
Detecting Ransomware Threats in Disk Storage through

Behavioral Analysis using CNN2D and Flask Framework

Bhasha Pydala1, Allampati Sireesha2*, Peese Tejeswara Rao3, Supriya Veluru4,

Ramireddy SaiCharan Reddy5, V Jyothsna6

1, 6 Assistant Professor, Department of CSE(DS), Mohan Babu University

(Erstwhile Sree Vidyanikethan Engineering College), India
2, 3, 4, 5 UG Scholar, Department of Computer Science and Systems Engineering,

Sree Vidyankethan Engineering College, Tirupati, India.

1basha.chanti@gmail.com, 2*sireeshaallampati@gmail.com,

3teja152002@gmail.com, 4hellosupriyaveluru@gmail.com,
5reddycharan169@gmail.com, 6jyothsna1684@gmail.com

Abstract. A novel strategy for combatting ransomware has emerged, aiming to

circumvent the limitations of traditional antivirus software which ransomware

often evades. Ransomware, by encrypting files and restricting user access to

systems and data, poses a significant threat. The proposed solution involves a

ransomware detection system operating within virtual machines, which collects

data on processor and disk I/O activities from the host machine. Utilizing a ma-

chine learning classifier, specifically a 2D Convolutional Neural Network

(CNN2D), Voting Classifier and XGBoost. Its approach seeks to minimize

overhead by collectively monitoring processes rather than individually, thereby

reducing the risk of data corruption induced by ransomware. The system boasts

rapid detection, particularly effective against both known and unknown ran-

somware variants, with the random forest classifier demonstrating superior per-

formance. Moreover, the CNN2D architecture enhances feature extraction, al-

lowing the model to identify relevant patterns for precise classification. By se-

lectively monitoring processor and disk I/O events, the system maintains effi-

ciency while ensuring comprehensive coverage against ransomware activities.

Across diverse user loads and ransomware types, the system consistently

achieves high detection rates. Detection outcomes are conveniently presented

using the Flask Framework.

Keywords: Ransomware, Encrypting, Machine learning, CNN2D, Flask.

1 Introduction

Ransomware, a type of malicious software, encrypts files or locks computers to make

them inoperative, often as a way for cyber attackers to demand money. Not only crim-

inal individuals but also governmental bodies might use ransomware assaults to dis-

rupt the vital infrastructure of their rivals. These assaults typically involve extracting

© The Author(s) 2024
K. R. Madhavi et al. (eds.), Proceedings of the International Conference on Computational Innovations and
Emerging Trends (ICCIET 2024), Advances in Computer Science Research 112,
https://doi.org/10.2991/978-94-6463-471-6_48

https://doi.org/10.2991/978-94-6463-471-6_48
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-471-6_48&domain=pdf

victims' data to force payment or trade them on the Dark Web. In 2022, about 70% of

enterprises encountered ransomware attacks, a number anticipated to increase to an

assault every 2 seconds by 2031, up from every 11 seconds in 2021. The financial

repercussions of ransomware are significant, with expenses reaching $20 billion in

2021 and predicted to surpass $265 billion by 2031.Researchers have investigated

different techniques for identifying ransomware attacks. While signature-based detec-

tion depends on antivirus generated hash values to recognize known ransomware,

polymorphic and metamorphic variations can avoid detection. Consequently, behav-

ioral and runtime detection methods are crucial additions to signature-based ap-

proaches. This mechanism suggests an original way to detect ransomware on virtual

machines by concentrating on disk I/O activities and processors. By collecting data

from the host machine and using a random forest classifier, the system attains prompt

detection with a high likelihood, surpassing conventional methods. Moreover, the

research explores the potential of utilizing 2D convolution neural networks for en-

hanced feature extraction.

2 Literature Survey

 This study integrates hardware execution profiles with ML techniques to classify

Microsoft-Windows ransomware, achieving by using a dataset of both ransomware

and non-ransomware. Challenges include dependency on hardware counters and

handling new ransomware variants. Despite these, our research underscores the effec-

tiveness of leveraging hardware profiles for enhanced ransomware detection in cyber

security efforts. [5]

 The system uses Sequential Pattern Mining on 1,624 ransomware samples to ex-

tract Maximal Frequent Patterns (MFP), achieving high accuracy in detection and

family classification. However, it faces challenges with zero-day attacks and adapting

to new variants, affecting real-time detection and scalability. Nonetheless, our re-

search highlights the effectiveness of pattern mining in enhancing ransomware detec-

tion and cyber security intelligence. [6]

 RanStop utilizes hardware performance monitoring and an LSTM model for early

crypto-ransomware detection within 2ms. With 97% accuracy against benign pro-

grams, it swiftly identifies ransomware, mitigating financial and data security threats.

Challenges include resource overhead, updates for new ransomware variants, and

compatibility issues. Nonetheless, RanStop proves effective in mitigating ransomware

attacks' impact. [7]

 RATAFIA introduces a two-step unsupervised ransomware detection framework

using Fast Fourier Transformation and Deep Neural Network. It offers accurate, fast,

and reliable detection without OS kernel modification, adaptable to modern systems.

Challenges include potential false positives/negatives, requiring continuous updates

for evolving ransomware techniques. Nonetheless, RATAFIA proves effective in

enhancing software security by reliably detecting ransomware without OS kernel

modification. [8]

Detecting Ransomware Threats in Disk Storage through Behavioral 497

3 Methodology

3.1 Proposed Work

To overcome the aforementioned issue, the paper's author proposes employing

VMWARE on the host system to read Hardware Performance Counters (HPC) and IO

EVENTS data. This data is then utilized in machine learning models to predict

whether executing scripts are benign or ransomware. By extracting HPC and

IOEVENTS features using VMWARE, system performance remains unaffected,

while achieving over 90% accuracy in ransomware prediction. Various machine

learning algorithms including XGBOOST, LSTM, and Voting Classifier were exper-

imented, with Random Forest and XGBOOST consistently providing high accuracy.

Additionally, deep learning models such as DNN and LSTM were employed. The

extension includes experimentation with CNN2D to optimize dataset features in mul-

tiple layers, potentially improving detection accuracy. However, the paper did not

explore advanced feature optimization algorithms.

3.2 System Architecture

The system architecture leverages VMware on the host system to extract Hardware

Performance Counters (HPC) and IO EVENTS data. This information is fed into ma-

chine learning models, including, XGBOOST, LSTM, and CNN2D. The proposed

architecture ensures minimal impact on system performance during feature extraction.

Various experiments with machine learning algorithms demonstrate Random Forest,

Voting Classifier and XGBOOST consistently achieving over 98% accuracy in pre-

dicting Ransomware. Additionally, the extension introduces CNN2D for advanced

feature optimization through multi-layered 2D convolution neural networks, enhanc-

ing dataset relevance and improving overall detection accuracy. Notably, the system

does not employ advanced feature optimization algorithms beyond traditional tech-

niques.

498 B. Pydala et al.

Fig. 1. Proposed System Architecture

3.3 Dataset

The dataset, namely 'HPC_41Events_5Rounds' for HPC events and

'IO_41Events_5Rounds' for IO events, encompasses a total of 6000 samples. These

samples are characterized by 12 features, namely as Instructions, Last Level Cache,

L1 icache load misses, Branch load misses, node load misses, read requests, read

bytes, write requests, write bytes, data explicitly remove, read total time, write total

time, and flush total time. Among these samples, 4800 are designated for testing pur-

poses, while the remaining 1200 are allocated for training. The datasets were procured

from the Harvard Dataverse.[9][10]

3.4 Data preprocessing

In data preprocessing, pandas and numpy efficiently handle dataset manipulation

tasks. The dataset is loaded into a pandas dataframe for easy management, and unnec-

essary columns are dropped. Normalization techniques such as Min-Max scaling or Z-

score normalization ensure consistent feature ranges. This optimization addresses data

cleanliness, relevance, and numerical stability concerns. It lays a robust foundation

for subsequent machine learning model training and evaluation processes.

3.5 Feature Selection

Feature selection is essential for identifying and retaining relevant features that en-

hance a machine learning model's predictive power. It involves visualization tools like

seaborn and matplotlib to understand feature distributions and relationships, aiding in

pattern identification. Label encoding converts categorical data into numerical format

for model interpretation. Techniques like Recursive Feature Elimination (RFE) or

feature importance from tree-based models objectively rank and select features, re-

ducing dataset dimensionality and improving model efficiency and accuracy.

3.6 Algorithms

XGBOOST

Initialize𝑓0(𝑝);
For 𝑗 = 1,2 … . 𝑚 do

Calculate 𝑔𝑗 =
𝜕𝐿(𝑞,𝑓)

𝜕𝑓
 ;

Calculate ℎ𝑗 =
𝜕2𝐿(𝑞,𝑓)

𝜕𝑓2 ;

create splits with maximum gain 𝐴 =
1

2
[

𝑀𝐿
2

𝑁𝐿
+

𝑀𝑅
2

𝑁𝑅
−

𝑀2

𝑁
]

leaf weights Calculation

𝑊 = −
𝑀

𝑁

Detecting Ransomware Threats in Disk Storage through Behavioral 499

Identifying the base learner 𝑏^(𝑝) = 𝜀𝑗=1
𝑇 𝑤𝑙;

Add trees 𝑓(𝑝) = 𝑓𝑘−1(𝑝) + 𝑏(𝑝);
end for

Result:𝑓(𝑝) = 𝜀𝐾=0
𝐿 𝑓𝑘(𝑝)

CNN2D.

Input:

 Ransomware Sample Data

 Training : (Xtrain1, ytrain1)

 Testing : (Xtest1, ytest1)

Output:

 Predict: ypred

 Evaluate: performance , Accuracy

Preprocess data:

 Split dataset into training and testing : (Xtrain1, ytrain1), (Xtest1, ytest1)

 Reshape the data for CNN input

 Xtrain1 = reshape(Xtrain1, (n, m, 1, 1))

 Xtest1 = reshape(Xtest1, (n', m', 1, 1))

Define CNN Architecture:

Initialize a CNN model: CNN = Sequential()
CNN.add(Convolution2D(64, (1, 1), input_shape=(m, 1, 1), active

tion='relu'))

CNN.add(MaxPooling2D((1, 1)))

Flatten the feature maps: CNN.add(Flatten())

Compile CNN Model:

 CNN.compile(loss='categorical_crossentropy’,optimizer='adam', met-

rics=['accuracy'])

Evaluating model:

 y_pred = argmax(CNN.predict(Xtest1))

Metrics = evaluate(ypred, ytest)

VOTING CLASSIFIER.

Applying 3 classifiers (Random Forest, voting classifier,Adaboost) on training data:

Clf1=AdaBoostclassifier(n_estimators=10

,random_state=0)

Clf2=RandomForestclassifier(n_estimators

=5, random_state=1)

eclf = VotingClassifier(estimators=[('ad',

clf1), ('rf', clf2)], voting='soft')

Comparing performance:

 calculateMetrics("Voting Classifier", predict, y_test)

Perform Majority Voting:

 eclf = VotingClassifier (estimators=[('ad', clf1), ('rf', clf2)], voting='soft')

500 B. Pydala et al.

4 Experiment Results

4.1 Accuracy

The accuracy of a ransomware detection method is its capacity to correctly identify

infected and uninfected systems. To gauge accuracy, it's crucial to calculate the ratio

of true positives and true negatives among all instances. Mathematically, this is repre-

sented as:

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵

 TP True positive, TN True Negative, FPFalse Positive, FN False Neg-

ative

Fig. 2. Accuracy comparison graph

4.2 Precision

Precision assesses the proportion of accurately classified instances or samples among

those identified as positives. Therefore, the formula to compute precision is as fol-

lows:

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

Detecting Ransomware Threats in Disk Storage through Behavioral 501

Fig. 3. Precision Comparison graph

The above graph is about the performance of different algorithms versus the Preci-

sion score.

4.3 Recall

Recall serves as a vital metric in machine learning, measuring the model's aptitude in

identifying all pertinent instances of a particular class. It quantifies the proportion of

accurately predicted positive observations among the total actual positives, providing

valuable insights into the model's thoroughness in capturing instances of the specified

class:

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 + 𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆

502 B. Pydala et al.

Fig. 4. Recall comparison graph

The above graph is about the performance of different algorithms versus the Recall

score.

4.4 F1- Score

The F1 score combines precision and recall to assess a model's accuracy in machine

learning, providing a balanced evaluation of performance:

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =
𝟐

𝟏
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +

𝟏
𝑹𝒆𝒄𝒂𝒍𝒍

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 =
𝟐 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍

Fig.5. F1 comparison graph

The above graph is about the performance of different algorithms versus the F1

score.

4.5 Algorithms comparison table

The table presents a comparison of different algorithms alongside the proposed ones,

showing Accuracy, Precision, Recall, and F1 score.

Table 1. Performance Evaluation Table

ML Model Accuracy Precision Recall F1-score

SVM 0.593 0.605 0.738 0.329

Detecting Ransomware Threats in Disk Storage through Behavioral 503

KNN 0.904 0.903 0.903 0.904

Decision Tree 0.883 0.887 0.891 0.883

Random Forest 0.985 0.983 0.985 0.983

XG Boost 0.992 0.991 0.992 0.992

Voting Classifier 0.993 0.995 0.993 0.993

DNN 0.383 0.597 0.769 0.313

LSTM 0.960 0.961 0.961 0.960

Extension

CNN2D

0.936 0.937 0.937 0.936

5 Conclusion

This research introduces a new method for quickly and accurately detecting ransom-

ware in a virtual environment. The approach involves closely monitoring the proces-

sor and disk I/O activities on the host machine and then using machine learning tech-

niques for analysis. To gather data, the perf tool and hardware performance counters

(HPCs) capture processor event data, while virsh domblkstats (domain block statis-

tics) is used to obtain disk I/O event data. The evaluation phase of the study involved

testing five machine learning (ML) and two deep learning (DL) classifiers. Each clas-

sifier was tested with three models: one utilizing HPC data, another utilizing disk I/O

data, and a third combining both types of data. In addition to these models, the study

incorporated an algorithm voting classifier. Impressively, this classifier achieved an

accuracy of 0.993, surpassing existing models such as Support Vector Machine

(SVM) with an accuracy of 0.593, K-Nearest Neighbors (KNN) with an accuracy of

0.904, Decision Trees with an accuracy of 0.883, and Random Forest with an accura-

cy of 0.983.

6 Feature Scope

In future, the intention is to employ the developed models for real-time ransomware

detection during execution. Although the current model is tailored for VMs, it aims to

modify it for use on standalone machines in upcoming research. The system have yet

504 B. Pydala et al.

to assess whether the models optimized for one machine configuration perform effec-

tively on different configurations, such as those with increased memory or additional

CPU cores. This aspect will be a focus of future investigations.

7 References

1. SR Department, Ransomware victimization rate 2022. Accessed: Apr. 6, 2022. [Online].

Available: https://www.statista. com/statistics/204457/businesses-ransomware-attack-rate/

(2022).

2. D. Braue, Ransomware Damage Costs. Accessed: Sep. 16,2022. Available:

https://cybersecurityventures.com/globalransomware-damage-costs-predicted-to-reach-

250-billion-usd-by-2031/ (2022).

3. Logix Consulting, What is Signature Based Malware Detection. Accessed: Apr. 3, 2023.

[Online]. Available: https://www.logixconsulting. com/2020/12/15/what-is-signature-

based-malware-detection/ (2020).

4. W. Liu, P. Ren, K. Liu, and H.-X. Duan, Behavior-based malware analysis and detection.

Proc. 1st Int. Workshop Complex, Data Mining, Sep. 2011, pp. 39–42.

5. S. Aurangzeb, R. N. B. Rais, M. Aleem, M. A. Islam, and M. A. Iqbal, On the classifica-

tion of microsoft-windows ransomware using hardware profile. PeerJ Comput. Sci., vol. 7,

p. e361, (02/2021).

6. S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, and R. Khayami, Know

abnormal, find evil: Frequent pattern mining for ransomware threat hunting and intelli-

gence. IEEE Trans. Emerg. Topics Comput., vol. 8, no. 2, pp. 341–351, (04,2020).

7. N. Pundir, M. Tehranipoor, and F. Rahman RanStop: A hardwareassisted runtime crypto-

ransomware detection technique. arXiv:2011.12248 (2020).

8. M. Alam, S. Bhattacharya, S. Dutta, S. Sinha, D. Mukhopadhyay, and A. Chattopadhyay,

RATAFIA: Ransomware analysis using time and frequency informed autoencoders. Proc.

IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST), pp. 218–227 (05/2019).

9. Reddy Madhavi, K., A. Vinaya Babu, G. Sunitha, and J. Avanija. "Detection of concept-

drift for clustering time-changing categorical data: An optimal method for large datasets."

In Data Engineering and Communication Technology: Proceedings of 3rd ICDECT-2K19,

pp. 861-871. Springer Singapore, 2020.

10. K. Thummapudi, R. Boppana, and P. Lama, IO 41 events 5 rounds, Harvard Dataverse,

DOI: 10.7910/DVN/GHJFUT (2022).

11. Durre Zehra Syeda, Mamoona Naveed Asghar, Dynamic Malware Classification and API

Categorisation of Windows Portable Executable Files Using Machine Learning. Applied

Sciences, (2024).

12. V. Jyothsna, E. Sandhya, Thammisetty Swetha, P. Lokesh Kumar Reddy, B. Jyothsna,

P.Bhasha, Deep Learning Model for Intrusion Detection. SDN Network, 1st International

Conference on Optimization Techniques for Learning (ICOTL), (2023).

13. Seunghye Lee, Taeseop Kim, Qui X. Lieu, Thuc P. Vo, Jaehong Lee, A novel data-driven

analysis for sequentially formulated plastic hinges of steel frames, Computers & Struc-

tures, (2023).

14. M. Rhode, P. Burnap, and A. Wedgbury, Real-time malware process detection and auto-

mated process killing. Secur. Commun. Netw., vol. 2021, pp. 1–23, (12/2021).

15. Seunghye Lee, Taeseop Kim, Qui X. Lieu, Thuc P. Vo, Jaehong Lee, A novel data-driven

analysis for sequentially formulated plastic hinges of steel frames, Computers & Struc-

tures, (2023).

Detecting Ransomware Threats in Disk Storage through Behavioral 505

 Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

506 B. Pydala et al.

http://creativecommons.org/licenses/by-nc/4.0/

	Detecting Ransomware Threats in Disk Storage through Behavioral Analysis using CNN2D and Flask Framework

