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Abstract. Image denoising finds applications in various fields like remote sens-

ing, photography, biological imaging, astronomy etc. If image is corrupted with 

single source of noise, then a suitable denoising filter can be used. The major 

challenge associated with image denoising algorithms is denoising of image cor-

rupted with multiple sources of the noise. Excessive smoothing can arise during 

the reduction of Additive White Gaussian Noise (AWGN) which can lead to a 

reduction in the level of detail and structural information and if Poisson noise is 

removed, then the AWGN components will still be retained in resultant image. 

To address this issue, we propose the Poisson Unbiased Risk Estimate Linear 

Expansion of Thresholds (PURE LET) approach that denoises mixed AWGN and 

Poisson noise images using Weiner filter decomposition. The application of a 

linear transformation to a filtered image allows for an inaccurate computation of 

the signal dependent local noise variance in the transform domain. Weiner filter 

inverts the blur of the image and removes extra noise by decomposing. The quan-

titative and qualitative analysis was conducted to determine the proposed algo-

rithm’s efficacy. 

Keywords: Image denoising, Weiner filter, PURE LET deconvolution, mixed 

Poisson-Gaussian noise, BRISQUE, NIQE, PIQE. 

1 Introduction 

The purpose of denoising an image is to restore the original form of an image from 

noisy observations. Denoising of an image is a crucial undertaking aimed at rectifying  
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imperfections that arise during the capture of a real-world scene and its subsequent 

display, owing to inherent physical and technological constraints. Additionally, it might 

be advantageous as a preprocessing step to enhance the outcomes of more advanced 

image processing applications such as fusion [1, 2, 3, 4, 5, 6], object recognition [7, 8, 

9, 10, 11], and tracking [12], image registration [13] among others. 

During the acquisition process, two primary sources of noise are commonly taken 

into account. One is due to the presence of intrinsic thermal and electrical fluctuations 

in acquisition equipment which is a common source, often described by Additive White 

Gaussian Noise (AWGN) model. The other source arises from variations in the quantity 

of photons observed, which is an intrinsic constraint of the detecting mechanism em-

ployed in photosensitive apparatus, such as Charge-Coupled Device (CCD) cameras, 

photodiodes and the Photomultiplier Tube (PMT). This commonly occurs under unfa-

vorable circumstances, such as surroundings with inadequate illumination or when ex-

posure times are short. In the framework of photon-counting, Poisson statistics is ad-

hered by noise model, that exhibits a notable dependence on the signal strength. When 

dealing with images obtained from CCD cameras, the noise is regarded as a composite 

Poisson-Gaussian model. Low-intensity signals are commonly seen in several fields 

such as astronomy, medicine, and biology. 

The issue of mitigating image noise while retaining its primary attributes, such as 

edges, textures, colors, and contrast, has been the subject of substantial research in re-

cent decades, resulting in the development of several methodologies. In a nutshell, de-

noising algorithms can be categorized into three primary groups namely spatial and 

transform domain methods, and the hybrid ones. 

Spatial domain approaches, sometimes referred to as spatial filters, employ a tech-

nique wherein the estimation of each pixel is achieved by calculating the weighted av-

erage of its neighboring pixels, both local and non-local. The determination of these 

weights is based on the similarities between the pixels. There exist multiple non-linear 

as well as linear filter-based techniques, including the Median filter, Wiener filter, Bi-

lateral Filter, Anisotropic Filter, and Total Variation approach, employed for the pur-

pose of eliminating noise from images. Nevertheless, these techniques frequently lead 

to the undesirable occurrence of the staircase effect and the degradation of structural 

details. In contrast to the local smoothing filters discussed earlier, the Non-Local Means 

(NLM) based approaches were initially proposed by Buades et al. [14] with the aim of 

utilizing the non-local self-similarity present in spatial patterns within real images in 

order to effectively remove noise. In recent times, a number of variations of the NLM 

algorithm have been put forth with the aim of enhancing the flexibility and adaptability 

of non-local filters. Nevertheless, NLM approaches fail to incorporate past knowledge 

regarding local image structures. 

In contrast to spatial domain approaches, transform-based methods have the ad-

vantage of facilitating a more straightforward separation of noise and signal. It is as-

sumed that the image can be represented in a sparse manner using certain bases of rep-

resentation, like the wavelet basis. The methods based on transform domain are com-

monly employed for wavelet coefficients computation in images and for subsequent 

reconstruction of these images through the utilization of inverse transformation. While 

wavelet basis and a few transform domain-based approaches that rely on fixed bases 
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have demonstrated exceptional denoising capabilities, the utilization of a fixed basis to 

indicate all local structures often leads to the introduction of visual artifacts. Several 

approaches based on sparse representation have been presented in order to address the 

limitations. The fundamental premise underlying the use of sparsity priors is the notion 

that image patches can be expressed in a sparse manner by a learned dictionary or a 

fixed basis.  Nevertheless, these methodologies typically entail the resolution of an in-

tricate optimization problem and the manually adjustment of parameters in order to ap-

proximate the optimal level of performance. 

In the recent past, notable progress has been made in the development of hybrid 

methods that combine spatial domain and transform domain approaches. The hybrid 

approaches, particularly those using Low-Rank Matrix Approximation (LRMA), have 

garnered significant attention in image processing area. LRMA focuses on recovering 

the underlying low-rank matrix structure from noisy observations, making it a popular 

and effective approach. An exemplary approach, known as Weighted Nuclear Norm 

Minimization (WNNM), has demonstrated exceptional performance by allotting dis-

tinct weights to different singular values. The SAIST technique, employs Singular 

Value Decomposition (SVD) to sparsely represent image patches. It reduces noise pre-

sent in an image with the help of an iterative process of singular value shrinkage using 

the BayesShrink. Zha et al. [15] have proposed a range of image restoration algorithms 

that leverage a low-rank prior, resulting in notable advancements in this field. The 

patch-based low-rank image restoration techniques proposed by Guo et al. [16] demon-

strate exceptional performance. 

In the past few years, there seems to be an increase in the emergence of novel meth-

odologies for image denoising that are built on deep learning, as posited by numerous 

researchers. This approach involves training image models using large datasets and 

subsequently utilizing these trained models for the purpose of image denoising. Never-

theless, deep learning techniques strongly depend on the availability of training data, 

necessitate substantial computational resources, and involve extensive computation. 

Moreover, they frequently exhibit a noticeable decline in denoising efficacy when con-

fronted with disparities between the images used for training and those used for testing. 

The image denoising methods discussed earlier, including traditional methods such 

as spatial domain and frequency domain, as well as more contemporary deep learning 

methodologies encounter the challenge of effectively restoring image details and struc-

tures with higher precision. Hence, the objective of a denoising method is to preserve a 

maximal amount of information while effectively eliminating noise present in an im-

age. In this article, a unique denoising model which utilizes the Poisson Unbiased Risk 

Estimate Linear Expansion of Thresholds (PURE LET) deconvolution approach to ef-

fectively eliminate both AWGN and Poisson noise is proposed. 

The next few sections of this article are organized as follows. Section II of this man-

uscript presents a concise overview of the PURE LET deconvolution approach and the 

proposed algorithm for imagine denoising. In Section III, experimental findings are 

presented and we illustrate the advantages of the proposed methodology through the 

evaluation of quality metrics and subjective assessments. In Section IV, this paper is 

brought to a conclusion and the potential areas for future research are emphasized. 
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2 Proposed Image Denoising Method 

Consider a linear degradation model [17, 18] given by equation (1). 

𝑦 = 𝛼𝑃 (
𝐻𝑥

𝛼
) 

(1) 

where, 𝑦 ∈ 𝑅𝑁 represents the distorted measurement of the unknown true image 𝑥 ∈
𝑅𝑁 which exists in a d-dimensional space and 𝑁 =  𝑁1 × 𝑁2 × … × 𝑁𝑑, 𝐻 ∈ 𝑅𝑁×𝑁  rep-

resents convolution of the Point Spread Function (PSF). The inclusion of 𝐻𝑥 ∈ 𝑅𝑁×𝑁 

is necessary in order to guarantee the inherent non-negativity of Poisson intensities. 

𝑃(. ) denotes the influence of Poisson noise, and 𝛼 ∈ 𝑅+ indicates the scaling factor 

that governs the noise intensity. In particular, higher values of 𝛼 leads to decreased 

image intensity, thereby leading to an increase in Poisson noise. 

The mathematical expression for the expected value of the Mean Squared Error 

(MSE) between an estimated value 𝑥 = 𝐹(𝑦) and the true value 𝑥 can be formulated 

based on the observed image 𝑦. Our aim is to determine an estimated value, denoted as 

𝑥, which closely approximates the true value, 𝑥 with the least Mean Squared Error 

(MSE). Ideally, the objective is to reduce the MSE as represented by equation (2). 

𝑀𝑆𝐸 =
1

𝑁
𝐸{‖𝑥 − 𝑥‖2} =

1

𝑁
𝐸 {∑(𝑥𝑛 − 𝑥𝑛)2

𝑁

𝑛=1

} 
(2) 

where, 𝐸(. ) represents the mathematical expectation operator. 

Let 𝐹(𝑦) = [𝑓𝑛(𝑦)]𝑛=1,2,…𝑁 represent a 𝑁-dimensional real-valued vector function. 

Assuming the invertibility of equation (1) and the invertibility of 𝐻, the random varia-

ble 𝑃𝑈𝑅𝐸{𝐹} can be expressed by equation (3). 

𝑃𝑈𝑅𝐸{𝐹} =
1

𝑁
‖𝐹(𝑦)‖2 −

2

𝑁
𝑦𝑇𝐻−𝑇𝐹−(𝑦) + 𝜀𝑃 

(3) 

where, 𝑃𝑈𝑅𝐸{𝐹} represents an unbiased estimate of the expected MSE indicated by 

equation (4). 

𝐸{𝑃𝑈𝑅𝐸} =
1

𝑁
𝐸{‖𝐹(𝑦) − 𝑥‖2} 

(4) 

where, 𝐹−(𝑦) = [𝑓𝑛(𝑦) − 𝛼𝑒𝑛]𝑛=1,2,…𝑁 𝑒𝑛 is the 𝑁-dimensional vector with compo-

nents 𝛿𝑘−𝑛 ; 𝑘 = 1,2, … . 𝑁 , 𝜀𝑃 = (𝑦𝑇𝐻−𝑇𝐻−1𝑦 − 𝛼1𝑇𝐻−𝑇𝐻−1𝑦)/𝑁 is independent 

on 𝐹. 

The absence of bias between MSE and 𝑃𝑈𝑅𝐸, together with a high 𝑁 value, suggests 

that equation (3) can serve as a dependable alternative to the MSE. This is supported 

by the law of large numbers, which states that a sample mean, such as MSE and 𝑃𝑈𝑅𝐸, 

converges to its mathematical expectation. In practical applications, all elements can be 
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computed due to the substitution of the MSE with a statistical counterpart that elimi-

nates its dependence on variable 𝑥. 

The observed noisy image is passed through Weiner filtering which is then followed by 

denoising in the transform domain of the decomposed images. A suitable sub-band 

adaptive thresholding is applied to obtain reconstructed images.  The estimate 𝑥 is de-

rived by reducing the reconstructed images using PURE LET approach as depicted in 

Fig 1. 

Fig 1. Block diagram of the image denoising technique using PURE LET 

3 Result Analysis 

The proposed denoising algorithm is tested on images taken from dataset [19, 20]. 

These test samples are manually added with AWGN and Poisson noise with scaling 

factor 𝛼 set to 0.9 to 0.99 which indicates that the ground truth images are 90 to 99 

percent corrupted by noise as shown in left side images of Fig 2. The middle column of 

Fig 2 represents the denoised images using PURE LET approach. The last column of 

Fig 2 indicates the ground truth data. It is very clear that the subjective assessment of 

the proposed algorithm has denoised the noisy samples efficiently.  

 

(i) Noisy test sample 1 (ii) Output denoised image  (iii) Ground truth  

Observed  

Image 

 𝑦 

Estimate  

Denoised  

Image 

𝑥 = 𝐹(𝑦) 

Weiner 

Filtering 

Decomposition 

Transform 

Domain 

Denoising 

Reconstruction 
PURE LET 

Minimization 
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(iv) Noisy test sample 2 (v) Output denoised image  (vi) Ground truth  

(vii) Noisy test sample 3 (viii) Output denoised image  (ix) Ground truth  

(x) Noisy test sample 4 (xi) Output denoised image (xii) Ground truth  

(xiii) Noisy test sample 5 (xiv) Output denoised image  (xv) Ground truth  

Signal Dependent Local Noise Removal Using Weiner Filter             1475



 

(xvi) Noisy test sample 6 (xvii) Output denoised image  (xviii) Ground truth  

(xxi) Noisy test sample 7 (xx) Output denoised image  (xxi) Ground truth  

(xxii) Noisy test sample 8 (xxiii) Output denoised 
image  

(xxiv) Ground truth  

(xxv) Noisy test sample 9 (xxvi) Output denoised 

image  

(xxvii) Ground truth  
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(xxviii) Noisy test sample 10 (xxxi) Output denoised 

image  

(xxx) Ground truth  

Fig 2.  Result analysis of the proposed PURE LET deconvolution image denoising 

approach 

 

The effectiveness of the proposed algorithm in this manuscript has been objectively 

evaluated through the utilization of various metrics, including Perception-based Image 

Quality Evaluator (PIQE), Peak Signal-To-Noise Ratio (PSNR), Naturalness Image 

Quality Evaluator (NIQE), and Blind/ Referenceless Image Spatial Quality Evaluator 

(BRISQUE). 

PSNR is a quantitative measure that compares the maximum signal power to the 

distorting noise power, which ultimately impacts the quality of image representation. 

PSNR is a extensively employed metric for quantifying the quality of image reconstruc-

tion in the presence of various levels of noise. BRISQUE is a natural scene statistic-

based evaluator that utilizes local normalized luminance signals to extract point-wise 

statistics. It assesses the naturalness of an image by measuring the deviations from a 

natural image model. NIQE is founded on the development of a statistical feature set 

that is "quality aware" which is derived from a straightforward and effective space do-

main model known as Natural Scene Statistic (NSS). The aforementioned features are 

obtained by the utilization of a corpus consisting of undistorted, natural images. The 

quality assessment methodology employed by PIQE involves the utilization of a block-

wise technique to evaluate the quality of a given image, taking into consideration an 

arbitrary form of distortion. 

BRISQUE, NIQE, PIQE are image quality scores with no reference image. A lower 

score is indicative of superior perceptual quality. High PSNR and low BRISQUE, 

NIQE, and PIQE metric values are preferred to prove the efficiency of the algorithm. 

As shown in Table 1, for test samples 1 and 2, 𝛼 is set to 0.90, which leads to their 

PSNR metric values to a high value equal to 32.31608 and 29.43789, BRISQUE metric 

is reduced by 50 % of its input value, similarly NIQE is reduced to 80% of its input 

value, and PIQE is reduced to 65% of its input value. As explained earlier high PSNR 

and lower BRISQUE, NIQE, PIQE are preferred.  

For test samples 3 and 4, 𝛼 is set to 0.99, even though the noise level is highest in 

this sample, PSNR value is almost same as that of test sample 1 and 2. Similar variations 

in remaining metrics can be observed. Since the efficiency of the algorithm can be 

tested based on noise levels, the proposed algorithm has been tested for noise levels 
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starting from 90% to 99% noise corrupted images, and we have obtained good metric 

values. 

 

Table 1. PSNR, BRISQUE, NIQE, PIQE metric value for the noisy test samples and 

corresponding denoised images 

Noisy 

Test 

Sample 

Input  

PSNR 

Output  

PSNR 

Input 

BRISQUE 

Output 

BRISQUE 

Input 

NIQE 

Output 

NIQE 

Input 

PIQE 

Output 

PIQE 

1 22.18645 32.31608 41.77687 21.83309 10.32165 2.468435 57.77892 26.72876 

2 22.40793 29.43789 37.25678 24.38887 8.668735 2.397657 56.33961 11.16012 

3 22.53987 28.00275 36.54491 26.81331 11.39234 3.06424 50.64443 13.00266 

4 22.17224 31.27656 41.74883 33.68759 12.87197 6.185475 60.88644 25.77333 

5 22.33087 29.26785 37.17823 22.89366 8.619324 4.180946 50.46461 32.9536 

6 22.24332 31.92569 40.64315 29.73407 11.15319 2.906624 58.43003 31.67095 

7 22.24459 30.34808 42.23467 25.38265 10.57013 2.484496 58.34107 22.77775 

8 22.21786 26.67505 41.34621 22.90291 9.301183 3.921342 61.8011 32.14361 

9 22.27805 34.02164 41.57237 24.29464 11.28927 4.092291 64.2139 26.55424 

10 22.33342 30.7253 40.38109 22.38636 12.34342 3.875918 59.98048 23.57291 

 

In Fig 3, graphical illustration of quality metrics PSNR, PIQE, NIQE and BRISQUE 

is shown for better interpretation of results. The vertical axis of the graph depicts the 

ten noisy image samples, while the horizontal axis represents the corresponding metric 

values. The output denoised images have higher PSNR and lower BRISQUE, NIQE 

and PIQE compared to input noisy images. 
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Fig 3. Graphical representation of performance metrics 

4 Conclusion and Scope for Future Work 

A novel signal dependent local noise removal technique that uses Weiner filter de-

composition is proposed. As images are affected with multiple sources of noise say 

mixed AWGN and Poisson noise, our algorithm can effectively denoise using Poisson 

Unbiased Risk Estimate Linear Expansion of Thresholds (PURE LET) approach. The 

method that has been proposed in this article demonstrates superior performance with 

respect to the quality of restoration. The efficiency of the proposed method is assessed 

by the utilization of various metrics, such as Peak Signal-to-Noise Ratio (PSNR), 

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE), Naturalness Image 

Quality Evaluator (NIQE), and Perception-based Image Quality Evaluator (PIQE). 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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