
Clustering Algorithm for IoT Data Stream Based on K-

Dimensional Tree and Self-Organizing Density

aDaoqu Geng , bHao Liu

School of Automation / School of Industrial Internet,Chongqing University of Posts and Tele-

communications,No. 2, Chongwen Road,Chongqing 400065, China.

a
gengdq@cqupt.edu.cn, bs210301028@stu.cqupt.edu.cn

Abstract. With the development of IoT technologies, hundreds of millions of

devices are constantly generating sensory data streams that contain a wealth of

knowledge. To derive interoperable information from them, effective methods

and techniques are needed to process and analyze the data streams. The stream

clustering techniques in machine learning have gained increasing attention for its

ability to rapidly discover knowledge and extract insights from data streams. In

this paper, an IoT data stream clustering algorithm based on K-Dimensional tree

and Self-Organizing density (KDSO) is proposed. The algorithm creates new

clusters using KD trees to reduce the number of redundant clusters and performs

range search quickly. In addition, it follows the idea of competitive learning to

absorb new data points to facilitate the merging of micro-clusters. Meanwhile, it

dynamically adjusts the clustering parameters for micro-cluster update and evo-

lution. Experimental comparisons are made with other advanced methods. The

results show that KDSO outperforms the compared methods in terms of cluster-

ing purity and silhouette coefficient, and shortens the clustering processing time,

proving its good clustering performance.

Keywords: IoT, Discover Knowledge, Data Stream Clustering

1 Introduction

 © The Author(s) 2024
T. Yao et al. (eds.), Proceedings of the 2024 3rd International Conference on Engineering Management and
Information Science (EMIS 2024), Advances in Computer Science Research 111,
https://doi.org/10.2991/978-94-6463-447-1_24

IoT infrastructure continuously generates data streams that require rapid analysis and
mining of hidden knowledge to help make intelligent decisions in real time [1]. The
data stream clustering techniques in the field of machine learning can fulfill this need
by quickly discovering and summarizing clustering information to mine the contextual
knowledge implicit in the data streams.

There are two types of data stream clustering algorithms, namely two-stage cluster-
ing algorithms and fully online clustering algorithms. The two-stage clustering includes
online generation of micro-clusters and offline generation of macro-clusters [2] [3].
Compared to two-stage clustering algorithms, fully online clustering is more suitable
to cope with the evolutionary characteristics of data streams and noise management [4].
In particular, the density-based stream clustering algorithm is applicable to IoT data

mailto:gengdq@cqupt.edu.cn
http://orcid.org/0000-0001-8675-1136
https://doi.org/10.2991/978-94-6463-447-1_24
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-447-1_24&domain=pdf

stream clustering as it is able to adapt to the evolutionary characteristics of data streams
and can effectively handle noise in noisy environments [5] [6].

Several recent studies have extended density-based clustering algorithms to data
stream. Among them, CODAS [7] is an online data clustering algorithm, but the micro-
clusters are not updated with the dynamics of the data stream. On this basis, CEDAS
[8] is improved by introducing energy conditions to reflect the data evolution charac-
teristics. However, the CEDAS does not consider the storage of irrelevant micro-clus-
ters and the extraction of relevant micro-clusters, while the fixed micro-cluster radius
affects the clustering quality. BOCEDS [9] is an improved algorithm, which can adap-
tively update the micro-cluster radius and cluster center. Moreover, it introduces a buff-
ering mechanism to achieve the upgrade and downgrade of micro-clusters. However,
the BOCEDS may lead to the creation of redundant micro-clusters and ignores the case
where data points are absorbed by multiple micro-clusters.

To address the above problems, an IoT data stream clustering algorithm based on K-
Dimensional tree and self-organizing density (KDSO) is proposed in this paper to en-
hance the quality and efficiency of data stream clustering. The algorithm uses the KD
tree to determine the generation of new clusters to reduce the number of redundant
clusters and performs the range search quickly by exploiting its data structure charac-
teristics. Secondly, the competitive learning idea based on self-organizing maps is used
to deal with the process of absorbing newly arriving data points by target clusters, es-
pecially in the case where data points are mapped to multiple intersecting clusters,
which promotes the merging of clusters through the movement of intersecting clusters
to new data points. In addition, the algorithm can adaptively adjust the clustering pa-
rameters according to the dynamic changes of the data stream, thus enabling the update
and evolution of micro-clusters. The effectiveness of the KDSO is verified by experi-
mentally comparing this method with other advanced methods in three clustering met-
rics, namely, purity, silhouette coefficient and clustering processing time, using the
KDDCup99 dataset.

The remainder of the paper is structured as follows: Section 2 specifies the proposed
methodology. Section 3 gives comparative results with analytical discussion. Section 4
concludes the whole paper and provides an outlook for future work.

2 Proposed Method

Before describing the KDSO algorithm specifically, the definitions and concepts in-
volved in the algorithm are first introduced.

Data Stream: Let the data stream 𝐷𝑆 = {𝑥ଵ, 𝑥ଶ, … 𝑥ஶ} be composed of a sequence
of 𝑑-dimensional input vectors, where each data point 𝑥(𝑡) = (𝑥ଵ, 𝑥ଶ, … 𝑥ௗ) represents
a 𝑑-dimensional data record arriving at time 𝑡.

Cluster Structure: Define a micro-cluster as a six-tuple, denoted as Eq. 1, where

 𝑚𝑐 = (𝑐, 𝑡, 𝜔, 𝑟௖௢௥௘, 𝑟௦௛௘௟௟, 𝑏) (1)

1.The center (c) denotes the cluster's positional core.
2.The time (𝑡) indicates when the cluster was last updated.

212 D. Geng and H. Liu

3.The weight of a cluster (𝜔) represents the count of data points within the cluster.
4.The core radius (𝑟௖௢௥௘) measures the area of data concentration within the cluster

and is mainly used to determine whether two clusters should be merged. It is defined
using Eq. 2 and Eq. 3.

 𝑟௖௢௥௘ = ଵௗ ∑ ටଵఠ ∑ (𝑥௜௝ − 𝜇௜௝)ଶఠ௜ୀଵௗ௝ (2)

 𝜇௝ = ଵఠ ∑ 𝑥௜௝ఠ௜ୀଵ (3)

5.The shell radius (𝑟௦௛௘௟௟) denotes the distance from the center of the cluster to the
farthest data point, defining the boundary of the cluster and primarily used for opera-
tions such as merging and splitting of clusters.

6.The boolean value (𝑏) denotes micro-cluster states: active (𝑏 = 1, 𝜔 ≥ 𝑁) or po-
tential (𝑏 = 0, 𝜔 < 𝑁), where 𝑁 is the weight threshold for creating micro-clusters
within an initial radius 𝑟.

Initial radius: The initial radius 𝑟 serves as the minimum range for constructing
micro-clusters, and its value is typically determined based on the specific problem and
data distribution. If 𝑟 is too small it may not be able to cluster neighboring points cor-
rectly. Conversely, irrelevant points may be mistakenly grouped into the same cluster,
affecting the clustering accuracy.

Data expiration and deletion: Every data has its life cycle and with the passage of
time any data that reaches its life cycle is deleted. In the design of this algorithm, newly
arrived data is added to a buffer queue with a fixed size 𝑇𝑁. When the size of data in
the buffer exceeds threshold 𝑇𝑁, the data that has been in the buffer for the longest time
will be removed according to the idea of FIFO [10].

The flowchart of the steps of the KDSO algorithm is shown in Fig. 1. As long as the
stream remains active, the KDSO algorithm can constantly process incoming data
streams. Note that it is hard to ascertain when streams are active or not, and expert
knowledge is usually required to draw conclusions.

Fig. 1. Flowchart of KDSO algorithm steps

Step 1: Initialization and detection of micro-clusters. First, new data is deposited into
a buffer of size 𝑇𝑁, and the earliest data is removed when 𝑇𝑁 is exceeded. Next, data
points not assigned to existing clusters are filtered to construct the KD tree. Subse-
quently, a range search is performed in the KD tree using an initial radius 𝑟 and points

Clustering Algorithm for IoT Data Stream Based on K-Dimensional Tree 213

within the range are obtained. Finally, if the number of samples obtained surpasses or
meets the weight threshold 𝑁, the cluster centers of the candidate clusters are calculated
using Eq. 3, which is used to determine whether the distance between clusters satisfies
the conditions for constructing new clusters.

Step 2: Search for target micro-clusters and try to absorb new data points. Determine
whether the new data is mapped within the radius of an existing cluster based on Eq. 4.
If the condition is satisfied, the idea of competitive learning is implemented by adjust-
ing the cluster center to the vicinity of the new data point using a specific increment
based on the Gaussian neighborhood function described in Eq. 6. When the new data
point falls within the radius of multiple intersecting clusters, the merging of intersecting
clusters is accelerated. After finding the target cluster, update the radius, center and
weight of the cluster according to Eqs. 2, 5 and 7.

 𝑑𝑖𝑠(𝑥௡௘௪, 𝑚𝑐) < 𝑟௦௛௘௟௟ (4)

 𝑐(𝑡 + 1) = 𝑐(𝑡) + ℎ(𝑥, 𝑐(𝑡)) ∙ (𝑥 − 𝑐(𝑡)) (5)

 ℎ(𝑥, 𝑐) = exp (−∥ 𝑥 − 𝑐 ∥ଶ/2𝑟ଶ) (6)

 𝜔(𝑡 + 1) = 𝜔(𝑡) + 1 (7)

Step 3: Merging and splitting clusters. Clusters merge if one's shell radius intersects
another's core radius. And before splitting the clusters, make sure that 𝜔 ≥ 2𝑁 and 𝑟௖௢௥௘ ≥ 𝑟. Then, extract cluster data to build the KD tree and search. A split occurs if
distance between candidate cluster (within 𝑟) and the center of the cluster formed by
the remaining data exceeds the sum of the shell radius of these two clusters.

Step 4: Update the state of the micro-cluster. Over time, any data that reaches its
lifecycle will be deleted from the buffer. If the deleted data belongs to an existing mi-
cro-cluster, the corresponding micro-cluster will also be updated. When the weight of
an active cluster falls below the threshold 𝑁, the 𝑏 is set to 0, indicating that the cluster
is updated to a potential cluster. When the weight of a potential cluster rises to the
threshold 𝑁 and above due to the absorption of new data, reset 𝑏 to 1 and the cluster is
updated to active cluster status.

3 Results and Discussions

In this section, the proposed KDSO algorithm is evaluated and its performance is com-
pared with CEDAS and BOCEDS. T The experiments were conducted on a computer
featuring 40 GB RAM and an i5-11500 processor, with implementation in the
MATLAB 2016b environment. The dataset used is from KDDCUP99 and contains
50,000 samples, which is a frequently used dataset in data stream clustering studies.
The experiments are based on three metrics for performance evaluation: Purity, Silhou-
ette Coefficient and clustering processing speed.

Cluster purity is the percentage of dominant samples in each cluster. If there are 𝑛௜
samples in a cluster, where 𝑛௜ௗ samples are the number of dominant samples with the
largest share of the cluster, then the cluster purity can be computed with Eq. 8.

214 D. Geng and H. Liu

 𝑃𝑢𝑟𝑖𝑡𝑦 = ଵ௞ ∑ ௡೔೏௡೔௞௜ୀଵ (8)

The silhouette coefficient evaluates the success of clustering by comparing the dis-
tance between samples within the same cluster and the distance between samples from
different clusters, and its value ranges from ሾ−1,1ሿ. Silhouette coefficient nearing -1
indicate poor clustering results, while nearing 1 indicates better clustering results. The
silhouette coefficient is expressed as Eq. 9.

 𝑠௜ = ௕೔ି௔೔୫ୟ୶ {௔೔,௕೔} (9)

Where 𝑏௜ indicates the mean distance between sample 𝑖 and all samples within a cer-
tain cluster. 𝑎௜ is the mean distance of sample 𝑖 from other points in the same cluster.

As shown in Fig. 2, the clustering purity of the three algorithms varies gradually with
the continuous influx of data streams and decreases in the later stages. This is due to
the fact that the few number of clusters at the initial clustering, but as the number of
clusters grows with the continuous influx of data streams, the number of incorrectly
assigned samples also increases. However, the KDSO algorithm maintains better and
more stable clustering purity than the other two algorithms. This is because the KDSO
algorithm not only follows the idea of competitive learning to promote the merging of
micro-clusters, but also splits the clusters in time according to the threshold condition,
which reduces the clustering of erroneous data points.

Fig. 2. Clustering purity comparison chart

As shown in Fig. 3, a comparison between the KDSO algorithm and the other two
algorithms regarding the silhouette coefficients is demonstrated. Compared to the other
two algorithms, KDSO possesses better ability to distinguish clusters. This is because
the KDSO algorithm reduces the number of redundant clusters by searching through
the range of the KD tree and performing the judgment of cluster spacing. In contrast,
both CEDAS and BOCEDS adopt the strategy of constructing new clusters instantly,
which does not take into account the distance of new clusters from other clusters. Fur-
thermore, in comparison to CEDAS, the KDSO offers the benefit of adaptive updates
to the radius and center of clusters, resulting in a more pronounced clustering effect.

Clustering Algorithm for IoT Data Stream Based on K-Dimensional Tree 215

As can be seen in Fig. 4, KDSO outperforms CEDAS and BOCEDS in terms of
clustering processing time, which is due to the fact that KDSO utilizes the data structure
of the KD tree to achieve a fast range finding while avoiding the creation and mainte-
nance of redundant clusters. In contrast, both the CEDAS and BOCEDS algorithms
require more time to maintain numerous clusters as the amount of data increases, and
the KDSO algorithm reduces the overall clustering processing time by labeling clusters
with the concepts of "activated state" and "potential state". Furthermore, some of the
high time complexity steps are performed only under specific conditions (e.g., splitting
clusters), so the performance will be better than the expected results.

Fig. 3. Clustering silhouette coefficient comparison chart

Fig. 4. Clustering processing time comparison chart

4 Conclusion

In this paper, an IoT data stream clustering algorithm based on KD tree and self-organ-
izing density is proposed, which reduces the number of redundant clusters by using KD
trees to detect the creation of new clusters and perform range searches quickly. In ad-
dition, it facilitates the merging of micro-clusters through competitive learning. Mean-
while, it dynamically adjusts clustering parameters for micro-cluster update and evolu-
tion. The proposed KDSO was experimentally compared with CEDAS and BOCEDS.

216 D. Geng and H. Liu

The results indicate that it outperforms the other methods in terms of purity, silhouette
coefficients, and clustering processing time, demonstrating better clustering perfor-
mance.

In future work, we will consider incorporating semantic web technologies to inter-
pret the information implicit in the clustering results of IoT data stream and explore
how to utilize ontology and inference mechanisms to enhance the knowledge discovery
capability of data stream clustering algorithms.

Acknowlegements

This work was sponsored in part by the National Key R&D Program of China
(No.2022YFE0114300), and in part by the Natural Science Foundation of Chongqing,
China (No. cstc2021jcyj-msxmX0330).

References

1. Tu D Q, Kayes A S M, Rahayu W, et al. (2020) IoT streaming data integration from multiple
sources. Computing, 102(10): 2299-2329. DOI: 10.1007/s00607-020-00830-9.

2. Aggarwal C C, Philip S Y, Han J, et al. (2003) A framework for clustering evolving data
streams. Proceedings 2003 VLDB conference. Berlin, Germany. 81-92.
https://doi.org/10.5555/1315451.1315460.

3. Carnein M, Trautmann H. (2018) evoStream – Evolutionary Stream Clustering Utilizing
Idle Times. Big Data Research, 14: 101-111. https://doi.org/10.1016/j.bdr.2018.05.005.

4. Dai B R, Huang J W, Yeh M Y, et al. (2006) Adaptive clustering for multiple evolving
streams. IEEE Transactions on Knowledge and Data Engineering, 18(9): 1166-1180.
https://doi.org/10.1109/TKDE.2006.137.

5. Amini A, Wah T Y, Saboohi H. (2014) On density-based data streams clustering algorithms:
A survey. Journal of Computer Science and Technology, 29: 116-141.
https://doi.org/10.1007/s11390-014-1416-y.

6. Amini A, Saboohi H, Ying Wah T, et al. (2014) A fast density-based clustering algorithm
for real-time internet of things stream. The Scientific World Journal, 2014(2): 6-18.
https://doi.org/10.1155/2014/926020.

7. Hyde R, Angelov P. (2015) A new online clustering approach for data in arbitrary shaped
clusters. 2015 IEEE 2nd international conference on cybernetics (CYBCONF). Chengdu,
China. 228-233. https://doi.org/10.1109/CYBConf.2015.7175937.

8. Hyde R, Angelov P, MacKenzie A R. (2017) Fully online clustering of evolving data streams
into arbitrarily shaped clusters. Information Sciences, 382: 96-114.
https://doi.org/10.1016/j.ins.2016.12.004.

9. Islam M K, Ahmed M M, Zamli K Z. (2019) A buffer-based online clustering for evolving
data stream. Information sciences, 489: 113-135. https://doi.org/10.1016/j.ins.2019.03.022.

10. Alamri A A, Syntetos A A. (2018) Beyond LIFO and FIFO: Exploring an allocation-in-
fraction-out (AIFO) policy in a two-warehouse inventory model. International Journal of
Production Economics, 206: 33-45. https://doi.org/10.1016/j.ijpe.2018.09.025

Clustering Algorithm for IoT Data Stream Based on K-Dimensional Tree 217

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

218 D. Geng and H. Liu

http://creativecommons.org/licenses/by-nc/4.0/

	Clustering Algorithm for IoT Data Stream Based on K-Dimensional Tree and Self-Organizing Density

