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Abstract. The field of drug discovery and development has witnessed a 

transformative change during the previous few years with  application in 

artificial intelligence and ML techniques. Among these, Variational 

Autoencoders (VAEs) have emerged promising instrument for the generative 

designing of drug molecules. In relation to drugs discovery, VAEs have been 

employed to encode and decode chemical structures, facilitating the generation 

of drug molecules. This is achieved through the encoding of chemical 

configurations into an uninterrupted latent space, where the generative capacity 

of the model can be harnessed to create diverse and potentially 

pharmacologically relevant compounds. Key components of this approach 

include the representation of molecules as graphs or SMILES (Simplified 

Molecular Input Line Entry System) strings, In development of specialized loss 

functions to optimize characteristics of molecules, and the investigating the 

latent space to produce molecules with desired characteristics. Hence, In this 

project, we build compounds for drug discovery using a variational 

autoencoder.  
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1 Introduction 

In previous cases, A notable in the application of deep learning techniques in 

cheminformatics. Despite the fact that generative models in de novo drug creation has 

had a significantly greater impact, the utilization of DL techniques to swap out con-

ventional  machine learning techniques has had a considerable influence. Drug 

discov-ery is a field that seeks innovative medicinal molecules to solve complicated 

health concerns by combining cutting-edge science and computational innovation. 

Tradi-tional drug discovery involves a lengthy and resource-intensive process of 

screening chemical compounds to identify potential therapeutic agents. In recent 

years, a break-through method to drug molecule generation has evolved, harnessing 

the capabilities of generative models, particularly Variational Autoencoders (VAEs). 
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Even though the original purpose of this kind of model was unsupervised learning, [1] 

[2] For both supervised and semi-supervised learning, its efficacy has been 

demonstrated [3][4]. 

                  
 

Fig. 1. General Structure of variational Autoencoder 
 

A variational autoencoder is a model that produces a noise distribution similar to the 
prior one. These models are often trained using the expectation-maximization meta-

algorithm. Such a technique is usually unmanageable, requiring the discovery of 

variational posteriors, or q-distributions, in order to maximize a lower constraint on 

the data probability. Usually, for each every data point, these q-distributions are 

parameterized in a separate optimization process. Conversely, variational 

autoencoders use an amortized NN approach to cooperatively optimize over data 

points. Using the real data points as input, the neural network creates parameters for 

the variational distribution. 

 

 

 

 

 

 

Fig. 2. Architecture of VAE 

The architecture shown in Fig. 2 is designed to learn both the posterior of a proba-

bilistic generative model, or encoder, and the model itself. We designate the continu-
ous latent variable as z and the observation as x. The likelihood pθ(x|z), where θ is the 

learnable parameter, is used by the decoder to model the probabilistic generating pro-

cess of x given z. To approximate the posterior, the encoder utilizes a model qφ(z|x) 

characterized by φ.Both the encoder and the decoder are concurrently learned by rais-

ing the evidence lower bound (ELBO) of the marginal likelihood: 

 

ELBO(φ,θ) = Eqφ(z|x) logpθ (x|z) − KL qφ(z|x)||p (z) 
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where the Kullback-Leibler (KL) divergence is denoted by KL, and the differential 

parameters are θ and φ. Gradient ascending can be used to enhance the evidence 

lower bound. 

VAEs have a number of advantages. They can produce new data points from the 

learnt latent space distribution, which enables generative modeling. Additionally, they 

enable continuous representations of latent spaces, which enables us to create new 

data points by interpolating between various latent space points. Finally, because the 

probabilistic encoding motivates the model to provide a more reliable data 

representation,VAEs are less prone to overfitting than typical autoencoders. 

2 Literature Survey 

Based on DL, tactics have been created to address the drawbacks of earlier 

approaches as a result; the DL algorithms have become more popular in recent years. 

In order we express atomic information, the majority of existing techniques use deep 

networks to learn how to represent chemical properties and create the connection 

between atoms.   

In 2020, ChengxiZang, Fei Wang , proposed MoFlow- a molecular graph-generating 

invertible flow model. Molecular graphs and their latent representations can be 

learned to map invertibly via flow, according to the graph generative model MoFlow. 
Our MoFlow uses a new graph flow to create atoms (nodes) with bonds,uses a 

posthoc validity correction to put them  together into a molecular graph that is valid 

chemically,and first uses Glow-based model to construct bonds (edges).  

  

In 2018, Rafael Gómez-Bombarelli, Jennifer N. Wei ,suggested the model outlined in 

the publication. He uses continuous, Data-driven molecular representation, automatic 

chemical design creates novel molecules by effectively exploring the open-ended 

areas within chemical compounds. Three parts make up the model: the encoder, 

decoder, and predictor. A molecule's discrete representation is transformed The 

encoder con-verts the input data into a continuous real-valued vector, which is 

subsequently con-verted returning to discrete models of molecules by decoder. Based 

on the molecule's latent continuous vector representation, the Predictor makes 

chemical property esti-mates. Gradient-based optimization can effectively direct the 

search for optimal func-tional molecules when continuous representations are used. 

 
 

  
Table 1. Researchers Evolutions on different models Descriptions 

 
S.No.  Paper Source Dataset  Model  Result  

1.            [6]  Zinc dataset   MOFLOW  Moflow find the similar 

molecules and property 

improvement.  

2.            [7]  Zinc dataset    

LSTM,Cycle GAN  

Our LA-CycleGAN model 

achieved 0.62 in 

replicating the optimal 

LogP distribution for the 

collection of Aliphatic 

Rings when compared to 
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Mol-CycleGAN. Both the 

overall molecular weight 

and the overall Mol-

Weight have increased. 

3.                [8]  KEGG, DrugBank,  

SuperTarget dataset  

CCGVAE The model enhances 

CGVAE in both datasets; 

in particular, the 

reconstruction job 

performs better when the 

histogram of valences is 

used. 

4.  [9]  QM9 dataset,PDB 

bind dataset   

Scalable Quantum 

Generative 

Autoencoder  

Following learning, 

including classical and 

quantum AEs.More precise 

reconstruction is achieved 

by avoiding a longer 

learning period through the 

inefficiency of quantum 

circuit simulation. 

5.                 [10]  CHEMBL,ZINC,  

MOSES dataset  

RNN   MolecularRNN learns 

diverse distributions 

through unsupervised 

pretraining, generating 

98% valid molecules in 

inference. 

6.               [11]    

  Qm9 chemical 

dataset  

  

MolGAN 

Despite having a 90% 

novelty score, 

CharacterVAE performs 

poorly in terms of validity. 

Conversely, MolGAN has 

good marks for both 

originality and validity. 

7.  [12]  QM9,CHEMBL  

dataset  

LSTM,GuacaMol  

Benchmark baselines  

Overall, this model 

performs better than 

standard graph-based 

techniques.  Utilize 

GuacaMol's distribution-

learning metrics to assess 

the model, including 

validity, novelty, 

uniqueness, KL-

divergence47, and Fréchet 

ChemNet Distance48 

scores.   

8.  [13]    

CHEMBL dataset  

  

Latent GAN  

  

The percentage of 

LatentGAN-generated 

targets that were 

anticipated to be active for 

EGFR, HTR1A, and 

S1PR1 was 71%, 71%, and 

44%, respectively.  
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9.                [14]  

 

ZINC dataset     AE When training alongside a 

property prediction task, 

the autoencoder 

demonstrated strong 

predictive power and the 

capacity to optimize 

molecules gradient-wise in 

the resulting smoothed 

latent space. 

10.                  [15]  

 

  

 MNIST and Frey 

Face datasets3  

  

Variational 

Bayes,SGVB 

 A novel estimator of the 

variational lower bound, 

Stochastic Gradient VB 

(SGVB), for efficient 

approximate inference 

with continuous latent 

variables 

 

3 Methodology 

We build the pharmacological compounds in this study using variational autoencod-

er.To ensure that the latent space has favourable qualities that support the generative 

process and to avoid over fitting, an autoencoder whose training is regularized is 

called a variational  autoencoder. The goal of a variational autoencoder, like a 

standard autoencoder, lowers the amount of reconstruction error that exists in between 

encoded-decoded data, original data.  

 

It has an encoder and a decoder built into its architecture. To integrate this, however, 

we do tweak the encoding-decoding process somewhat after the latent space has been 
regularized. In particular, we represent an input not as a single point but as a distribu-

tion throughout the la-tent space. The molecule's feature matrix and graph adjacency 

matrix are fed into the encoder. The attributes z_mean and log_var, which describe the 

molecule's latent-space representation, are first processed by a convolution layer 

before being compressed and managed by several dense layers. 

 

3.1 Graph Convolution layer:  

Neighborhood aggregations with non-linear modifications are implemented using the 

relational graph convolution layer. The following are these layers: 

          A_hat * H_hat**(l+1) * W**(l) * D_hat**(-1) = σ(H_hat**(l+1)) 
In the case of the inverse di-agonal of A, the degree tensor is D_hat** (-1). A_hat, 

W_hat**(l) represents the trainable weight tensor at the l-th layer, and σ indicates the 

non-linear transformation (typically a ReLU activation,For any bond type (relation), 

the degree tensor expresses precisely how many bonds are connected to each atom in 

the diagonal. 

Upon receiving a latent-space representation as input, the Decoder forecasts the 

feature matrix and graph adjacency matrix of the pertinent molecules. 
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Fig. 3.  Illustration of an variational autoencoder with its loss function.Data Security Measures 

This model optimizes 4 losses during training: graph loss, KL divergence loss, loss in 

property prediction, and categorical crossentropy. 

 

The accuracy of the model and reconstruction is evaluated by the loss function for 
categorical cross-entropy. Root MSE discrepancy between the real and anticipated 

features is computed by the feature prediction loss after the latent representation has 

been run through the feature prediction model. Model feature prediction is optimized 

with the usage of binary cross entropy. The model and characteristic (QED) prediction 

also have an impact on the gradient penalty. The gradient cross model of the original 

neural network is improved by the gradient penalty, which is a soft 1-Lipschitz 

continuity this gives the loss function more regularity. Our model would be inferred to 

predict across random latent space, and we would attempt to produce 100 new le-

gitimate molecules. 

4 Results and Discussions  

            SMILES logP Qed SAS 
 

COc1ccc(C(=O)N(C)[C@@H](C)C/C(N)=N/O)cc1
O 
 

0.9978 
 

0.327297 
 

2.852316 
 

C[C@@H]1CC(Nc2cncc(-
c3nncn3C)c2)C[C@@H](C)C1 
 

3.1137   

0.928975 3.432004 

N#CC1=C(SCC(=O)Nc2cccc(Cl)c2)N=C([O-
])[C@H](C#N)C12CCCCC2 
 

3.60956 
 

0.789027 
 

4.035182 
 

CCOC(=O)[C@@H]1CCCN(C(=O)c2nc(-
c3ccc(C)cc3)n3c2CCCCC3)C1 
 

4.00022 
 

0.690944 
 

0.690944 
 

CC[NH+](CC)[C@](C)(CC)[C@H](O)c1cscc1Br 
 

2.6374 
 

0.824369 
 

5.091438 
 

CC(C)(C)c1ccc2occ(CC(=O)Nc3ccccc3F)c2
c1 

 

5.0506 0.702012 2.084095 
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For virtual screening, we utilize the ZINC dataset, a publicly available database of 

pharmaceuticals..  Data set contains chemical formulas in SMILES representation in 

conjunction with pertinent chemical measures, including QED (Qualitative Estimate 

of Drug-likeness), SAS (Synthetic Accessibility Score), and logP (Water–Octanal 

Partition Coefficient).training on the Zinc 250K dataset, which contains 250,000 mol-

ecules similar to drugs, in that order. A random subset of 1000 ZINC 250K was used 

to train a VAE.  

 

 

Fig. 4. Legitimate molecules from various locations in the latent space 

 

The above Fig. 4 creates new, legitimate molecules from various locations in the 

latent space. The model's parameters are changed during training in order to minimize 

a loss function. The difference between the target values in the training data and ex-

pected output can be computed by loss function. Reducing  this discrepancy shows 

that the model is picking up the ability to make precise predictions from the training 

set. 
 

 
Fig. 5. The training and validation loss 
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The above Fig. 5 display the training and validation loss. Goal of our model is to 

generalize successfully to new, previously unknown data. To ensure this, the model's 

performance is assessed against a validation set that it has never seen before. The 

validation loss is derived using the same loss function as the prediction loss, but it is 

applied to the validation set's predictions. A lower validation loss means that the 

model is not overfitting to the training data, implying higher generalization 

performance. 

 
 

 
 

 

 
 

                            Fig. 6.  Molecular property-related latent space clusters                                          

                                

 

The above Fig. 6 show molecular property-related latent space clusters (SAS).The 

latent space is a compressed representation of the input features that is anticipated to 

capture crucial SAS-related qualities. Each point in the latent space reflects a distinct 

encoding of the synthetic accessibility of a chemical. 

5 Conclusion 

Over several decades, de novo drug design has evolved. Techniques based on both 
structure and ligand  have made substantial progress. In this paper, we propose a 

Molecule Generation of Drugs using VAE. Due to the characteristics of SMILES 

strings, VAE-based architecture frequently are very good Potential SMILES candi-

dates creation utilizing char-by-char. The VAE alone generative models are capable of 

producing chemically valid SMILES strings once they have learned the SMILES 

syntax. Designing compounds with desired molecular characteristics is critical in drug 

discovery. To produce this biased molecular design, four optimization methodologies 

are used. A tiny dataset with specific desirable qualities is utilized to fine-tune . This 

overarching structure for producing molecules that are prejudiced clearly relies on a 

limited amount of well-known labeled data. Four tasks are used to validate this 

model: property optimization, constrained property optimization, display of the 
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continuous latent space, and production and reconstruction of molecular graphs. This 

technique enables a novel type of guided gradient-based chemical space search.  
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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