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Abstract. A novel strategy for combatting ransomware has emerged, aiming to 

circumvent the limitations of traditional antivirus software which ransomware 

often evades. Ransomware, by encrypting files and restricting user access to 

systems and data, poses a significant threat. The proposed solution involves a 

ransomware detection system operating within virtual machines, which collects 

data on processor and disk I/O activities from the host machine. Utilizing a ma-

chine learning classifier, specifically a 2D Convolutional Neural Network 

(CNN2D), Voting Classifier and XGBoost. Its approach seeks to minimize 

overhead by collectively monitoring processes rather than individually, thereby 

reducing the risk of data corruption induced by ransomware. The system boasts 

rapid detection, particularly effective against both known and unknown ran-

somware variants, with the random forest classifier demonstrating superior per-

formance. Moreover, the CNN2D architecture enhances feature extraction, al-

lowing the model to identify relevant patterns for precise classification. By se-

lectively monitoring processor and disk I/O events, the system maintains effi-

ciency while ensuring comprehensive coverage against ransomware activities. 

Across diverse user loads and ransomware types, the system consistently 

achieves high detection rates. Detection outcomes are conveniently presented 

using the Flask Framework. 
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1 Introduction 

Ransomware, a type of malicious software, encrypts files or locks computers to make 

them inoperative, often as a way for cyber attackers to demand money. Not only crim-

inal individuals but also governmental bodies might use ransomware assaults to dis-

rupt the vital infrastructure of their rivals. These assaults typically involve extracting  
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victims' data to force payment or trade them on the Dark Web. In 2022, about 70% of 

enterprises encountered ransomware attacks, a number anticipated to increase to an 

assault every 2 seconds by 2031, up from every 11 seconds in 2021. The financial 

repercussions of ransomware are significant, with expenses reaching $20 billion in 

2021 and predicted to surpass $265 billion by 2031.Researchers have investigated 

different techniques for identifying ransomware attacks. While signature-based detec-

tion depends on antivirus generated hash values to recognize known ransomware, 

polymorphic and metamorphic variations can avoid detection. Consequently, behav-

ioral and runtime detection methods are crucial additions to signature-based ap-

proaches. This mechanism suggests an original way to detect ransomware on virtual 

machines by concentrating on disk I/O activities and processors. By collecting data 

from the host machine and using a random forest classifier, the system attains prompt 

detection with a high likelihood, surpassing conventional methods. Moreover, the 

research explores the potential of utilizing 2D convolution neural networks for en-

hanced feature extraction. 

2 Literature Survey 

     This study integrates hardware execution profiles with ML techniques to classify 

Microsoft-Windows ransomware, achieving by using a dataset of both ransomware 

and non-ransomware.  Challenges include dependency on hardware counters and 

handling new ransomware variants. Despite these, our research underscores the effec-

tiveness of leveraging hardware profiles for enhanced ransomware detection in cyber 

security efforts. [5] 

    The system uses Sequential Pattern Mining on 1,624 ransomware samples to ex-

tract Maximal Frequent Patterns (MFP), achieving high accuracy in detection and 

family classification. However, it faces challenges with zero-day attacks and adapting 

to new variants, affecting real-time detection and scalability. Nonetheless, our re-

search highlights the effectiveness of pattern mining in enhancing ransomware detec-

tion and cyber security intelligence. [6]   

    RanStop utilizes hardware performance monitoring and an LSTM model for early 

crypto-ransomware detection within 2ms. With 97% accuracy against benign pro-

grams, it swiftly identifies ransomware, mitigating financial and data security threats. 

Challenges include resource overhead, updates for new ransomware variants, and 

compatibility issues. Nonetheless, RanStop proves effective in mitigating ransomware 

attacks' impact. [7]   

    RATAFIA introduces a two-step unsupervised ransomware detection framework 

using Fast Fourier Transformation and Deep Neural Network. It offers accurate, fast, 

and reliable detection without OS kernel modification, adaptable to modern systems. 

Challenges include potential false positives/negatives, requiring continuous updates 

for evolving ransomware techniques. Nonetheless, RATAFIA proves effective in 

enhancing software security by reliably detecting ransomware without OS kernel 

modification. [8] 
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3 Methodology 

3.1 Proposed Work 

To overcome the aforementioned issue, the paper's author proposes employing 

VMWARE on the host system to read Hardware Performance Counters (HPC) and IO 

EVENTS data. This data is then utilized in machine learning models to predict 

whether executing scripts are benign or ransomware. By extracting HPC and 

IOEVENTS features using VMWARE, system performance remains unaffected, 

while achieving over 90% accuracy in ransomware prediction. Various machine 

learning algorithms including XGBOOST, LSTM, and Voting Classifier were exper-

imented, with Random Forest and XGBOOST consistently providing high accuracy. 

Additionally, deep learning models such as DNN and LSTM were employed. The 

extension includes experimentation with CNN2D to optimize dataset features in mul-

tiple layers, potentially improving detection accuracy. However, the paper did not 

explore advanced feature optimization algorithms. 

3.2 System Architecture 

The system architecture leverages VMware on the host system to extract Hardware 

Performance Counters (HPC) and IO EVENTS data. This information is fed into ma-

chine learning models, including, XGBOOST, LSTM, and CNN2D. The proposed 

architecture ensures minimal impact on system performance during feature extraction. 

Various experiments with machine learning algorithms demonstrate Random Forest, 

Voting Classifier and XGBOOST consistently achieving over 98% accuracy in pre-

dicting Ransomware. Additionally, the extension introduces CNN2D for advanced 

feature optimization through multi-layered 2D convolution neural networks, enhanc-

ing dataset relevance and improving overall detection accuracy. Notably, the system 

does not employ advanced feature optimization algorithms beyond traditional tech-

niques. 
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Fig. 1. Proposed System Architecture 

3.3 Dataset 

The dataset, namely 'HPC_41Events_5Rounds' for HPC events and 

'IO_41Events_5Rounds' for IO events, encompasses a total of 6000 samples. These 

samples are characterized by 12 features, namely as Instructions, Last Level Cache, 

L1 icache load misses, Branch load misses, node load misses, read requests, read 

bytes, write requests, write bytes, data explicitly remove, read total time, write total 

time, and flush total time. Among these samples, 4800 are designated for testing pur-

poses, while the remaining 1200 are allocated for training. The datasets were procured 

from the Harvard Dataverse.[9][10] 

3.4 Data preprocessing 

In data preprocessing, pandas and numpy efficiently handle dataset manipulation 

tasks. The dataset is loaded into a pandas dataframe for easy management, and unnec-

essary columns are dropped. Normalization techniques such as Min-Max scaling or Z-

score normalization ensure consistent feature ranges. This optimization addresses data 

cleanliness, relevance, and numerical stability concerns. It lays a robust foundation 

for subsequent machine learning model training and evaluation processes. 

3.5 Feature Selection 

Feature selection is essential for identifying and retaining relevant features that en-

hance a machine learning model's predictive power. It involves visualization tools like 

seaborn and matplotlib to understand feature distributions and relationships, aiding in 

pattern identification. Label encoding converts categorical data into numerical format 

for model interpretation. Techniques like Recursive Feature Elimination (RFE) or 

feature importance from tree-based models objectively rank and select features, re-

ducing dataset dimensionality and improving model efficiency and accuracy. 

3.6 Algorithms 

XGBOOST 

Initialize𝑓0(𝑝); 
For  𝑗 = 1,2 … . 𝑚 do 

Calculate 𝑔𝑗 =
𝜕𝐿(𝑞,𝑓)

𝜕𝑓
  ; 

Calculate ℎ𝑗 =
𝜕2𝐿(𝑞,𝑓)
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Identifying  the base learner  𝑏^(𝑝) = 𝜀𝑗=1
𝑇 𝑤𝑙; 

Add trees 𝑓(𝑝) = 𝑓𝑘−1(𝑝) + 𝑏(𝑝); 
end for 

Result:𝑓(𝑝) = 𝜀𝐾=0
𝐿 𝑓𝑘(𝑝) 

CNN2D.  

Input: 

    Ransomware Sample Data 

    Training : (Xtrain1, ytrain1) 

    Testing : (Xtest1, ytest1) 

Output: 

    Predict: ypred 

    Evaluate: performance , Accuracy 

Preprocess data: 

    Split dataset into training and testing : (Xtrain1, ytrain1), (Xtest1, ytest1) 

  Reshape the data for CNN input 

    Xtrain1 = reshape(Xtrain1, (n, m, 1, 1)) 

    Xtest1 = reshape(Xtest1, (n', m', 1, 1)) 

Define CNN Architecture: 

Initialize a CNN model: CNN = Sequential() 
CNN.add(Convolution2D(64, (1, 1), input_shape=(m, 1, 1), active    

tion='relu')) 

CNN.add(MaxPooling2D((1, 1))) 

Flatten the feature maps: CNN.add(Flatten()) 

Compile CNN Model: 

    CNN.compile(loss='categorical_crossentropy’,optimizer='adam', met-

rics=['accuracy']) 

Evaluating  model: 

 y_pred = argmax(CNN.predict(Xtest1)) 

Metrics = evaluate(ypred, ytest) 
 

VOTING CLASSIFIER.  

Applying 3 classifiers (Random Forest, voting classifier,Adaboost ) on  training data: 

Clf1=AdaBoostclassifier(n_estimators=10 

,random_state=0) 

Clf2=RandomForestclassifier(n_estimators

=5, random_state=1) 

eclf = VotingClassifier(estimators=[('ad', 

clf1), ('rf', clf2)], voting='soft') 
 

Comparing performance: 

         calculateMetrics("Voting Classifier", predict, y_test) 

Perform Majority Voting: 

         eclf = VotingClassifier (estimators=[('ad', clf1), ('rf', clf2)], voting='soft') 
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4 Experiment Results 

4.1 Accuracy 

The accuracy of a ransomware detection method is its capacity to correctly identify 

infected and uninfected systems. To gauge accuracy, it's crucial to calculate the ratio 

of true positives and true negatives among all instances. Mathematically, this is repre-

sented as: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵
 

 TP  True positive, TN  True Negative, FPFalse  Positive,  FN  False Neg-

ative 

 

Fig. 2. Accuracy comparison graph 

4.2 Precision 

Precision assesses the proportion of accurately classified instances or samples among 

those identified as positives. Therefore, the formula to compute precision is as fol-

lows: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆
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Fig. 3. Precision Comparison graph 

The above graph is about the performance of different algorithms versus the Preci-

sion score. 

4.3 Recall 

Recall serves as a vital metric in machine learning, measuring the model's aptitude in 

identifying all pertinent instances of a particular class. It quantifies the proportion of 

accurately predicted positive observations among the total actual positives, providing 

valuable insights into the model's thoroughness in capturing instances of the specified 

class: 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
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Fig. 4. Recall comparison graph 

The above graph is about the performance of different algorithms versus the Recall 

score. 

4.4 F1- Score 

The F1 score combines precision and recall to assess a model's accuracy in machine 

learning, providing a balanced evaluation of performance: 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =
𝟐

𝟏
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +

𝟏
𝑹𝒆𝒄𝒂𝒍𝒍

 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =
𝟐 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

 

Fig.5. F1 comparison graph 

The above graph is about the performance of different algorithms versus the F1 

score. 

4.5 Algorithms comparison table 

The table presents a comparison of different algorithms alongside the proposed ones, 

showing Accuracy, Precision, Recall, and F1 score. 

Table 1. Performance Evaluation Table 

ML Model Accuracy Precision Recall F1-score 

SVM 0.593 0.605 0.738 0.329 
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KNN 0.904 0.903 0.903 0.904 

Decision Tree 0.883 0.887 0.891 0.883 

Random Forest 0.985 0.983 0.985 0.983 

XG Boost 0.992 0.991 0.992 0.992 

Voting Classifier 0.993 0.995 0.993 0.993 

DNN 0.383 0.597 0.769 0.313 

LSTM 0.960 0.961 0.961 0.960 

Extension 

CNN2D 

0.936 0.937 0.937 0.936 

5 Conclusion 

This research introduces a new method for quickly and accurately detecting ransom-

ware in a virtual environment. The approach involves closely monitoring the proces-

sor and disk I/O activities on the host machine and then using machine learning tech-

niques for analysis. To gather data, the perf  tool and hardware performance counters 

(HPCs) capture processor event data, while virsh domblkstats (domain block statis-

tics) is used to obtain disk I/O event data. The evaluation phase of the study involved 

testing five machine learning (ML) and two deep learning (DL) classifiers. Each clas-

sifier was tested with three models: one utilizing HPC data, another utilizing disk I/O 

data, and a third combining both types of data. In addition to these models, the study 

incorporated an algorithm voting classifier. Impressively, this classifier achieved an 

accuracy of 0.993, surpassing existing models such as Support Vector Machine 

(SVM) with an accuracy of 0.593, K-Nearest Neighbors (KNN) with an accuracy of 

0.904, Decision Trees with an accuracy of 0.883, and Random Forest with an accura-

cy of 0.983. 

6 Feature Scope 

In future, the intention is to employ the developed models for real-time ransomware 

detection during execution. Although the current model is tailored for VMs, it aims to 

modify it for use on standalone machines in upcoming research. The system  have yet 
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to assess whether the models optimized for one machine configuration perform effec-

tively on different configurations, such as those with increased memory or additional 

CPU cores. This aspect will be a focus of future investigations. 
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