
On G-decimal Representation over Function Fields

Hong Ziwei and Zheng Zhiyong

School of Mathematics,
Renmin University, Beijing, P. R. China

hongziwei@live.com

Abstract

This paper discusses decimal representation over function field k∞. Firstly, we
provide definitions and establish existence of decimal representation over function
fields. For function field k∞, The work of L. Carlitz demonstrates that for the
function field k∞, {Xα}X∈Fq [T ] is uniformly distributed mod 1, where α ∈ k∞ is an
irrational element. This finding implies that arbitrary finite ordered set will occur
infinitely often in the decimal representation of Xα. We present an upper bound
of the ”first” X, and our result is almost the best upper bound. The method we
employ is purely combinatorial.
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1 Introduction

The concept of decimal representation is a fundamental aspect of distribution theory as
it facilitates the comprehension of the fractional part of elements in a straightforward
manner. In the real number field, 10-decimal representation is commonly employed.
Decimal representation is a powerful tool for grasping the properties of algebraic and
irrational numbers. For special values such as π and e, 2-representation is often consid-
ered. Y. Bugeaud, in his work [1], delves into the topics of Diophantine approximation
and uniform distribution mod 1. As an application, 2-representation is of interest in
computer science for studying Hash functions and group signature.

The definition of uniform distribution in function fields was proposed by L. Carlitz in
his work [2]. To illustrate this definition, he presented a sequence that exhibits uniform
distribution mod 1. The implications of Carlitz’s work were further explored in [3],
and similar findings were also reported in [6, 8]. The investigation of this area was
continued by T.H. Le and Y. Liu, who identified additional sequences that demonstrate
uniform distribution mod 1 in their work [3]. In this paper, we present a property of
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multiplication of decimal representation over the function field k∞, building upon L.
Carlitz’s results.

Our findings contribute to a deeper understanding of the distribution of sequences
in function fields and have potential implications for applications in cryptography and
number theory.

Before stating our main result, we have to introduce basic structure of function field
k∞ and give the definition of decimal representation over function field. Here we only
introduce necessary knowledge, more details about structure of k∞ can be found in [7].

Let Fq be a finite field with q elements of characteristic p, K = Fq[T ] be the polyno-
mial ring, where T is an indeterminate, k = Fq(T ) be the rational function field. Let v be
the normalized exponent valuation with v( 1

T ) = 1, so that v(α) takes on integer values

and v(0) = ∞. k∞ = Fq(( 1
T )) be the complete field of k at infinite place. |α| = qv(α),

where v is the valuation function defined above. If α is an element in k∞, then α can be
uniquely expressed as a series as follows

α =

+∞∑
i=n

ai

(
1

T

)i
, n ∈ Z, ai ∈ Fq, and an 6= 0, (1.1)

where v(α) = n. We define the square bracket function [α] of α by

[α] =

0∑
i=n

ai

(
1

T

)i
, if n ≤ 0, and [α] = 0, if n > 0, (1.2)

which is called the “integral part” of α as usual. We define 〈α〉 = α− [α] which is called
the fractional part of α. By the definition of fractional part, we obtain the following
result as a consequence.

Lemma 1.1 For any x1, x2 ∈ K and α ∈ k∞, we have

〈x2〈x1α〉〉 = 〈x1x2α〉.

Let G be a fixed polynomial in K with degG > 1 and we define digital set

DG = {A ∈ K| degA < degG}.

To obtain G-representation for polynomial P ∈ K, we utilize the the division algo-
rithm to express a polynomial P as

P = K1G+R1

, where K1 and R1 are determined by the algorithm, and R1 belongs to the set DG. If
K1 is also in DG, then we have the desired G-decimal representation for P ; if not, we
repeat the division algorithm to obtain K2 and R2, and continue this process until we
arrive at Kn ∈ DG for some n. Then, we can express P as

P = KnG
n +RnGn−1 + · · ·+R2G+R1,
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which is the G-decimal representation for P .
For an element α ∈ k∞ with |α| ≤ q−1, the inequality |Gα| ≤ q−1|G| holds. We can

define [Gα] = α1 where α = G−1α1 + G−1〈Gα〉 and α1 ∈ DG. By induction, we can
define αj+1 = [Gj+1α− (α1G

j +α2G
j−1 + · · ·+αjG)], for j = 1, 2, .... Subsequently, we

define

α′ =

∞∑
j=1

αjG
−1.

It follows that

|α− α′| =|G−j ||Gjα−Gjα′| = |G−j ||Gjα− (α1G
j−1 + · · ·+ αj1G+ αj)− 〈Gjα′〉|

=|〈Gjα〉 − 〈Gjα′〉| ≤ |G|−jq−1.

which can be further simplified to |〈Gjα〉 − 〈Gjα′〉| ≤ |G|−jq−1, as j → ∞. We then
have α = α′ =

∑∞
j=1 αjG

−1, which gives an expression of α with coefficients in DG.
Based on the above discussion, we can now define G-decimal representation.

Definition 1 We define the G-decimal representation of an element α ∈ k∞ as follow:

α =
∞∑

h=k0

αhG
−h,

where k0 is an integer, depending on α, and αh ∈ DG are obtained through the aforemen-
tioned algorithm. This representation is also referred to as ”the decimal representation
of α” or ”G-representation”.

If α =
∞∑

h=k′0

α′hG
−h is another representation for α, then

0 =
∞∑

h=max{k0,k′0}

(αh − α′h)G−h.

Comparing degrees of each term, we have k0 = k′0 and αh = α′h for all h. Hence, it can
be concluded that the decimal representation of α is unique. The associated ordered set
of digits is denoted by

A = {α1, α2, ...}.
which we refer to as the digits of the G-representation of α.

Similarly, for Xα, X ∈ K, we have

〈Xα〉 =
∞∑
h=1

αX,hG
−h

and the associated ordered set

AX = {αX,1, αX,2, ...},

where αX,h ∈ DG. In the sequal, α ∈ k∞ is a given irrational element.
In a previous study by L. Carlitz [2], it is demonstrated that
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Theorem 1.1 (Uniform distribution) If α is an irrational element in function field
k∞, then the sequence {Xα}X∈Fq [T ] is uniformly distributed modulo 1.

Using this theorem, it is possible to show that there exist infinitely many values
of X for a given ordered finite set B of length N such that B occurs in the decimal
representation of Xα. This paper aims to provide an upper bound for the smallest such
X, which is a function of the length of the set B and is independent of α. Specifically,
we have

Theorem 1.2 Let α be an irrational element in k∞ and N be any fixed positive integer.
There is a positive integer P(N) independent of α with the following property: there is
a polynomial X in K satisfying 1 ≤ |X| < P (N) such that the G-representation of Xα
contains infinitely often every possible sequence of N digits.

The proof of Theorem 1.2 reveals that P (N) = |G|2N+1, which is the function fields
version of Mahler’s result [4]. Furthermore, this study investigates the lower bound of
|X|. The following Theorem 1.3 establishes that the lower bound of X is of size |G|N ,
indicating that Theorem 1.2 is very close to the best approximation.

Theorem 1.3 Notations be as above. We have P (N) ≥ q−1|G|N .

The technique employed in this study is based on the methodology proposed by K.
Mahler in [4]. However, certain modifications were made to accommodate the differences
in the valuation approach for function fields.

2 Lemmas And Upper Bound

To prove Theorem 1.2, we employ a complex proof that involves breaking it down into
several lemmas. Consider a finite ordered set B = {b0, b1, ..., bn−1} with elements in DG,
where n is a positive integer. Our objective is to demonstrate the existence of an integer
P (n), dependent on n, and a polynomial X in K such that 1 ≤ |X| < P (n) and the
representation of Xα contains an infinite number of occurrences of B.

The first step is to demonstrate the occurrence of a sufficient number of zeros in the
representation, where ”sufficient” refers to an infinite number of occurrences, each of
which involves at least n consecutive zeros. Minkowski’s theorem is a key component of
this step, and the following lemma represents its application.

Lemma 2.1 Let n, m be two positive integers, α be an irrational element in k∞, G be
a given polynomial with degG > 1. There are two polynomials x and y in K satisfying
the following inequalities {

|Gmαx− y| < |G|−n,
1 ≤ |x| ≤ |G|n,

(2.1)

where both x and y are non-zero.

Proof It is a restatement of Lemma 2.4 in [8].
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Next, we will delve into the details of equation (2.1), which implies that the function
AGmα has a minimum of n consecutive zeros. For every pair (m,n), a linear form is
derived from equation (2.1), which has at least one non-zero root (x, y). We denote this
root as a function of x = x(m) and y = y(m), since n is predefined. It is important to
note that x(m) has only a finite range of values, meaning that at least one of these values
occurs infinitely. We denote the value that occurs infinitely by x0, and let S = {mk} be
the set of integers m that satisfy (2.1) with x = x0. The following lemma holds true:

Lemma 2.2 There exists an infinite sequence S = {mk} of integers, a polynomial x0
and polynomials y(m), m ∈ S such that{

|Gmαx0 − y(m)| < |G|−n,
1 ≤ |x0| ≤ |G|n, |y(m)| ≥ 1

(2.2)

for all m ∈ S.

In certain cases, it is possible to find that G|x0. Assuming Gux1 = x0 with a
proper positive integer u, we can replace the sequence S = {mk} in Lemma 2.2 with
S = {mk + u} to obtain the following lemma:

Lemma 2.3 There exists an infinite sequence S = {mk} of integers, a polynomial x1
and a sequence of polynomial {y(m)} depending on mk ∈ S such that

|Gmαx1 − y(m)| < |G|−n,
1 ≤ |x1| ≤ |G|n, G - x1,
|y(m)| ≥ 1

(2.3)

for all m ∈ S.

The first inequality in equation (2.3) implies that the function AGx1 has at least
n consecutive zeros. From this, we deduce that Ax1 has infinitely many subsequences
containing at least n consecutive zeros. This is formally stated as Lemma 2.4.

Lemma 2.4 Ax1 has infinitely many subsequences containing at least n consecutive ze-
ros.

Proof By selecting an arbitrary m ∈ S, we can derive αm via the expression αm =
Gmx1α − y(m). It is evident that αm = 〈Gmx1α〉 and that |αm| < |G|−n < 1, which
indicates that the first n digits of AGmx1 are necessarily zeros. Consequently, Ax1 can
be obtained by adding the first m digits to AGmx1, whereby the values of these digits are
irrelevant. This method results in Ax1 possessing at least n consecutive digits of zeros,
ranging from the (m + 1)-th digit to the (m + n)-th digit. This finding applies to all
components in S. The lemma is consequently derived by considering the infinite set S
and allowing m to vary over it.
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In the second step of the process, we generate a polynomial denoted by X and ”insert”
B into AX . It is noteworthy that the size of X, represented as |X|, solely depends on B.
To prove that B occurs infinitely often, we divide the product 〈x1α〉 into two segments,
namely s and t.

We begin by noting that αm cannot be zero since α is irrational, implying that there
exist infinitely many non-zero digits in Ax1 . We define H as a positive integer and h0 as
the smallest suffix greater than H such that

αx1,h = 0 for all h0 ≤ h ≤ h0 + n− 1,

where αx1,h ∈ Ax1 . We also define h1 as the smallest suffix such that

αx1,h1 6= 0 for all h1 ≥ h0 + n.

With h0 and h1 defined above, we set

s =

h0−1∑
h=1

αx1,hG
−h and t =

∞∑
h=h1

αx1,hG
h1−h−1. (2.4)

Thus we have 〈x1α〉 = s+G−(h1−1)t, where t is an irrational element. Let

b = b0G
n−1 + b1G

n−2 + ...+ bn−1.

If b0 = .. = bn−1 = 0, then Lemma 2.4 imples that B occurs infinitely often in Ax1 .
Throughout the rest of this paper, we assume that b 6= 0 and 1 ≤ |b| < |G|n.

Taking x2 = [bt−1] = bt−1 − 〈bt−1〉, we obtain

[tx2] = [t(bt−1 − 〈bt−1〉)] = [b− t〈bt−1〉] = b. (2.5)

and

G−(h1−1)x2t = b0G
−h1+n + b1G

−h1+n−1 + ...+ bn−1G
−(h1−1) +G−(h1−1)〈x2t〉. (2.6)

Here we can see that B occurs in Ax1x2 . It is observed that the value of x2 depends
on H, given b and t. However, the upper bound of x2 is a finite constant, |x2| ≤ |bt−1| <
|G|n+1. Thus, x2 has a finite number of values. As H approaches infinity, there exists
a value of x2 that occurs infinitely. We select a fixed value of x2 and denote it as x2.
The value of x2 is independent of H, and we disregard the part of 〈x2t〉 in our analysis.
Consequently, we can prove Theorem 1.2.

Proof (Proof of Theorem 1.2) For given finite ordered set B with n elements and an
irrational element α, Lemma 2.3 establishes the existence of a polynomial x1 such that
〈x1α〉 = s + G−(h1−1)t, where s and t are defined by (2.4). By defining x2 as in (2.5)
and combining it with (2.6), we obtain x2〈x1α〉 = x2s+G−(h1−1)x2t.
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Furthermore, it can be deduced from (2.6) that the decimal representation of x2〈x1α〉
contains the finite ordered set B. Applying Lemma 1.1, we obtain

〈x2x1α〉 =
∞∑
h=1

αx1x2,hG
−h,

where B = {αx1x2,h, h1 − n ≤ h ≤ h1 − 1}.
As H approaches infinity, all h1 = h1(H) tend to infinity, but the value of x2 remains

constant. Setting X = x1x2 and N = n, we have 1 ≤ |X| ≤ |G|n|G|n+1 = P (N), which
depends on N . By selecting a sequence of H such that {h1 = h1(H)} is a strictly
monotone increasing sequence, we can ensure that B occurs infinitely often in AX . The
Theorem is thus established.

3 Lower bound

Proof (Proof of Theorem 1.3) To prove the theorem, we begin by constructing an
irrational element α such that a given finite ordered set B occurs only finitely often in

the decimal representation of Xα, for all |X| ≤ q−1|G|. Let α =
+∞∑
j=1

G−q
j

be an element

in k∞ and B = {T degG−1, T degG−1, ..., T degG−1} be an ordered set of length N .
We first show that α is irrational. Suppose not, and let P and Q be coprime polyno-

mials such that α = P/Q. Then for any positive integer k such that (qk+1− qk) degG >
degQ, we have

Gq
k
Qα = Gq

k
P = Q(Gq

k−q + · · ·+ 1 +Gq
k−qk+1

+ · · · ).

Since Gq
k
P is a polynomial, Gq

k
Qα should also be a polynomial. However, we can

easily see that 〈GqkQα〉 6= 0. This leads to a contradiction, so we conclude that α is
irrational. Next, we prove that B occurs only finitely often in AX when |X| ≤ q−1|G|.
To do this, we compute Xα explicitly. Considering the decimal representation for X as
X = mtG

t + · · ·+m0, we have

Xα =
+∞∑
j=1

XG−q
j

=
+∞∑
j=1

(mtG
t + · · ·+m0)G

−qj

= ∗+
∑

j>
log t−log(q−1)

log q

(mtG
t−qj+1

+ · · ·+m0G
−qj+1

),

where mi ∈ DG. The ordered set {mt,mt−1, ...,m0} occurs at most finitely often in the
* part and infinitely often in the left part. Furthermore, the only ordered set that occurs
infinitely often is {mt,mt−1, ...,m0}. If degX < N degG − 1, then T degG−1 occurs at
most N − 1 times in the decimal representation of X, so B occurs at most finitely often
in the * part of the decimal representation of Xα. Thus, we have established the theorem.
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