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Abstract. With the development of IoT technologies, hundreds of millions of 

devices are constantly generating sensory data streams that contain a wealth of 

knowledge. To derive interoperable information from them, effective methods 

and techniques are needed to process and analyze the data streams. The stream 

clustering techniques in machine learning have gained increasing attention for its 

ability to rapidly discover knowledge and extract insights from data streams. In 

this paper, an IoT data stream clustering algorithm based on K-Dimensional tree 

and Self-Organizing density (KDSO) is proposed. The algorithm creates new 

clusters using KD trees to reduce the number of redundant clusters and performs 

range search quickly. In addition, it follows the idea of competitive learning to 

absorb new data points to facilitate the merging of micro-clusters. Meanwhile, it 

dynamically adjusts the clustering parameters for micro-cluster update and evo-

lution. Experimental comparisons are made with other advanced methods. The 

results show that KDSO outperforms the compared methods in terms of cluster-

ing purity and silhouette coefficient, and shortens the clustering processing time, 

proving its good clustering performance. 
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IoT infrastructure continuously generates data streams that require rapid analysis and 
mining of hidden knowledge to help make intelligent decisions in real time [1]. The 
data stream clustering techniques in the field of machine learning can fulfill this need 
by quickly discovering and summarizing clustering information to mine the contextual 
knowledge implicit in the data streams.  

There are two types of data stream clustering algorithms, namely two-stage cluster-
ing algorithms and fully online clustering algorithms. The two-stage clustering includes 
online generation of micro-clusters and offline generation of macro-clusters [2] [3]. 
Compared to two-stage clustering algorithms, fully online clustering is more suitable 
to cope with the evolutionary characteristics of data streams and noise management [4]. 
In particular, the density-based stream clustering algorithm is applicable to IoT data 
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stream clustering as it is able to adapt to the evolutionary characteristics of data streams 
and can effectively handle noise in noisy environments [5] [6]. 

Several recent studies have extended density-based clustering algorithms to data 
stream. Among them, CODAS [7] is an online data clustering algorithm, but the micro-
clusters are not updated with the dynamics of the data stream. On this basis, CEDAS 
[8] is improved by introducing energy conditions to reflect the data evolution charac-
teristics. However, the CEDAS does not consider the storage of irrelevant micro-clus-
ters and the extraction of relevant micro-clusters, while the fixed micro-cluster radius 
affects the clustering quality. BOCEDS [9] is an improved algorithm, which can adap-
tively update the micro-cluster radius and cluster center. Moreover, it introduces a buff-
ering mechanism to achieve the upgrade and downgrade of micro-clusters. However, 
the BOCEDS may lead to the creation of redundant micro-clusters and ignores the case 
where data points are absorbed by multiple micro-clusters. 

To address the above problems, an IoT data stream clustering algorithm based on K-
Dimensional tree and self-organizing density (KDSO) is proposed in this paper to en-
hance the quality and efficiency of data stream clustering. The algorithm uses the KD 
tree to determine the generation of new clusters to reduce the number of redundant 
clusters and performs the range search quickly by exploiting its data structure charac-
teristics. Secondly, the competitive learning idea based on self-organizing maps is used 
to deal with the process of absorbing newly arriving data points by target clusters, es-
pecially in the case where data points are mapped to multiple intersecting clusters, 
which promotes the merging of clusters through the movement of intersecting clusters 
to new data points. In addition, the algorithm can adaptively adjust the clustering pa-
rameters according to the dynamic changes of the data stream, thus enabling the update 
and evolution of micro-clusters. The effectiveness of the KDSO is verified by experi-
mentally comparing this method with other advanced methods in three clustering met-
rics, namely, purity, silhouette coefficient and clustering processing time, using the 
KDDCup99 dataset. 

The remainder of the paper is structured as follows: Section 2 specifies the proposed 
methodology. Section 3 gives comparative results with analytical discussion. Section 4 
concludes the whole paper and provides an outlook for future work. 

2 Proposed Method 

Before describing the KDSO algorithm specifically, the definitions and concepts in-
volved in the algorithm are first introduced. 

Data Stream: Let the data stream 𝐷𝑆 = {𝑥ଵ, 𝑥ଶ, … 𝑥ஶ} be composed of a sequence 
of 𝑑-dimensional input vectors, where each data point 𝑥(𝑡) = (𝑥ଵ, 𝑥ଶ, … 𝑥ௗ) represents 
a 𝑑-dimensional data record arriving at time 𝑡.  

Cluster Structure: Define a micro-cluster as a six-tuple, denoted as Eq. 1, where 

 𝑚𝑐 = (𝑐, 𝑡, 𝜔, 𝑟௖௢௥௘, 𝑟௦௛௘௟௟, 𝑏) (1) 

1.The center (c) denotes the cluster's positional core. 
2.The time (𝑡) indicates when the cluster was last updated. 
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3.The weight of a cluster (𝜔) represents the count of data points within the cluster. 
4.The core radius (𝑟௖௢௥௘) measures the area of data concentration within the cluster 

and is mainly used to determine whether two clusters should be merged. It is defined 
using Eq. 2 and Eq. 3. 

 𝑟௖௢௥௘ = ଵௗ ∑ ටଵఠ ∑ (𝑥௜௝ − 𝜇௜௝)ଶఠ௜ୀଵௗ௝  (2) 

 𝜇௝ = ଵఠ ∑ 𝑥௜௝ఠ௜ୀଵ  (3) 

5.The shell radius (𝑟௦௛௘௟௟) denotes the distance from the center of the cluster to the 
farthest data point, defining the boundary of the cluster and primarily used for opera-
tions such as merging and splitting of clusters. 

6.The boolean value (𝑏) denotes micro-cluster states: active (𝑏 = 1, 𝜔 ≥  𝑁) or po-
tential (𝑏 = 0, 𝜔 <  𝑁), where 𝑁 is the weight threshold for creating micro-clusters 
within an initial radius 𝑟. 

Initial radius:  The initial radius 𝑟 serves as the minimum range for constructing 
micro-clusters, and its value is typically determined based on the specific problem and 
data distribution. If 𝑟 is too small it may not be able to cluster neighboring points cor-
rectly. Conversely, irrelevant points may be mistakenly grouped into the same cluster, 
affecting the clustering accuracy. 

Data expiration and deletion: Every data has its life cycle and with the passage of 
time any data that reaches its life cycle is deleted. In the design of this algorithm, newly 
arrived data is added to a buffer queue with a fixed size 𝑇𝑁. When the size of data in 
the buffer exceeds threshold 𝑇𝑁, the data that has been in the buffer for the longest time 
will be removed according to the idea of FIFO [10]. 

The flowchart of the steps of the KDSO algorithm is shown in Fig. 1. As long as the 
stream remains active, the KDSO algorithm can constantly process incoming data 
streams. Note that it is hard to ascertain when streams are active or not, and expert 
knowledge is usually required to draw conclusions. 

 
Fig. 1. Flowchart of KDSO algorithm steps 

Step 1: Initialization and detection of micro-clusters. First, new data is deposited into 
a buffer of size 𝑇𝑁, and the earliest data is removed when 𝑇𝑁 is exceeded. Next, data 
points not assigned to existing clusters are filtered to construct the KD tree. Subse-
quently, a range search is performed in the KD tree using an initial radius 𝑟 and points 
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within the range are obtained. Finally, if the number of samples obtained surpasses or 
meets the weight threshold 𝑁, the cluster centers of the candidate clusters are calculated 
using Eq. 3, which is used to determine whether the distance between clusters satisfies 
the conditions for constructing new clusters.  

Step 2: Search for target micro-clusters and try to absorb new data points. Determine 
whether the new data is mapped within the radius of an existing cluster based on Eq. 4. 
If the condition is satisfied, the idea of competitive learning is implemented by adjust-
ing the cluster center to the vicinity of the new data point using a specific increment 
based on the Gaussian neighborhood function described in Eq. 6. When the new data 
point falls within the radius of multiple intersecting clusters, the merging of intersecting 
clusters is accelerated. After finding the target cluster, update the radius, center and 
weight of the cluster according to Eqs. 2, 5 and 7. 

 𝑑𝑖𝑠(𝑥௡௘௪, 𝑚𝑐) < 𝑟௦௛௘௟௟ (4) 

 𝑐(𝑡 + 1) = 𝑐(𝑡) + ℎ(𝑥, 𝑐(𝑡)) ∙ (𝑥 − 𝑐(𝑡)) (5) 

 ℎ(𝑥, 𝑐) = exp (−∥ 𝑥 − 𝑐 ∥ଶ/2𝑟ଶ)  (6) 

 𝜔(𝑡 + 1) = 𝜔(𝑡) + 1 (7) 

Step 3: Merging and splitting clusters. Clusters merge if one's shell radius intersects 
another's core radius. And before splitting the clusters, make sure that 𝜔 ≥ 2𝑁 and 𝑟௖௢௥௘ ≥ 𝑟. Then, extract cluster data to build the KD tree and search. A split occurs if 
distance between candidate cluster (within 𝑟) and the center of the cluster formed by 
the remaining data exceeds the sum of the shell radius of these two clusters. 

Step 4: Update the state of the micro-cluster. Over time, any data that reaches its 
lifecycle will be deleted from the buffer. If the deleted data belongs to an existing mi-
cro-cluster, the corresponding micro-cluster will also be updated. When the weight of 
an active cluster falls below the threshold 𝑁, the 𝑏 is set to 0, indicating that the cluster 
is updated to a potential cluster. When the weight of a potential cluster rises to the 
threshold 𝑁 and above due to the absorption of new data, reset 𝑏 to 1 and the cluster is 
updated to active cluster status. 

3 Results and Discussions 

In this section, the proposed KDSO algorithm is evaluated and its performance is com-
pared with CEDAS and BOCEDS. T The experiments were conducted on a computer 
featuring 40 GB RAM and an i5-11500 processor, with implementation in the 
MATLAB 2016b environment. The dataset used is from KDDCUP99 and contains 
50,000 samples, which is a frequently used dataset in data stream clustering studies. 
The experiments are based on three metrics for performance evaluation: Purity, Silhou-
ette Coefficient and clustering processing speed. 

Cluster purity is the percentage of dominant samples in each cluster. If there are 𝑛௜ 
samples in a cluster, where 𝑛௜ௗ samples are the number of dominant samples with the 
largest share of the cluster, then the cluster purity can be computed with Eq. 8. 

214             D. Geng and H. Liu



 𝑃𝑢𝑟𝑖𝑡𝑦 = ଵ௞ ∑ ௡೔೏௡೔௞௜ୀଵ  (8) 

The silhouette coefficient evaluates the success of clustering by comparing the dis-
tance between samples within the same cluster and the distance between samples from 
different clusters, and its value ranges from ሾ−1,1ሿ. Silhouette coefficient nearing -1 
indicate poor clustering results, while nearing 1 indicates better clustering results. The 
silhouette coefficient is expressed as Eq. 9. 

 𝑠௜ = ௕೔ି௔೔୫ୟ୶ {௔೔,௕೔} (9) 

Where 𝑏௜ indicates the mean distance between sample 𝑖 and all samples within a cer-
tain cluster. 𝑎௜ is the mean distance of sample 𝑖 from other points in the same cluster. 

As shown in Fig. 2, the clustering purity of the three algorithms varies gradually with 
the continuous influx of data streams and decreases in the later stages. This is due to 
the fact that the few number of clusters at the initial clustering, but as the number of 
clusters grows with the continuous influx of data streams, the number of incorrectly 
assigned samples also increases. However, the KDSO algorithm maintains better and 
more stable clustering purity than the other two algorithms. This is because the KDSO 
algorithm not only follows the idea of competitive learning to promote the merging of 
micro-clusters, but also splits the clusters in time according to the threshold condition, 
which reduces the clustering of erroneous data points. 

 
Fig. 2. Clustering purity comparison chart 

As shown in Fig. 3, a comparison between the KDSO algorithm and the other two 
algorithms regarding the silhouette coefficients is demonstrated. Compared to the other 
two algorithms, KDSO possesses better ability to distinguish clusters. This is because 
the KDSO algorithm reduces the number of redundant clusters by searching through 
the range of the KD tree and performing the judgment of cluster spacing. In contrast, 
both CEDAS and BOCEDS adopt the strategy of constructing new clusters instantly, 
which does not take into account the distance of new clusters from other clusters. Fur-
thermore, in comparison to CEDAS, the KDSO offers the benefit of adaptive updates 
to the radius and center of clusters, resulting in a more pronounced clustering effect. 
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As can be seen in Fig. 4, KDSO outperforms CEDAS and BOCEDS in terms of 
clustering processing time, which is due to the fact that KDSO utilizes the data structure 
of the KD tree to achieve a fast range finding while avoiding the creation and mainte-
nance of redundant clusters. In contrast, both the CEDAS and BOCEDS algorithms 
require more time to maintain numerous clusters as the amount of data increases, and 
the KDSO algorithm reduces the overall clustering processing time by labeling clusters 
with the concepts of "activated state" and "potential state". Furthermore, some of the 
high time complexity steps are performed only under specific conditions (e.g., splitting 
clusters), so the performance will be better than the expected results. 

 
Fig. 3. Clustering silhouette coefficient comparison chart 

 
Fig. 4. Clustering processing time comparison chart 

4 Conclusion 

In this paper, an IoT data stream clustering algorithm based on KD tree and self-organ-
izing density is proposed, which reduces the number of redundant clusters by using KD 
trees to detect the creation of new clusters and perform range searches quickly. In ad-
dition, it facilitates the merging of micro-clusters through competitive learning. Mean-
while, it dynamically adjusts clustering parameters for micro-cluster update and evolu-
tion. The proposed KDSO was experimentally compared with CEDAS and BOCEDS. 
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The results indicate that it outperforms the other methods in terms of purity, silhouette 
coefficients, and clustering processing time, demonstrating better clustering perfor-
mance. 

In future work, we will consider incorporating semantic web technologies to inter-
pret the information implicit in the clustering results of IoT data stream and explore 
how to utilize ontology and inference mechanisms to enhance the knowledge discovery 
capability of data stream clustering algorithms. 
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which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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