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Abstract. In the present era, electronic communication plays an essential role in 

our daily lives. However, this convenience is accompanied by the persistent chal-

lenge of email spam, which inundates inboxes and poses a serious cybersecurity 

threat. Email spam remains a pervasive issue, with conventional spam filters of-

ten struggling to adapt to evolving spamming techniques. This paper aims to lev-

erage machine learning advanced techniques to enhance the accuracy and effi-

ciency of email spam classification. By employing state-of-the-art algorithms and 

models, the goal is to develop a robust and adaptable system capable of effec-

tively identifying and filtering out spam emails. Several machine learning classi-

fiers namely KNN, SVC, DT, NB, RF and Logistic Regression are applied. Later, 

a deep learning Feed Forward Neural Network model was applied and achieved 

good accuracy.  The experiments' outcome showed that the proposed deep learn-

ing gave good accuracy for email spam classification. 

Keywords: Email spam, Machine Learning, Deep Learning, Classification, Ac-

curacy etc. 
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The ubiquity of email as a primary mode of communication has brought unparalleled 

convenience, yet it has also given rise to the persistent challenge of email spam. Spam, 

characterized by unsolicited and often malicious content, not only clutters inboxes but 

poses significant threats to individuals and organizations alike. Conventional spam fil-

ters, relying on predefined rules and heuristics, struggle to keep pace with the ever-

evolving tactics employed by spammers. Over the years, spammers have become in-

creasingly sophisticated, employing deceptive tactics to evade traditional filters. From 

disguised phishing attempts to polymorphic malware, the landscape of email spam is 

dynamic and complex. As a result, static and rule-based filters find it challenging to 

discern between legitimate and malicious content effectively. There are several draw-

backs with email spam. Email spam may spread phishing and viruses and erode user 

confidence. As users sort through spam, they lose productivity and take up network 

bandwidth and storage, costing enterprises more. False positives and negatives in spam 

screening might miss crucial emails or flag real ones. Spam is worldwide and 

spammers' strategies change; thus, concerted efforts are needed to reduce it. Spam 
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management's environmental impact is another worry. Email spam must be combated 

by technological advances, user education, and international cooperation. Machine 

learning, with its ability to learn from data and adapt to changing patterns, presents a 

promising avenue for addressing the shortcomings of traditional spam filters. By train-

ing models on diverse datasets containing both legitimate and spam emails, machine 

learning algorithms can discern intricate patterns and anomalies, offering a more nu-

anced approach to email classification. Because of its versatility and capacity to recog-

nize complicated patterns, Machine Learning (ML) is vital for email spam categoriza-

tion. ML models can automatically learn and update their decision-making processes, 

making them effective against developing spam methods. These algorithms specialize 

on spam detection, enhance accuracy by examining varied datasets, and decrease false 

positives by analyzing word context. ML extraction of key email properties, fast han-

dling of vast and diverse datasets, and real-time detection contribute to a dynamic and 

evolving spam categorization system. Personalized models provide powerful and spe-

cialized defences against the ever-changing email spam environment.  In this paper, we 

applied several ML classifiers and FFNN for email spam classification. The KNN al-

gorithm stands as a robust supervised machine learning technique, adept at handling 

both classification and regression tasks. Positioned within the realm of instance-based 

and lazy learning algorithms, KNN doesn't construct an explicit model during training. 

Instead, its predictive prowess relies on assessing the resemblance between new data 

points and established examples within the training dataset. The fundamental concept 

underlying SVC is the identification of a hyperplane that optimally separates data points 

of different classes. In a two-dimensional space, this hyperplane is a line; in higher 

dimensions, it becomes a hyperplane. The "support vectors" are the points that are near-

est to the decision border and play a crucial role in defining it. DTC is a popular super-

vised ML technique for classification problems. Iterative dataset partitioning based on 

the most relevant characteristics at each decision node creates a tree-shaped structure. 

Decision rules at these nodes homogenize subsets. The method continues until a stop-

ping requirement is met, resulting in leaf nodes providing class labels. Decision trees' 

interpretable rules and non-parametric nature allow them to capture complex connec-

tions. Management of tree depth to minimize overfitting, impurity measurements, and 

pruning for maximum performance are crucial. Decision trees are useful in credit scor-

ing, medical diagnosis, and customer churn prediction. Bayes' theorem-based probabil-

istic machine learning method the Naive Bayes Classifier is known for its simplicity 

and efficiency in classification applications. It excels in text-related tasks like spam 

filtering and sentiment analysis because it assumes conditional independence across 

characteristics given the class label. Naive Bayes works even when the independence 

requirement is violated because of its simplicity and quickness. In email filtering, text 

categorization, and medical diagnosis, Multinomial, Gaussian, and Bernoulli Naive 

Bayes are commonly used. Due to its resilience, accuracy, and feature significance in-

sights, the Random Forest Classifier is used in many fields. Its ensemble technique uses 

many decision trees to make it a powerful machine learning tool for classification and 

regression. A prominent binary classification method, logistic regression, employs the 

sigmoid function to transform data into a probability range between 0 and 1. Linear 

decision boundaries and interpretable coefficients make Logistic Regression useful for 
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spam detection and sickness diagnosis. When interpretability is required and the rela-

tionship between attributes and the target variable is linear, the model's computational 

efficiency and simplicity are excellent. A Feedforward Neural Network, or multilayer 

perceptron, is a basic deep learning architecture with input, hidden, and output layers. 

Neurons in each layer execute weighted summations, apply activation functions for 

non-linearity, and learn hierarchical input data representations via unidirectional flow. 

These universal function approximators excel in picture classification, natural language 

processing, and financial forecasts after backpropagation and weight and bias adjust-

ments. Their versatility to capture complex patterns and correlations makes them es-

sential to deep learning models. Feedforward neural networks offer several advantages 

over conventional machine learning (ML) algorithms, contributing to their widespread 

adoption in various applications.  Feedforward neural networks can automatically learn 

hierarchical representations of features in the data. Unlike conventional ML algorithms 

that may struggle with capturing complex relationships, neural networks excel at dis-

cerning intricate patterns and extracting relevant features at multiple levels. Neural net-

works, with their activation functions and multiple layers, can model non-linear rela-

tionships effectively. This enables them to handle complex mappings between input 

and output variables, surpassing the limitations of linear models often employed in con-

ventional ML algorithms.  

2 Literature Review 

Harsha Dinendra et al. [1] intended to provide a solution based on machine learning 

that could categorize emails that were not spam and highlight the relevance of these 

communications. A variety of machine learning models were developed and trained for 

use in the research by making use of non-spam emails taken from the personal inbox of 

the first author. Notable examples of algorithms that exhibited significant accuracy in-

cluded the DT, RF, and deep neural networks. This report summarized the outcomes 

that were produced as well as provided some insights into the modelling process. To 

find the best spam classification model, the authors in [2] tested NB, SVC and Random 

Forests. To maximize model performance, hyperparameters were tweaked. Classifier 

performance was assessed by accuracy, recall, and F1-score. The research produced a 

spam classification model tailored for email integration. Using automated spam filter-

ing increased email security and worker efficiency. The research also sought to improve 

NLP and ML methods for email spam classification. K. Iqbal et al.[3] applied several 

ML classifiers for spam classification and achieved good results. They applied SVM, 

KNN, RF and DT algorithms.   In [4], word embedding specifically, the pre-trained 

transformer model BERT was used to classify spam emails. Utilizing attention layers 

to incorporate text context, the fine-tuned BERT model achieved 99% accuracy and a 

98.67% F1 score in spam email detection. The outcomes were examined in comparison 

to a baseline DNN model that included k-NN and NB classifiers, a BiLSTM layer, and 

two stacked Dense layers. The model was trained and assessed for robustness and per-

sistence against unknown data using two public datasets. In [5], the authors applied 

different ML classifiers for email spam detection and achieved a good outcome. They 
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applied three algorithms namely logistic regression, SVM and Naïve Bayes. In [6], the 

authors suggested using ML models for cybersecurity issues, especially email spam 

classification.  

LSTM, CNN and General Neural Boards (GNB) are applied by authors in [7]. The well-

known open-source Spam dataset, categorized and forecasted using this algorithm, was 

comprised of about 6000 actual email samples. The models were evaluated and trained, 

and a comprehensive report on the research results was included in the publication. The 

CNN-LSTM model gave a remarkable prediction score of 98.78% on the spam dataset. 

The Deep Neural Network (DNN) and Min-hash collaborated to categorize emails into 

Spam and Ham, boasting an impressive accuracy rate of 98.2% [8]. The authors claimed 

combination worked as an outstanding system for spam detection and categorization, 

suggesting its implementation and potential for further enhancements. V. S. Vinitha et 

al. [9] applied deep learning RNN for email spam detection. As RNN is easily suitable 

with text datasets, the authors claimed that RNN provided a good detection rate for 

email spam classification. The RNN with several architectures tested and the model 

with a good detection rate was retained as the final model. The authors used several 

variations of RNN including LSTMs and GRUs for email spam classification. 

3 Proposed Model 

Classification and regression are the key examination regions in managed learning, and 

this strategy is now and again in building forecast models. It likewise lessens how much 

thinking is expected to track down suitable autonomous factors. 

 

3.1. Classifiers Using Machine Learning  Techniques 

Each sort of classifier utilized as an AI strategy can be evaluated as having a few pay 

and challenges in expectations; for instance, ANN enjoys the benefits of client active 

and casual to use for the utilization of the results. The enormous advantage of the ANN 

is to grow an unassuming and open calculation because of AI, which will convey a real 

arrangement conversely, with customary assessment methods. To put it plainly, we can 

say that ANN is flexible and is utilized for unique solicitations and issue arrangements. 

It is a multipurpose classifier [14]. It very well may be utilized for some applications 

and issues. Notwithstanding, the profits, of ANN likewise have a few downsides; for 

instance, it will become more slow with immense information that is ready for prepa-

ration [10]. Notwithstanding the above benefits of the strategy of the credulous Bayes 

classifier, we want a slight amount of preparing information, which will be restored 

into a legitimate order that can be handily applied with a high credit rate [12]. 

The proposed method for email spam classification is shown in Fig 1. Initially, an email 

spam dataset from Kaggle was collected. The dataset is verified for data preprocessing. 

After preprocessing the dataset, it has no missing values. After that, Several Machine 

Learning classification algorithms namely KNN, SVC, DT, NB, and RF applied to the 

final dataset. The results with ML models are tabulated. Later, a deep learning Feed 

Forward Neural Network model was proposed for email spam detection. The 
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performance of all applied ML and DL models compared and best model was used for 

email spam classification.       

 

 

Fig. 1. Proposed Model 

4 Results and Discussion 

Data assortment  
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The dataset is checked for missing values. There are no missing values in the dataset. 

So, there is no need to apply preprocessing techniques. The dataset contains 3000 fea-

tures. As the actual dataset is a text dataset, it is already applied with the bag of words 

model. So, all the words in the actual dataset are 3000, which are represented as col-

umns in the dataset. The attribute values of the dataset are numbers indicating several 

times the word appeared in the whole email dataset. The number of positive and nega-

tive samples in the dataset is shown in Fig.2. There total of 5,172 samples in the dataset, 

where 3,672 positive samples and 1500 negative samples.  

 
Fig 2. Number of positive and negative samples in the dataset 

 

Applying ML Algorithms classifies applied the dataset. Six methos applied namely K-

NN, SVC, DTC, NBC, RFC and LGC. The results achieved with these algorithms are 

shown in Table 1.   

 

Table 1. Result  of ML Algorithms 

Alg(Classifier) Precision Recall F1-score Accuracy 

KNN-C 0.83 0.85 0,84 85.7 

SV-C 83 85 84 80.3 

DT-C 82 69 72 93.04 

RF-C 92 91 92 96.9 

NB-C 96 96 96 94.02 

LR-C 92 94 93 96.32 

 

Fig 3 shows precision, recall and accuracy values for all six algorithms. Fig 4 shows 

the accuracy values obtained with the proposed six algorithms. 
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Fig 3. Precision, Recall,f1-score of ML Algorithms 

 
Fig 4. Accuracy of ML Algorithms 

From Figure 3, it is observed that, among six applied algorithms, Random Forest gives 

the highest accuracy with an accuracy value of 96.9%. From the Figure, it is observed 

that the precision, recall and f1-score recall values are also 96% which is good for the 

random forest. The next better classifier is logistic regression with an accuracy of 

96.32%. The precision, recall and f1-score for logistic regression are 92%, 94% and 

93% respectively. Next, Decision Tree and Naïve Bayes also gave reasonable accura-

cies with values of 93% and 94%. The remaining classifiers' accuracy is less than 90% 

only. After experimenting with ML classifiers, it is observed that RF and Logistic Re-

gression are the best classifiers for email spam classification.  The best accuracy 

achieved with ML classifiers is 96.9% with RF. To increase the performance, a deep 

learning FFNN was applied. The FFNN model contains five hidden layers. The neurons 

in the hidden layers are 1000,700,500,200 and 100. The number epochs in the model is 

50.  The accuracy achieved with FFNN is 98.3%. The comparison of best ML classifiers 

(RF, LR) and FFNN is shown in Fig.5. 
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Fig 5. Accuracy Comparison between RF and ANN 

5 CONCLUSION 

In this paper, an email spam detection model was proposed based on ML and FFNN 

techniques. A dataset with email spam data was collected from the Kaggle repository.  

After verifying the cleanliness of the dataset, ML algorithms namely, KNN, SVC, DT, 

NB, RF and Logistic Regression applied. Among six applied ML models, Random For-

est given the highest accuracy of 96.9%. Later, logistic regression gave a good accuracy 

of 96.4%. Later, a deep learning Feed Forward Neural Network (FFNN) was applied. 

The accuracy acquired with FFNN was 98.3%, which is higher than Random Forest. 

The outcomes exposed that the proposed FFNN performed well for email spam classi-

fication. 
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