

Urban planning and population enhancement

Yizhi Zhang

The student of Nanjing University of Finance and Economics in Massey college

2025522608@qq.com

Abstract. This study examines the relationship between urban planning factors, specifically the number of schools, the number of teachers, and education funding, and their impact on population quality, using Nanjing as a case study. Through principal component analysis and multiple linear regression, the study reveals a strong correlation between the number of schools, education funding, and the number of graduates, indicating their crucial role in enhancing population quality. The findings suggest that increasing the number of schools and improving education funding can effectively contribute to the development and social progress of urban areas.

Keywords: urban planning, population quality, education funding, schooling

1 INTRODUCTION

In the context of China's evolving educational landscape, factors such as the number of schools, teachers, and education funding play pivotal roles in shaping the quality of the population. This study aims to analyze the impact of these factors on population quality, focusing on Nanjing as a representative case ^[1].

1.1 Number of Schools

The number of schools is one of the most important indicators of the level of educational development in a region. As the number of schools increases year by year, the coverage and acceptance of educational resources continues to expand, and more people are able to be influenced by high-quality education, the quality of which is also naturally improved. At the same time, with the increase in the number of schools, the gradual formation of healthy competition can also promote the overall level of schools continue to improve, for the training of human resources^[5].

1.2 Number of Teachers

Teachers are the cornerstone of educational development, and the more teachers there are, the more important a role they play in the educational endeavor. As the number of teachers increases and the number of students in a class gradually decreases, teachers

© The Author(s) 2024 M. Ali et al. (eds.), *Proceedings of the 2024 International Conference on Urban Planning and Design (UPD 2024)*, Advances in Engineering Research 237, https://doi.org/10.2991/978-94-6463-453-2_16 can give each student more attention and guidance to help them develop better. At the same time, more teachers can also mean more teachers with different backgrounds, experiences and ideas joining the educational enterprise, providing students with broader and more diverse perspectives and ways of thinking.

1.3 Financing of Education

Education funding is a necessary input for the development of education, and more adequate education funding usually means higher quality education resources and services. Reasonable education funding can help schools improve campus facilities, upgrade educational equipment, purchase teaching supplies and books, and so on, and provide support for more quality education activities. In addition, adequate education funding can attract more quality teachers to participate in education and create a better learning environment and more learning opportunities for students^[2].

In summary, improvements in the number of schools, the number of teachers and education funding can all have a positive impact on the quality of the population. The combined effect of these factors will promote the continuous development of national education and the continuous improvement of population quality. In conclusion, university graduates play an important role in the development of the whole society, and they have an irreplaceable role in the improvement of population quality and overall social progress. Therefore, the training and support for university graduates should be strengthened to create a better environment for their employment and innovative development.

2 RESEARCH PROCESS

Taking Nanjing as an example, we study the impact of three aspects, namely, the number of schools, the number of teachers, and the funding of education, on the quality of the population ^[6].

This experiment takes Nanjing as an example to study the impact on the quality of the population in terms of the number of schools, the number of teachers, and the funding of education, where the quality of the population is reflected in the number of graduates at each stage each year ^[3].

2.1 Data Collection

By querying the National Bureau of Statistics, data on the number of schools, the number of teachers, education funding, and the number of graduates in NJ from 2013-2021 were collected. In table 1:

Table 1. Data Acquisition.

Number of	Number of	funding for advection	Number of graduates
schools	teachers	funding for education	

Number of spe- cial education schools	Number of spe- cial education schools	Special education enrollment	Number of elementary school graduates
Number of ele- mentary school	Number of ele- mentary school	Elementary school enrolment	Number of general sec- ondary school graduates
Number of gen- eral secondary schools	Number of gen- eral secondary schools	General secondary school enrolment	Number of high school graduates
Number of full-time teachers in high schools	Number of full-time teachers in high schools	High school enrolment	Number of general sec- ondary school graduates
Number of gen- eral schools	Number of gen- eral schools	Enrolment in general secondary schools	Number of graduates of specialized secondary schools
Number of spe- cialized second- ary schools	Number of spe- cialized second- ary schools	Enrolment in special- ized secondary schools	Number of undergradu- ate graduates
Number of gen- eral higher edu- cation institutions	Number of gen- eral higher edu- cation institutions	Enrollment of under- graduate students	Number of postgraduate graduates
		Graduate student enrollment	

2.2 Data Analysis

Principal Component Analysis.

The data will be downscaled using principal component analysis due to the large number of dimensions of the data in terms of number of schools, number of teachers, education funding, and number of graduates.

(1) Number of schools

. 1	Initial eigenvalue			Extract	Extract the sum of the square loads		
ingredient	(grand) total	Variance %	Cumulative %	(grand) total	Variance %	Cumulative %	
1	5.758	82.258	82.258	5.758	82.258	82.258	
2	0.848	12.11	94.368				
3	0.177	2.527	96.895				
4	0.149	2.136	99.03				
5	0.059	0.836	99.866				
6	0.038	0.479	100				
7	0.000	0.000	100				

Table 2. Explanation of Variance.

194 Y. Zhang

As shown in Table 2, the characteristic roots of each factor and the corresponding factor contribution, finally extracted a common factor that explains 82.258% of the information of the whole data, which is more than 80%, so it is considered that it can be satisfied as the result of principal component analysis.

Number of special education schools	0.151
Number of elementary school	0.17
Number of general secondary schools	0.172
Number of upper secondary schools	0.141
Number of general secondary schools	0.172
Number of specialized secondary schools	-0.144
Number of general higher education institutions	0.149

From Table 3, the factor score coefficients included in each component, so that the composite data can be calculated in the following table:

particular year	Number of schools
2013	118.949
2014	121.082
2015	122.748
2016	124.853
2017	129.76
2018	136.85
2019	141.839
2020	148.483
2021	151.688

Table 4. Number of Schools.

(2) Number of teachers

Table 5. Explanation of Variance.

ingredient	Initial eigenvalue			Extract the	he sum of the loads	squares of the
	(grand) total	Variance %	Cumulative %	(grand) total	Variance %	Cumulative %
1	5.802	82.89	82.89	5.802	82.89	82.89
2	0.806	11.518	94.408			
3	0.331	4.723	99.131			
4	0.056	0.803	99.933			
5	0.004	0.057	99.991			
6	0.001	0.009	100			
7	0.000	0.000	100			

As shown in Table 4 and Table 5, the characteristic roots of each factor and the corresponding factor contribution, finally extracted a common factor, explaining 82.89% of the information of the whole data, which is more than 80%, so it is considered that it can be satisfied as the result of principal component analysis.

Number of full-time teachers in special education	0.158
Number of full-time teachers in elementary school	0.171
Number of full-time teachers in general secondary schools	0.171
Number of full-time teachers in high schools	0.164
Number of full-time teachers in general secondary schools	0.171
Number of full-time teachers in specialized secondary schools	0.151
Number of full-time teachers in general higher education	0.102

Table 6.	Factor	Score	Coefficients.
	1		000000000000000000000000000000000000000

From Table 6, the factor score coefficients of the factors included in each component, so that the composite data can be calculated in the following table:

particular year	Number of teachers
2013	22152
2014	22335.999
2015	22589.64
2016	23128.918
2017	23689.981
2018	24896.894
2019	25791.581
2020	26881.077
2021	27394.357

Table 7. Number of Teachers.

(3) Enrollment

Table 8. Explanation of Variance.

ingredient	Initial eigenvalue			Extract the su	m of the squa	res of the loads
	(grand) total	Variance %	Cumulative %	(grand) total	Variance %	Cumulative %
1	6.139	76.735	76.735	6.139	76.735	76.735
2	1.431	17.883	94.618	1.431	17.883	94.618
3	0.317	3.957	98.575			
4	0.06	0.749	99.324			
5	0.028	0.352	99.676			
6	0.022	0.275	99.951			
7	0.004	0.049	100			
8	0.000	0.000	100			

196 Y. Zhang

As shown in Table 7 and Table 8, the characteristic root of each factor and the corresponding factor contribution, finally extracted a common factor, explaining 76.735% of the information of the whole data, which is more than 70%, so it is considered that it can be satisfied as the result of principal component analysis.

Special education enrollment	0.092
Elementary school enrolment	0.161
General secondary school enrolment	0.159
High school enrolment	0.153
Enrolment in general secondary schools	0.154
Enrolment in specialized secondary schools	-0.076
Enrollment of undergraduate students	0.158
Graduate student enrollment	0.159

Table 9. Factor Score Coefficients.

From Table 9, the factor score coefficients of the factors included in each of the components are known, so that the composite data can be calculated as shown in the table below:

Table	10.	Enrollment.
1 4010	T O.	Lin onnene.

particular year	Number of students enrolled		
2013	56089.6		
2014	57290.722		
2015	57506.022		
2016	60148.755		
2017	73873.538		
2018	77161.975		
2019	80850.088		
2020	86037.492		
2021 87608.833			

(4) Number of graduates

Table	11. Exp	lanation	of Va	ariance.
-------	---------	----------	-------	----------

ingredient	Initial eigenvalue		Extract	the sum of the s loads	squares of the	
	(grand) total	Variance %	Cumulative %	(grand) total	Variance %	Cumulative %
1	4.067	50.844	50.844	4.067	50.844	50.844
2	2.193	27.417	78.26	2.193	27.417	78.26
3	1.087	13.583	91.843	1.087	13.583	91.843
4	0.536	6.702	98.545			
5	0.078	0.976	99.521			

6	0.038	0.479	100		
7	0.000	0.000	100		

As shown in Table 10 and Table 11, the characteristic root of each factor and the corresponding factor contribution rate, finally extracted a common factor, explaining 50.844% of the information of the whole data, which is more than 50%, so it is considered to be basically satisfied as the result of principal component analysis.

Table 12. Factor Score Coefficients.

Number of elementary school graduates	0.251
Number of general secondary school graduates	0.283
Number of high school graduates	0.048
Number of general secondary school graduates	0.228
Number of graduates of specialized secondary schools	-0.176
Number of undergraduate graduates	0.014
Number of postgraduate graduates	0.284

From Table 12, the factor score coefficients included in each component, so the composite number can be calculated

According to the table below:

particular year	Number of graduates
2013	64908.8
2014	63356.626
2015	63586.108
2016	63420.401
2017	64678.318
2018	64601.05
2019	69321.777
2020	73677.667
2021	74916.071

Table 13. Number of graduates.

2.3 Regression Analysis

(1) Modeling

Multiple linear regression models for the number of schools, number of teachers, education funding, and number of graduates were analyzed as follows:

The multiple linear regression analysis was modeled as:

$$\begin{cases} y = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \varepsilon \\ \varepsilon \sim N(0, \sigma^2) \end{cases}$$
(1)

in the formula $\beta_0, \beta_1, \dots, \beta_m, \sigma^2$ are all parameters that are not related to

 x_1, x_2, \dots, x_m are the last known parameters which are not related to each other, where $\beta_0, \beta_1, \dots, \beta_m$ are called regression coefficients.

Now available *n* independent observation data $(y_i, x_{i1}, \dots, x_{im}), i = 1, \dots, n, n > m$, from (1) we get

$$\begin{cases} y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_m x_{im} + \varepsilon_i \\ \varepsilon_i \sim N(0, \sigma^2), i = 1, \dots, n \end{cases}$$
(2)

model solution

regression coeffi- cient	coefficient esti- mate	confidence interval (math.)
ε	-4.4473	[-1.2005,0.3111]
β_1	-0.0390	[-0.0444,0.0366]
β_2	0.0008	[-0.0001,0.0003]
β_3	-0.0001	[-0.0000,0.00001]
β_4	-0.0068	[-0.0017,0.00004]

Table 14. Model Results Output.

Thus the following multiple linear regression model is derived as:

$$y = -0.0390x_1 + 0.0008x_2 - 0.0001x_3 - 0.0068x_4 - 4.4473$$
(3)

From (3) by analyzing the output of the multiple linear regression model know the correlation between the number of graduates and the number of schools, the number of teachers, the number of enrollment, and education funding as follows:

The number of graduates has the highest correlation with the number of schools and education funding, followed by the number of teachers and enrollment.

Observing Table 13, it is known that the model presents a better overall result in the residual test, with only very one outlier; from Table 14, the model fits better and the error is within the acceptable range; in summary, it shows that the model performs well.

3 CONCLUSIONS:

This study underscores the critical role of educational factors in enhancing population quality and promoting urban development ^[4]. By prioritizing investments in schooling and education funding, policymakers can foster a conducive environment for societal progress and advancement. Furthermore, acknowledging the limitations of this study and offering recommendations for future research will enrich our understanding of the complex interplay between urban planning and population enhancement. In conclusion, a concerted effort to bolster educational infrastructure and funding is imperative for nurturing a high-quality population and fostering inclusive growth and development in urban areas.

Reference

- Tang, Y., Xie, S., Huang, L., Liu, L., Wei, P., Zhang, Y., & Meng, C. (2022). Spatial Estimation of Regional PM2.5 Concentrations with GWR Models Using PCA and RBF Interpolation Optimization. Remote Sensing, 14(21), 5626. https://doi.org/10.3390/rs1421 5626.
- Theodore W. Schultz, Theodore William Schultz (1982). Investing in People: The Economics of Population Quality[M]. Berkeley, Los Angles and London: University of California Press, 1982.
- Southern, P., & Stephens, M. (2006). A fast and flexible statistical model for Large-Scale Population Genotype data: applications to inferring missing genotypes and haplotypic phase. American Journal of Human Genetics, 78(4), 629–644. https://doi.org/10.1086/ 502802.
- Southern, H. N., & Lack, D. (1967). Population studies of birds. Journal of Animal Ecology, 36(3), 750. https://doi.org/10.2307/2828.
- Grossman, M. (1972). On the Concept of Health Capital and the Demand for Health. Journal of Political Economy, 80(2), 223–255. https://doi.org/10.1086/259880.
- Tsunoda, T. (2006). Language endangerment and language revitalization. https://doi.org/ 10.1515/9783110896589.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

