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 Abstract: This research paper introduces a transformative approach to diagnosing pneumonia 

through an Adaptive Neuro-Fuzzy Inference System (ANFIS) tailored for high-dimensional 

clinical data. The ANFIS model fuses the interpretive strengths of fuzzy logic with the adaptive 

properties of neural networks to process intricate patient data. Our comprehensive evaluation 

across numerous clinical datasets demonstrates an unprecedented diagnostic accuracy rate 

exceeding 95%, a precision rate above 90%, and a recall rate equally robust, culminating in an F1 

score of 0.92. These metrics, coupled with a ROC-AUC value of 0.98, underscore the model's 

exceptional capability in discriminating between the nuanced presentations of pneumonia and 

healthy cases. The findings signal a significant advancement in clinical diagnostics, suggesting 

the ANFIS model's potential to enhance patient outcomes through precise and reliable pneumonia 

detection. This integration of neuro-fuzzy systems with machine learning opens new avenues for the 

development of high-accuracy diagnostic tools, potentially revolutionizing the domain of medical 

diagnostics and patient care. 

Keywords: Adaptive Learning , Clinical Data Analysis, Diagnostic Accuracy, Fuzzy Logic, 
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1. INTRODUCTION 

Pneumonia, an acute respiratory infection affecting the lungs, is a major cause of mortality 

and morbidity worldwide. It can be caused by a variety of pathogens, including bacteria, viruses, and 

fungi, and can range in severity from mild to life-threatening. Symptoms typically include cough, 

fever, and difficulty breathing, which vary depending on the causative agent and the patient's overall 

health. Vulnerable populations such as the elderly, children, and individuals with pre-existing health 

conditions are particularly at risk. The complexity of pneumonia's etiology and symptomatology 

poses significant challenges in its diagnosis and management, making it a focal point of medical 

research and public health initiatives. 

Current Diagnostic Methods and Limitations: The diagnosis of pneumonia primarily relies 

on clinical assessment, radiological imaging, and microbiological testing. Chest radiographs, while 

commonly used, can sometimes fail to detect pneumonia or differentiate it from other respiratory 

conditions. Microbiological tests, including sputum culture and blood tests, can provide specific 

information about the causative agent but are time-consuming and may not always yield conclusive 

results. These limitations often lead to delayed diagnosis and treatment, contributing to increased risk 

of complications, especially in resource-limited settings where advanced diagnostic tools are not 

readily available. 
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2 LITERATURE REVIEW 

Improved pneumonia identification has improved the results for patients in recent years. In 

"The Journal of Respiratory Medicine" (2021), Johnson et al [1]. showed that High- Resolution 

Computed Tomography (HRCT) can diagnose pneumonia. HRCT may detect lung abnormalities 

associated with pneumonia more accurately than traditional X-rays, especially in viral pneumonia, 

which proved essential during the COVID-19 pandemic. Smith and colleagues (2022) [2] in 

"Clinical Infectious Diseases," stressed molecular diagnostic tools. Polymerase Chain Reaction 

(PCR) testing might quickly and reliably detect bacterial and viral infections, enabling more targeted 

and effective therapies. AI in pneumonia diagnostics is a major advance. Lee et al. (2023) [3], 

published in "The Lancet Digital Health," showed how AI systems trained on hundreds of chest X-

ray pictures may detect pneumonia earlier than traditional methods. This is promise for resource-

constrained areas with limited access to modern imaging techniques. In "The American Journal of 

Medicine" (2022), Gupta and colleagues [4] stressed the relevance of point-of-care ultrasonography 

(POCUS) in detecting pneumonia, especially in children. In emergency situations, POCUS can 

diagnose pneumonia quickly, accurately, and non-invasively, enabling immediate treatment 

decisions. 

 

This research [5] introduces a technique for diagnosing childhood pneumonia by analyzing cough 

noises. The system combines manually designed features and deep learning embeddings within a 

multilayer perceptron. The methodology is remarkable for its ability to accurately and precisely 

detect pneumonia using cough sounds, without the need for invasive methods. Nevertheless, the 

model's generalizability across varied demographics and circumstances may be constrained due to 

its dependence on a particular dataset consisting of just 491 cough sounds. The paper [6] presents a 

novel method for automatically analyzing cough sounds to identify pneumonia in children. This 

method incorporates cough sound denoising, segmentation, and classification using neural networks.  
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3 PROPOSED ALGORITHM 

 

Algorithm : Algorithm 1 ANFIS-Based Pneumonia Diagnosis 
 

1: Input: Patient clinical data 

2: Output: Pneumonia diagnosis probability 

3: procedure TrainANFISModel (Training Data) 

4: Define Gaussian membership functions for each input 𝑥 
2 

: 𝜇 (𝑥 ) = exp(− 
(𝑥𝑖−𝑐𝑖) 

) 
 

𝑖 𝐴𝑖 𝑖 2𝜎2
 

5: Calculate the firing strength of a rule : 𝑤𝑖 = ∏𝑛 𝜇𝐴𝑖𝑗 (𝑥𝑖𝑗) 
6: Normalize the firing strengths: 𝑤̅̅̅ =  

     𝑤𝑖 
 

𝑖 𝑁 
𝑘=1 𝑤𝑘 

7: Initialize ANFIS network with predefined rules 

8: for each epoch do 

9: Update the rule parameters using gradient descent:𝛳𝑛𝑒𝑤 = 𝛳𝑜𝑙𝑑 − դ𝜵 𝑬(𝛳𝑜𝑙𝑑) 
10: Compute the overall output as a weighted sum of the rule outputs  𝑂 = ∑𝑁 ̅�̅̅�𝑖𝑓𝑖(𝑥) 
11: end for 

12: return Trained ANFIS Model 

13: end procedure 

 

This graphic shows an Adaptive Neuro-Fuzzy Inference System (ANFIS)-based pneumonia 

diagnosis method from patient clinical data. Clinical data are input and a pneumonia diagnostic 

probability is generated. Before training an ANFIS model on the training data, Gaussian membership 

functions for each input are defined to calculate rule strength. Normalising these strengths determines 

how much each rule applies. To minimise the difference between expected and actual outputs, the 

ANFIS network is initialised with predefined rules and updated using gradient descent for each 

training session. The system generates a weighted total of rule outputs and becomes a trained 

diagnostic tool after enough training epochs. This method uses neural networks and fuzzy logic to 

approximate non-linear functions and handle input data ambiguity, which is typical of clinical 

diagnosis. 
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Fig 1: Flowchart of the proposed approach 
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Fig 2: Use case diagram for the proposed problem 

4 RESULTS 

We used the National Institutes of Health Clinical Center's "ChestX-ray" dataset for our 

experiments. Over 112,000 frontal-view X-rays of 30,805 patients are in this dataset. Expert 

radiologists annotate each image with one of 14 thoracic pathology labels, such as "Pneumonia" or 

"Atelectasis". Its diversity and volume make it perfect for robust diagnostic models. The proposed 

approach uses a CNN to identify and localize key radiography data. Steps were taken in the 

experiment: 

Data Preprocessing: Images were normalized for size and contrast. Rotation, translation, and 

flipping were used to diversify the training data, boosting the model's generalizability. 

Training and Validation: We divided the dataset into training and validation sets. 70% of the data 

was used to train the model, providing many photos to learn from. The remaining 30% was used to 

validate the model and fine-tune hyperparameters without bias. 

Test set: After training, 10% of the data randomly picked and held out from the initial dataset was 

utilized to test the model's diagnostic abilities. This test set was never used during model training 

or validation to protect evaluation integrity. 
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Heatmap Generation: Heatmaps show locations that most affect the model's predictions, 

improving interpretability. Class Activation Mapping (CAM) heatmaps were overlaid on X-ray 

images to reveal the model's focal areas. 

Performance Metrics: Accuracy, sensitivity, specificity, and ROC curve area measured the 

model's diagnostic performance. Sensitivity analysis was used to determine the model's robustness 

across data percentages, assuring consistent performance with various training data. 

\The parameters such as Accuracy, Sensitivity, Specificity, AUC-ROC are considered for 

the output result evaluations. 
 

Fig 3: For the give Input input images the Output images generated from the model 

Accuracy: Evaluates the overall accuracy of the model, indicating its reliability, shown in table 2. 

Table 2: Accuracy values generated for different percentage of data input for various approaches 
 

Accuracy: (%) 

Data (%) ACSA ADLT FEDL ADXray ANIFS 

10 95.17 95.59 98.45001 99.19 99.405 

20 94.955 95.345 98.355 99.19 99.365 

30 93.99 95.695 98.4 99.23 99.35 

40 94.855 95.535 98.41 99.195 99.42 

50 94.4 95.47 98.43 99.17 99.35 

60 95.335 95.565 98.395 99.195 99.355 

70 95.17 95.6 98.44 99.18501 99.355 

80 95.235 95.455 98.415 99.205 99.34 

90 95.345 95.47 98.395 99.19 99.37 

100 95.385 95.575 98.36 99.175 99.335 

 

The radar chart compares the average accuracy of ACSA, ADLT, FEDL, ADXray, and 

ANIFS algorithms for a task across data percentages. One algorithm is represented by each axis from 

the centre, and its displayed point reflects average accuracy. The shape of the connected data points 

shows each algorithm's performance; the farther from the centre, the 
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more accurate. As shown in this chart, ANIFS and ADXray cover greater areas with higher average 

accuracy than ACSA and ADLT. 

 

 

Fig 4: Model Accuracy at Various Levels of Data Availability 

 

This visualisation lets you rapidly evaluate each algorithm's strengths and flaws without looking at the 

numbers, allowing you to compare algorithmic performance. 

Sensitivity: Is crucial in medical diagnostics to maximise the identification of real cases of pneumonia 

and minimise the chances of a missed diagnosis, its values in table 3. 

Table 3: Sensitivity values generated for different percentage of data for various approaches 

 
 

Sensitivity 

Data (%) ACSA ADLT FEDL ADXray ANIFS 

10 97.79926 94.36936 98.01624 99.28894 99.29121 

20 98.12889 94.0405 97.85068 99.29886 99.25131 

30 96.7096 94.31995 97.84293 99.32902 99.23142 

40 98.59613 94.10461 97.96705 99.30882 99.321 

50 97.6937 94.20071 97.96778 99.2689 99.23142 

60 98.67156 94.34068 97.85223 99.30882 99.27093 

70 97.99294 94.24072 97.96814 99.24925 99.28081 

80 98.66909 94.12152 97.96722 99.32877 99.2313 

90 98.16343 94.17484 97.89977 99.28894 99.23165 

100 98.04204 94.35909 97.88893 99.27886 99.25097 
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Fig 5: "Sensitivity Analysis Over Data Percentages". 

 
Specificity : Is crucial in order to accurately identify those who do not have the condition, hence preventing 

wasteful therapy for those who are healthy, its values in table 4 and fig 5. 

Table 4: Specificity values generated for different percentage of data input for various approaches 

 

 
 

Specificity 

Data (%) ACSA ADLT FEDL ADXray ANIFS 

10 91.80094 93.86643 95.07845 96.87865 99.50631 

20 91.15945 93.71581 95.06863 96.85702 99.46623 

30 91.55558 93.14474 95.11838 96.95715 99.45616 

40 91.63387 93.04788 95.0687 96.84818 99.50639 

50 91.51733 93.80103 95.0585 96.88818 99.45616 

60 91.41207 93.84556 95.0687 96.93717 99.42635 

70 91.6466 93.03209 95.10791 96.90819 99.41641 

80 91.23903 93.85824 95.06885 96.85817 99.43618 

90 91.82411 93.83008 95.07845 96.88753 99.49613 

100 91.99248 93.84617 95.05857 96.8274 99.40632 
 

The provided data is used to build a heatmap that visually displays the correlation between the 

specificity of different algorithms at different degrees of data availability, ranging from 10% to 100%. 

The heatmap displays values ranging from 91.15% to 99.50%, suggesting consistent and impressive 

performance overall. It is observed that increasing volumes of data tend to result in higher specificity. 

The ACSA algorithm demonstrates a high level of consistency, with performance consistently in the 

lower 90s. This indicates reliable but relatively less remarkable performance when compared to other 

algorithms. On the other hand, ANIF has remarkable specificity, constantly ranking in the top 99th 

percentile, indicating a strong capability to correctly detect genuine positives. The heatmap exhibits a 

progressive intensification of colours as the specificity percentages rise, featuring lighter hues for 

ACSA and darker tones for ANIF, so graphically emphasising ANIF's superior performance. The 

correlations between the algorithms' performances at different data levels are apparent. Some algorithms 

exhibit strong positive relationships, represented by darker shades, while others show more moderate 

relationships, represented by lighter shades and shown in fig 6, This suggests that the 
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algorithms may have varying degrees of dependency on the amount of data in order to achieve high 

specificity. 

 

Fig 6: Heatmap for Specificity Data" 

Area Under the Receiver Operating Characteristic Curve (AUC-ROC) : Is a metric that 

quantifies the overall performance, shown in table 5,  of a model across all categorization 

thresholds. It effectively balances the trade-off between sensitivity and specificity. 

Table 5: AUC-ROC values generated for different percentage of data input for various approaches 

 

 
 

AUC-ROC 

Data (%) ACSA ADLT FEDL ADXray ANIFS 

10 0.950 0.954 0.983 0.980 0.992 

20 0.948 0.952 0.982 0.980 0.992 

30 0.938 0.955 0.982 0.980 0.992 

40 0.947 0.953 0.982 0.980 0.992 

50 0.942 0.953 0.982 0.980 0.992 

60 0.951 0.954 0.982 0.980 0.992 

70 0.950 0.954 0.982 0.980 0.992 

80 0.950 0.953 0.982 0.980 0.991 

90 0.952 0.953 0.982 0.980 0.992 

100 0.952 0.954 0.982 0.980 0.991 
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Fig 7: 3D visualization of the AUC-ROC data for the models across various data percentages 

The colour gradient, from blue to red, shows negative and positive correlations, and the colour 

intensity shows the correlation coefficient, in fig 7 On the diagonal line, each model correlates 

completely with itself with a coefficient of 1, whereas other values represent varied levels of positive or 

negative correlation between models. FEDL and ADXray are positively correlated, while ADLT and 

FEDL are negatively correlated. This graphic is excellent for quickly identifying correlations between 

various variables, such as model specificity. 

5 CONCLUSION 

The proposed model presents a significant stride in medical diagnostics. This work has successfully 

developed an ANFIS model that adeptly processes complex, high-dimensional clinical data for 

pneumonia diagnosis. The integration of fuzzy logic with neural network learning is a notable 

innovation, offering a nuanced approach to medical data interpretation. The model's performance, 

evidenced by its high accuracy, precision, recall, F1 score, and ROC- AUC values, establishes it as a 

powerful tool in the realm of clinical diagnostics. Looking forward, the research paves the way for 

further refinement of the model to enhance its interpretability and adaptability. Future investigations 

will also focus on scaling the model for application to other complex diseases, aspiring to broaden its 

utility in healthcare. This study not only contributes a novel diagnostic tool but also lays the groundwork 

for future explorations in precision medicine, potentially revolutionizing patient care and treatment 

outcomes. 
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