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Abstract. — To maintain future supplies of clean drinking water, it is necessary 

to assess the state and degree of contamination in current groundwater. Predict-

ing water quality properly is critical for reducing pollution and improving water 

management. This research offers a deep learning (DL)-based algorithm for 

predicting groundwater quality. To calculate the entropy weight-based ground-

water quality index (EWQI), 200 groundwater samples are gathered from the 

research region, which is mostly utilized for agriculture in Krishna district, An-

dhra Pradesh, India. A variety of physicochemical characteristics are assessed 

in these samples. A set of five error metrics were created for assessing the per-

formance of the model. The results show that the DL model, is working well 

with R2value of 0.996. It was shown that the most realistic and accurate method 

for predicting groundwater quality was the DL model. 
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1 Introduction 

Groundwater is not only an important supply of potable drinking water in many na-

tions, but it also supplies a large amount of the water needed for domestic and agricul-

tural use. Over the past few decades, there has been a massive decline in groundwater 

quality due to factors such as population development, urbanization, improper chemi-

cal fertilizer use, climate change, and inadequate management of water resources. 

Nevertheless, because there are no substitute sources of groundwater, Even if the 

quality of the groundwater is declining, people nevertheless utilize it for drinking in 

many parts of the world. Globally, there is a serious shortage of groundwater, a 

freshwater resource and essential component of the hydrological cycle [1]. 

        Determining the quality of drinking water is so crucial in the modern world. 

Numerous studies have evaluated surface and groundwater quality for human use 

using the subjective technique known as the water quality index (WQI). The main 

drawback of this subjective evaluation method is that the experts who set the parame-

ter weights for calculating the score of WQI have to account for ambiguity in the 

result. 

However, assessing the quality of groundwater subjectively yields unrepresentative 

results.  On the other hand, because they take into account local fluctuations in a da-

taset throughout the computing process, Techniques based on an objective weighing 

system are more reliable [2]. Several studies have also employed objective weighting 

systems based on statistical data analysis to avoid making errors in judgment as a 

result of an insufficient set of realistic weights in an assessment of the water quality.  

This has produced a more dependable result. By giving entropy-based weights to 

physicochemical factors,  

A few researchers made an effort to lessen the usual WQI method's subjectivity. 

This shown that the subjective weighting approach is not as accurate or reliable as the 

objective-weighting system, or EWQI. As a result, it is imperative to improve the 

process of evaluating the quality of the water by employing an unbiased tool with a 

decision-making capacity that is both reliable and flexible [3]. 

        However, there are a number of difficulties in assessing the quality of water, 

including large-scale sample collection, testing, and data handling. These jobs need a 

significant investment of time and money for labor, supplies, and equipment. Moreo-

ver, it requires a great deal of time and work to calculate quality indices. The financial 

value losses connected to using traditional techniques to assess water quality have an 

influence on decision-making on management plans for water quality. Consequently, 

a workable and affordable plan for the rapid and precise testing of quality of water 

needs to be implemented in order to solve these issues. In this case, use of Deep learn-

ing (DL) models gives us an efficient and trustworthy way to assess the ground water 

quality [4]. 

Machine learning is a versatile, strong, and promising method in all fields of sci-

ence. In several water research projects around the world, researchers have employed 

random forests (RF), eXtreme Gradient Boosting (XGBoost), and artificial neural 

networks (ANN) as machine learning (ML) techniques. Several researchers have es-

timated water quality, located pollution sources in the water supply network, forecast-
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ed manganese (Mn) removal, and examined flood susceptibility using the RF model. 

Similarly, the XGBoost model was used to forecast lead (Pb) levels, biological water 

quality monitoring, and water quality parameters with different levels of accuracy.. 

Numerous studies, including those on water level forecasting, flood vulnerability, 

heavy metal pollution prediction, and wastewater heavy metal treatment, have made 

substantial use of ANN-based prediction models [5]. In addition to the research de-

scribed above, a large number of studies have been undertaken over the last decade to 

forecast WQI by testing the performance of various ML models. 

Researchers were able to estimate river WQI with 95% R2 accuracy by utilizing 

the ANN model. A support vector regression technique based on swarm optimization 

was used to predict WQI. Certain publications compared the standard back-

propagation (BP) model to the BP model based on artificial bee colonies. The most 

reliable ANN model for WQI prediction was established utilising a cascade forward 

network. In a different research, machine learning methods were used to assess the 

same. The most effective models were the multilayer perception model for classifica-

tion, gradient boosting combined with polynomial regression, and regression models 

like these. Additionally, WQI prediction models utilizing four traditional ML tech-

niques and twelve hybrid machine learning approaches were provided. In every one of 

these studies, hybrid machine learning models outperformed traditional models in 

terms of prediction accuracy [6]. 

From the review of literature it is evident that most of the earlier studies concen-

trated on developing models for predicting water quality that took into account the 

conventional subjective weight-based WQI, which takes into account individual eval-

uations when deciding how much weight to assign the quality criterion. Therefore, a 

helpful computational technique for forecasting water quality in any place will be the 

objective based weighting model [7]. Traditional WQI loses important information 

about a place's water quality since it places greater weight on characteristics selected 

based on expert opinions or assessments. EWQI, on the other hand, is advancement 

above conventional WQI. 

Additionally, performing normal WQI calculations takes a lot of effort and time. 

The current study applied the ground water quality prediction modeling. In this model 

EWQI is used DL technique also adopted [8].  The DL technique has garnered a lot of 

attention lately because to its capacity to assess nonlinear correlations and dataset 

complexity. This machine learning technique's disregard for specific properties that 

are more representative than those required by traditional machine learning methods 

is the main factor in its performance.   

The model's success is mostly dependent on the proper feature selection; therefore 

it might be difficult and time-consuming to remove attributes that are not useful for 

the algorithm. The DL technique, on the other hand, uses feature learning as a self-

deterministic method to identify the necessary representation for a specific job. It is 

well-suited for processing multi-dimensional inputs due to its additional complex 

topologies, robust learning capacity, significant flexibility in model configuration, and 

higher generalization capabilities.[9] 
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A few recent research have demonstrated the efficacy of deep learning algorithms 

in forecasting soil moisture content, flash flood vulnerability, heavy metal contamina-

tion of groundwater [10]. Above all, deep learning models have shown effective in a 

wide range of research domains. Still, there are very few applications of the DL mod-

el in hydrology, much less for groundwater quality forecasting. To the best of the 

authors' knowledge, no prior study has examined and confirmed the efficacy of the 

DL model in groundwater quality prediction using the objective-weighting method. 

The current study proposes to develop a model in the widespread agricultural area of 

Krishna district of Andhra Pradesh, India, in an effort to close this gap [11]. 

Because human pollution severely damages this critical supply of drinking water in 

the research study area, a detailed evaluation of groundwater quality is necessary. 

Furthermore, no such comprehensive analysis has been finished at the current study 

site. It is more accurate to forecast groundwater quality using multiple machine learn-

ing techniques than it is to evaluate it using only one. The performance of each pre-

diction model is compared with three popular machine learning methods (ANN, XG 

Boost, and RF) in order to decide which is best for the field being studied [12]. 

2 Materials And Method 

Study Area: 

The Krishna district of Andhra Pradesh is home to the research study area, which is 

located in its eastern and central parts. The investigation's scope is approximately 

3430 km2. Geographically, the study area lies between 15°42’ 05’’ and 16°45’ 06’’ N 

latitude and between 80° 48’ 06’’ and 81° 35’ 11’’ E longitude, as Figure 1 illustrates, 

almost third of study area is made up of agricultural land.  

 

 
 

Fig.1: Location map of the study area 
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            The primary crop is paddy, as per reports. Its production accounts for 61% of 

total crop area during the Kharif season, and it has intensity of cropping around 

163%. Because of human activity, the current study region has the potential to be-

come contaminated groundwater. Irrigation techniques are widespread throughout the 

research region, with the exception of the monsoon season. The District Census 

Handbook, 2011 states that surface and groundwater sources irrigate about 76% of the 

entire cultivable area. 

 

      The suggested approach of the current study is divided into four main phases: 

gathering of groundwater samples, study of physicochemical parameters, computation 

of EWQI.  The data includes the creation of ANN, DL, XGBoost, and RF model 

techniques as well as the splitting of the dataset for training and testing. Selecting the 

optimal prediction model and calculating error metrics are two aspects of model vali-

dation. Throughout the model calibration process, training data is used to optimize 

machine learning models. The best machine learning models are validated with test-

ing datasets.  

       Groundwater sampling and analysis: 200 locations were sampled in April–June 

2023 from a variety of sources (dug and bore wells), including the whole research 

area. Afterwards, samples were gathered, and several physicochemical parameters 

related to water quality were examined. The following were listed: pH, total dissolved 

solids (TDS), hardness, SO4, NO3, F, Ca2+, Mg2+, Na+, K+, HCO3, Cl, and PO4. 

Groundwater samples were collected at the field, delivered to the lab, and refrigerated 

at 40 degrees Celsius in order to be examined further. The samples were stored in a 

cold icebox with an EPS thermo box. 

Groundwater quality index computation based on entropy:  

To prevent subjectivity in the weighting approach, objective weights are calculated 

based on the entropy strategy. The entropy actually generates an information network 

based on the origin of a collection of weights, which may be used to assess the implic-

it links between parameters or within the dataset. The main method used to assign 

weights to the designated criteria is the community difference between the values of 

each alternate criterion and the other criteria. Greater unpredictability and less infor-

mation are implied by higher entropy values in the data.  

Using prediction models based on machine learning: 

RF model: Reinforcement learning, has gained favor recently as a tool for water re-

source applications. It might be consistent with the concepts of classification trees, 

regression, and bagging with extra randomization. The average forecast of n-tree 

trained models is the bagger's prediction. By decreasing the correlation between the 

trees, randomization also contributes to a reduction in the variation of the predictions.  

During the randomization process, the responsible variables are selected at random to 

be candidates for data partitioning. 

XGBoost model: Lately, a number of data mining applications have made exten-

sive use of the XGBoost tool. It generates a lot of shallow decision trees, and the total 

of all the trees yields an extremely accurate prediction. The XGBoost technique han-

dles the loss function to produce decision trees that regularize the tree to avoid over 

fitting and minimize an objective function. Moreover, the XGBoost model's adapta-
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bility in modifying its hyper parameter adds to its extensive application in various 

study fields. 

ANN model: An artificial neural network (ANN) is a type of parallel information 

system that simulates brain activity by using layers of neurons to replicate the struc-

ture and functionality of real neurons. This study uses multilayer feed-forward per-

ception neural network with a nonlinear function. 

DL model: Several connected neurons make up the input, hidden, and output lay-

ers. The inputs for the model's hidden layers come from the outputs. Finally, the out-

put layer determines the outcome by using the last hidden layer's primary abstract 

data. 

        Nevertheless, a single hidden layer neural network is unable to adequately 

represent a wide range of measurable functions. However, having multiple hidden 

layers gives you more flexibility and makes it possible to use fewer neurons to ap-

proximate complex tasks. A deep learning model is better suited to modelling ex-

tremely challenging perceptions and providing estimates of highly nonlinear func-

tions. Optimization of neural network architecture is usually a situation-specific pro-

cess where the common approach to the desired result is trial and error. 

Weight selection, learning rate, epoch termination, goal error setting, and network 

error derivative correction are some of the variables that affect model calibration, 

often known as neural network training. Several researchers have successfully trained 

a multilayer feed-forward network utilizing back-propagated (BP) techniques.  

 

Model creation:  

      The suggested DL model for the current investigation is organized by ReLU acti-

vation, regularization, and strategy. The inquiry makes use of R version 4.0.2 and 

installs the packages keras, randomForest, xgboost, caret, and neuralnet. Applied 

machine learning models may be impacted by varying input variable ranges. Stated 

otherwise, the model's computation may be skewed by differing input variable ranges 

preferring those with a higher range, even when short range input variables have a 

greater influence on the target variable's prediction. Therefore, data normalization 

must be completed before developing these prediction models.  

The minimum and maximum normalization processes are used to normalize the da-

tasets used in ANN, DL, RF, and XGBoost models so that they range from zero to 

one. By reducing computing time and error during model execution, this enhances 

model performance. The normalization of input data is established by  

 

Xn = (X _ Xmin)/ (Xmax _ Xmin)   

 

where Xn is the normalized value and Xmin and Xmax are the minimum and max-

imum values, respectively. Training and validation datasets are separated from the 

normalized input dataset. The validation dataset's usual value should fall between 

10% and 40% of the whole dataset. However, after some trial and error and a modifi-

cation of the splitting ratios from 75:25 to 85:15, respectively, the data partitioning for 

the relevant models is finally established.  The training dataset is used to calculate the 

model's weights.  
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At this stage, the model may exhibit overfitting, a common defect that impedes 

training and generates noise. Since the hyper-parameters cannot obtain information 

directly from the training dataset, they must become more complex in order to 

achieve the ideal model design. The hyper parameters of each model have therefore 

been changed during the calibration process. 

 

Validation of the model: 

During training and validation, the model's accuracy is evaluated using the following 

metrics: mean square error (MSE), mean absolute error (MAE), root mean square 

error (RMSE) 

3 Results And Discussion 

Table 1 displays the statistical findings for the chosen physicochemical characteris-

tics. The average TDS, Ca2+, Mg2+, NO3 , and PO4, in the groundwater in the study 

area are all greater than the BIS (2012) recommended level for drinking reasons. With 

the exception of TDS, Table 1 demonstrates that there is a slight variation between the 

mean and median values of every parameter. The pH of is generally alkaline, ranging 

from 6.90 to 8.90. The current research region's groundwater has increased amounts 

of TDS, carbonates, magnesium, by-carbonates, nitrates, phosphates. 

 

Table 1. Statistical Results 

Pa-
rame-

ter 

Medi-
an 

Mean Max. 
Skew
ness 

BIS 
Stand
ards 

No. of 
sam-
ples 
ex-

ceed-
ing 

stand-
ard 

Entropy 
weights 

pH 7.80 7.82 8.90 1.29 8.5 05 0.109 

TDS 619.9 695.74 2561.00 2.01 500 169     0.047 

TH 137.0 145.18 515.00 1.66 500 01  0.058 

Ca2+ 86.11 90.87 298.00 2.00 75 159  0.056 

Mg2+ 31.82 33.77 121.50 1.65 30 121 0.058 

Na+ 50.17 57.95 248.40 1.64 200 01 0.056 

K+ 5.14 7.67 47.30 3.23 12 23 0.099 

HCO3ˉ 307.80 298.31 405.90 —0.77 300 126 0.082 

Cl  ̄ 113.89 147.37 918.00 2.50 250 29 0.068 
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SO2- 29.86 33.97 136.00 1.59 200 00 0.051 

NOˉ 39.17 48.4 247.00 1.94 45 99 0.076 

Fˉ 0.47 0.48 2.03 2.54 1.0 06 0.080 

PO3- 0.21 0.29 1.17 1.40 0.1 137 0.160 

EWQI 83.36 92.17 231.91 1.21 - - - 

Spatial Distribution of EWQI:  

Table 1 displays the EWQI value range for the research region, which is 14.33 to 

231.91. The skewness, mean, and median values are 1.21, 83.36, and 92.17, in that 

order. PO4 and TDS produced the largest and lowest entropy weights respectively, 

indicating their highest and lowest importance. The EWQIs are then used for interpo-

lation in ArcGIS 10.3 utilizing the inverse distance weighted (IDW) and conventional 

kriging approaches.  Based on the estimated quality indices of the groundwater sam-

ples, five subcategories have been identified: 51-100 (Good), 101-150 (Moderate), 

151-200 (Poor), and >200 (Very Poor). Based on the results, groundwater categories 

of "Excellent," "Good," "Moderate," "Poor," and "Very poor" have been assigned to 

twenty-five, fourteen, forty-two, five, and five samples. Figure 3 shows that while 

most of the investigated area (about 87.10% of the total area) is classified as being of 

good to moderate quality, the majority of the center, southeast, and northwest sections 

are classified as having moderate to severely low quality. 

 

 
Fig.2. Spatial distribution of groundwater quality 
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The presence of shallow groundwater levels or the region's ongoing intensive agricul-

tural activities could be the cause of the relatively low groundwater quality in certain 

places. The efficiency of models for machine learning :All the models are run in ad-

vance before the selected machine learning methods are decided upon in order to 

ascertain their optimal architectures. This study uses the available dataset to test split 

ratios between 75:25 and 85:15. Using the trial-and-error procedure, the lowest 

RMSE value is used to determine the final dataset partitioning. According to the find-

ings, testing (calibration) and training (validation) account for 18% (41 numbers) and 

82% (185 numbers) of the whole dataset, respectively. Plotting the expected data 

against the test data was shown in Figure3.  

 

 
 

Fig.3. Plot comparing test and prediction data 

 

Salt leaching via fertile soils and home sewage seeping into groundwater are the 

causes of the high TDS concentration in the study area's groundwater. The primary 

cause of the elevated levels of Ca2Í and Mg2á is geogenic sources, specifically car-

bonate-derived materials including calcite, dolomite, and aragonite. Dissolution of 

calcite and dolomite are responsible for these elevated levels.  Furthermore, the ion 

exchange mechanism-may be the source of the Ca2+ and Mg2+ enrichment. Farmers' 

extensive use of chemical fertilizers based on nitrogen, phosphate, and potassium (N-

P-K), such as urea, is the primary source of the high levels of NO3 and PO4 in the 

groundwater in the studied region. 

4 Conclusion 

This research established a deep learning approach to anticipate groundwater quali-

ty, or EWQI, and verified all ML models (RF, XGBoost, and ANN). Goodness of fit 

measures, also known as performance metrics, was used to compare each model's 
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prediction capabilities. However, in terms of prediction performance, the XGBoost 

model performed better than the RF and ANN models. The models function as fol-

lows, according to the R2 values of 0.996, 0.927, 0.917, and 0.886 that were acquired 

during the validation step: DL > ANN > XGBoost > RF. Therefore, it is possible to 

assess groundwater quality in the current research region using the recommended DL 

model. This study's prediction models are restricted to utilizing information from a 

single monsoon dataset. Using data from numerous seasons, more information about 

the present study's groundwater quality may be revealed. These kinds of reasoning are 

most likely responsible for the high level of ML model adoption in water resources 

studies. The current work may be improved by comparing the DL model's forecast 

capacity to that of other machine learning models and taking into account a wide 

range of different hydro-geo-meteorological inputs. 
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