logN(a)

( ∑
ϖ≡1 mod (1+i)3

ϖ|a

log2 N(ϖ)
)

≪ |h(γ)g1(γ)|
N(γ)H(γ)

(
1 +

∑
q≡1 mod (1+i)3

q|γ

logN(q)

N(q)

)
.

As consequences, we see that

−
(π
4

)4 DΦ̂(1)

36ζK(2)

∑
γ≡1 mod (1+i)3

N(γ)H(γ)

h(γ)

∑
a,b≡1 mod (1+i)3

(a,b)=1

λ(aα)

h(a)

λ(bα)

h(b)

ad[i](a)

σ[i](a)

bd[i](a)

σ[i](b)
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× log
X

N(ab)

( ∑
ϖ≡1 mod (1+i)3

ϖ|a

log2 N(ϖ) +
∑

ϖ≡1 mod (1+i)3

ϖ|b

log2 N(ϖ)
)

∼
(π
4

)4( 2

81
+

4

45θ
+

7

54θ2
+

2

27θ3

)
2πΦ̂(1)X

3ζK(2)
.

Combining the above with (4.13), we find that the second mollified moment is

∼
(π
4

)4( 4

81
+

8

27θ
+

20

27θ2
+

76

81θ3
+

16

27θ4
+

4

27θ5

)
2πΦ̂(1)

3ζK(2)
. (4.14)

Applying Cauchy-Schwarz inequality together with the first mollified moment (4.11) and the
second mollified moment (4.14), we have

∑
X≤N(d)≤2X

(d,2)=1

L(
1
2 ,χ(1+i)5d) ̸=0

µ[i](d)
2 ≥

∑
(d,2)=1

L(
1
2 ,χ(1+i)5d)̸=0

µ[i](d)
2Φ(

N(d)

X
) ≥ X

S(L( 12 , χ(1+i)5d)M(d); Φ)2

S(L( 12 , χ(1+i)5d)2M2(d); Φ)

≥
(
1− 1

(θ + 1)3

)
2π

3ζK(2)
X =

(
7

8
+ o(1)

) ∑
X≤N(d)≤2X

(d,2)=1

µ[i](d)
2,

(4.15)

since we have that (see [5, Section 3.1])∑
X≤N(d)≤2X

(d,2)=1

µ[i](d)
2 ∼ 2π

3ζK(2)
X.

We now set θ = 1− ε in (4.15) to see that the assertion of Theorem 1.4 follows by summing over
X = x/2j for j ≥ 1 and this completes the proof.
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