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Abstract. The ability of porous biomedical implants to stimulate bone tissue 

formation has been shown to improve biocompatibility and osseointegration. Since 

the modulus of elasticity of human bone and implant material differs, porous implants 

may also provide less protection against stress. This study looked into how porosity 

control was achieved in AISI 316L bone implant material using PU sponge as the 

foaming agent. A duplicate template for pore production is used in the suggested 

method, which is PU sponge media. By combining distilled water with 1% weight 

tapioca flour to create a green body, PU sponges with porosities of 20, 25, 30, and 35 

PPI are impregnated with AISI 316L metal slurry. By measuring the density of PU 

sponge throughout the creation of green bodies, porosity control was accomplished. 

Using an optical microscope, the development of the porous AISI 316L's physical and 

microstructural characteristics was examined. Using an optical microscope at a 

specific magnification, the powder necking phenomenon was seen. The findings 

indicate that when the density of PU sponge increases, sample porosity increases as 

well. Nonetheless, the porosity of the AISI 316L biomaterial decreases as the sintering 

temperature rises. As the sintering temperature and PU sponge density increase, the 

sample keeps getting smaller. When creating porous materials for orthopedic 

implants, the study's findings can be consulted. 

Keywords: Biomaterial, Implant, Metal Foam, Polyurethane, Porous Material, 

Stainless Steel. 

1. Introduction 

Due to its great biocompatibility (Pathote et al., 2023), effective corrosion resistance for 

orthopedics (Pathote et al., 2022), and high specific strength (Ravichander et al., 2023), the 

metallic biomaterial AISI 316L has been acknowledged as an excellent material for bone, 

dental, and orthopedic implants. But as Table 1 illustrates, the Young's modulus of AISI 

316L metal is ~193 GPa, which is less than that of bone. This mismatch in Young's modulus 

between the implant and bone might cause protective stress, which can lead to implant  
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failure (Essa et al., 2018). As per Čapek et al. (2016), a low modulus porous material was 

therefore required to avoid stress-shielding effects. 

Equalizing the elastic modulus of implants is one way to address the disparity between their 

mechanical characteristics and those of human bones. Making it a porous material is one 

way to accomplish that (Du et al., 2021). The benefits of porous implants include improved 

bone-graft bonding, faster tissue growth, and easier medication and bodily fluid 

transmission via channels (Singh et al., 2021). The link between the implant and the bone 

can be strengthened by producing porous implant material. Additionally, it permits the 

growth of bodily tissues, which improves metals' osseointegration and biocompatibility in 

biomedical applications (Bandyopadhyay et al., 2023). 

Anisotropic, multiphase, and heterogeneous properties are seen in human bones. The human 

skeleton is divided into two halves. Čapek et al. (2016) refer to the cortical bone as one 

portion and the trabecular bone as the other. Because it lines the outside of the trabecular 

bone, the cortical bone acts as a shield for the trabecular bone. Accordingly, cortical bone 

must possess a higher mechanical strength than trabecular bone (Du et al., 2021). Table 1 

displays the traits of the two different kinds of bones. 

The biomaterial AISI 316L was employed in this study. Using tapioca flour as a pore 

medium and a PU sponge, the porous material was modified. Using powder metallurgy, the 

different levels of porosity that are obtained are controlled. Tapioca flour functions as a 

binder and an agent that generates controllable micropores. 

Table 1. Characteristics of human bones 

TYPE 

CORTICAL BONE TRABECULAR BONE 

Loading 

direction 

Ultimate 

strength/MPa 

Elastic 

modulus/GPa 

Ultimate 

strength/MPa 

Elastic 

modulus/GPa 

Compressive 

mechanical 

properties 

Longitudinal ~ 190–245 ~ 14–28 ~ 1–12 ~ 0.1–0.4 

Cross ~ 30–170    

Density 
~ (1.5–2) 

g·cm− 3 

  0.2–0.6  

Porosity ~ (3–12) %   ~ 30–95  

2. Research Method 

 
2.1. Procedure for preparation 

This study used PU sponge, tapioca flour, distilled water, and AISI 316L biomaterial powder 

as its materials. The key ingredient in the dough used to make green bodies was AISI 316L 
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biomaterial, which passes through a 325 mesh screen. Twenty PPI, twenty-five PPI, thirty 

PPI, and thirty-five PPI were the density values for PU sponge. As a powder binder and 

foaming agent, tapioca flour was the preferred option. 

The first step in preparing the green body was to cut the PU sponge sheet to measure 15 

mm by 15 mm by 15 mm (Song et al., 2021). Figure 1 displays a digital image of a PU 

sponge specimen that has been created. Then, combine tapioca flour and 1% wt. distilled 

water to make a powder adhesive solution. Once the mixture was well combined and 

dissolved, it was brought to a boil.  

The process of creating the AISI 316L biomaterial mixture involved mixing up to 3% of the 

powdered AISI 316L biomaterial by weight with a tapioca flour solution. The liquid was 

then blended into an AISI 316L slurry for 20 minutes at 65 rpm using a stirrer. The slurry 

was prepared for use in printing green bodies after being left for an hour. 

By impregnating the PU sponge with AISI 316L slurry, the green body specimens are 

created. The sponge was immersed in slurry until it was completely covered on both the 

inside and outside. A green body dryer was used, and it was run for 20 minutes at 120 

degrees Celsius. Retaining the slurry on the PU sponge grid is the aim of the drying process. 

The Nabertherm muffle furnaces were used for the sintering process. 900, 1000, 1100, and 

1200 degrees Celsius were the settings for the sintering temperature, respectively. With a 

holding period of 60 minutes, the heating rate was set at 200 oC per hour. The furnace's OFF 

button was then turned off to complete the cooling process. 

2.2. Measurements of shrinkage and porosity in porous biomaterial AISI 316L 

Scanning optical microscopy was used to study the pore structure of porous AISI 316L at 

specific magnifications. Concurrently, the material's pore porosity is determined using the 

subsequent formula (Qiu et al., 2018): 

𝑃 =  1 −
𝑃∗

𝑃𝑠
                                                                  (1) 

where ρ* represents the porous density of AISI 316.  

The measurement technique involves dividing the specimen's total weight by its total 

volume. The AISI 316L solids' density, represented by Ps, is 8.0 g/cm3. Next, using the 

weight of the test object both before and after sintering, the shrinkage of the object is 

calculated. 
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Fig 1 A digital photograph of the prepared porous material. 

3. Research Results 

3.1. Surface properties of the modified porous 

A macrograph of the porous biomaterial AISI 316L 

Results obtained from different sizes of PU sponge are displayed in Figures 2-4, which 

represent the macrostructure of porous 316L stainless steel. The asymmetrical pores 

measure roughly 0.3 mm in diameter, 0.5 mm in length, 0.7 mm in diameter, and 0.9 mm 

in length for PU sponges with densities of 20 PPI, 25 PPI, 30 PPI, and 35 PPI accordingly. 

Because part of the sample's surface is covered in 316L metal, it is not possible to see the 

entire distribution of pores on the sample. To ensure that the mechanical test yields reliable 

results, it is advised to remove the excess 316L metal that is covering the sample's exterior.  

 

Fig 2. Macrostructure of the porous AISI 316L under a sintered of 1000 oC with different densities of 

PU sponge. (a) 20 PPI, (b) 25 PPI, (c) 30 PPI, and (e) 35 PPI, respectively. 

 

 

(a) (b) (c) (d) 
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Fig 3 Macrostructure of the porous AISI 316L under a sintered of 1100 oC with different densities of 

PU sponge. (a) 20 PPI, (b) 25 PPI, (c) 30 PPI, and (e) 35 PPI, respectively.  

 

Fig 4 Macrostructure of the porous AISI 316L under a sintered of 1200 oC with different densities of 

PU sponge. (a) 20 PPI, (b) 25 PPI, (c) 30 PPI, and (e) 35 PPI, respectively. 

A higher magnification surface macrograph of 316L stainless steel is shown in Figures 5-7. 

The arrows indicate that the supports are not attached, as can be seen visually. Imperfect 

impregnation, the slurry's adhesion force to the PU sponge material, sintering speed, 

sintering holding time, and cooling time can all cause the supports to separate. 

The porous biomaterial AISI 316L micrograph 

The micrographs of different sintering temperatures are displayed in Figure 5. The specimen 

exhibits weak bonding between the AISI 316 powder granules at a sintering temperature of 

1000oC for all PU sponge variants. As the sintering temperature rises, these powder grains 

maintain their connections. Thus, strong connections exist between the grains at a sintering 

temperature of 1100oC. in order for the grain boundaries to become invisible. This 

demonstrates how the grain fragments have already merged. Finally, the pores enlarge and 

cover the entire surface of the material at a sintering temperature of 1200oC. 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Fig 5 Microstructure of the cellular structure of the grains and sintered pore wall at 1000oC. 

 

 

 

 

 

 

 

Fig 6 Microstructure of the cellular structure of the grains and sintered pore wall at 1100oC. 
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Fig 7 Microstructure of the cellular structure of the grains and sintered pore wall at 1200oC. 

3.2. AISI 316L porous biomaterial's porosity and shrinkage 

The percentages of porosity and mass shrinkage for porous objects containing 1% weight 

of sintered tapioca flour at different temperatures are displayed in Figures 8 and 9, 

respectively. With the exception of the sintering temperature of 1200 oC, the results 

indicated that shrinkage rose and porosity reduced when the sintering temperature was 

raised. Hu et al. (2023) found that AISI 316L holes created using tapioca starch as a space 

holder likewise displayed the maximum porosity value after an hour at 1200°C. The 

maximum porosity value was likewise seen in AISI 316L pores, which were created using 

tapioca starch as a space holder, after an hour at 1200°C. 

 

 

 

 

 

 

 

Fig 8 Porosity as a function of sintering temperature. 

The shrinking process is determined by the material's inherent characteristics. An rise in 

sintering temperature tends to cause the specimen's pore size to decrease. Additionally, if 

the sintering temperature is too high, it will be destroyed. Mechanical characteristics may 

decrease as porosity increases (Wang et al., 2022). A sintering temperature of 1100oC 

resulted in the best porosity percentage of 42.62%. Observations made using an optical 
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microscope, as shown in Figure 6, can support this. A sintering temperature of 1200oC, 

which damaged the specimen's surface, further supports these results. As seen in Figure 5, 

this is distinguished by the emergence of diffuse holes. 

By applying a space holder technique in conjunction with a duplicate template, the highly 

porous AISI 316L biomaterial has been created. According to equation 1, 42.62%, or 1100 
oC, is the sintering temperature at which this porous biomaterial has the maximum porosity. 

According to Dewidar et al. (2007), implant materials suggested for orthopedics have 

porosities ranging from 20% to 59%. The findings of this study can then be suggested as an 

alternate material for orthopedics based on porosity. 

 

 

 

 

 

 

 

 

Fig 9 Shrinkage and sintering temperature of porous AISI 316L at different PU sponge densities. 

4. Conclusion 

This study has drawn a number of conclusions, including: 

1. The space holder and replica template method can be used to create the porous AISI 

316L biomaterial. PU sponge as a macropore formation medium. In addition to being 

a binder for AISI 316L metal powder, tapioca flour serves as a foaming agent and 

has the ability to produce pores—albeit tiny ones. 

2. 2. PU sponge density, tapioca starch content, and sintering temperature all have 

significant roles in pore development. For every PU sponge density, the ideal 

porosity was reached at 1100 degrees Celsius. There were 42.62% micropores as a 

result. While porosity rises to 1200oC during sintering, cracks start to show. 
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