
Enhancing Code Completion with Round Splitting and

Unique Traversal of Abstract Syntax Tree

Jiahao Li1,2,a, Linbo Zhu2,b*, Bowen Lv1,c, Jun Ding2,d

1AHU-IAI AI Joint Laboratory, Anhui University, Hefei, China
2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China

aWA22301177@stu.ahu.edu.cn,blbzhu@iai.ustc.edu.cn,
cWA21301045@stu.ahu.edu.cn,ddjun@iai.ustc.edu.cn

Abstract. Code completion is one of the crucial features of Integrated Develop-

ment Environments, enhancing user coding efficiency by providing code sugges-

tions. Research indicates that code completion methods based on Abstract Syntax

Tree (AST) representations can extract rich syntax and structure information em-

bedded in the code. However, the current processing of the AST often results in

a significant loss of information. To address this, we have designed round-split-

ting and unique traversal algorithms to optimize the AST processing. The round-

splitting algorithm achieves tree splitting with minimal disruption, preserving the

structural information of the tree to the greatest extent. The unique traversal al-

gorithm ensures a one-to-one mapping relationship between the tree and the se-

quence after traversal, thereby reducing information loss. We conducted experi-

ments on benchmark datasets, demonstrating our algorithms' effectiveness in the

code completion task.

Keywords: code completion, abstract syntax tree, round-splitting algorithm,

unique traversal algorithm

1 Introduction

Code completion is a vital feature within integrated development environments. While

users are writing code, the system provides a suggestion list containing keywords, var-

iable names, and other content based on the context of the user's code.

To implement code completion, researchers initially tried non-machine learning

methods such as type analysis [1]. However, these methods showed significant limita-

tions when facing complex semantic structures. Traditional machine learning methods

such as N-gram still could not effectively solve these problems [2][3]. Therefore, re-

searchers are mainly using deep learning models to implement code completion [4][5].

The essence of code completion is a generative task, and GPT series models can better

complete such tasks, so we choose the GPT-2 model as our core model [6]. As a special

kind of text, code contains rich structural and semantic information, so it is important

to choose a reasonable representation. To retain as much code information as possible

© The Author(s) 2024
T. Yao et al. (eds.), Proceedings of the 2024 3rd International Conference on Engineering Management and
Information Science (EMIS 2024), Advances in Computer Science Research 111,
https://doi.org/10.2991/978-94-6463-447-1_32

mailto:WA22301177@stu.ahu.edu.cn
mailto:lbzhu@iai.ustc.edu.cn
mailto:WA21301045@stu.ahu.edu.cn,ddjun@iai.ustc.edu.cn
https://doi.org/10.2991/978-94-6463-447-1_32
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-447-1_32&domain=pdf

while minimizing resource consumption, we chose Abstract Syntax Tree (AST) for
code representation.

After representing the code as an AST, it is necessary to perform split and traversal
operations on the tree. However, current mainstream methods tend to be goal-oriented,
resulting in the loss of information from the AST. Therefore, based on AST represen-
tation, we aim to retain as much rich information from the tree as possible, and we have
optimized the split and traversal operations of the AST. Our contributions include the
following:

• We propose a round-splitting algorithm for the AST, which refines the split granu-
larity of the AST and reduces the destruction of the tree structure.

• After achieving the split of large trees, we have designed the unique traversal algo-
rithm to ensure a one-to-one mapping in the traversal process, preserving the com-
plete structure of the tree.

• We have demonstrated that using the above algorithms has a beneficial effect on the
code completion task, and the benefits of the two algorithms can be superimposed.

2 Background

2.1 Code Completion Task

The code completion task studied in this paper is token-level code completion, com-
pleting the minor units in the source code compilation process, such as variable names
and keywords. Our core task is to calculate the probability of all tokens in a given dic-
tionary when a part of the program is provided and return a recommendation list after
sorting by likelihood. The formula is defined as follows: 𝐿𝑖𝑠𝑡 = 𝑠𝑜𝑟𝑡 𝑃 𝑚|𝐶 , ∀𝑚 ∈ 𝑀 1

In this paper, 𝐶 represents a code snippet, 𝑀 denotes the dictionary, and 𝑚 stands
for a specific token within the dictionary. The 𝑠𝑜𝑟𝑡 stands for a sorting operation, and
it will place the recommendations with higher probabilities at the front.

2.2 Abstract Syntax Tree (AST)

AST is transformed from the context-free grammar of the code, which reasonably stores
the syntax and structural information of the code [7]. Because of this, the size of the AST
is substantial. The GPT-2 model has input size limitations, and it is difficult for the
model to capture the rich information in AST that is large in size and depth [8]. There-
fore, it is necessary to perform a split operation on the AST, dividing an overly large
AST into reasonably sized subtrees as required. For our model to receive the AST, it
needs to be traversed into a sequential form.

292 J. Li et al.

Fig. 1. The whole process to achieve code completion.

3 Approach

As shown in Figure 1, the whole process to achieve code completion is displayed. After
converting the code into the AST, our round-splitting algorithm divides the large AST
into reasonably sized subtrees. Then, using our unique traversal algorithm, subtrees are
traversed into a sequential form. After that, the sequence is encoded and fed into the
GPT-2 model for learning. Finally, the model is used to obtain the result. In this section,
we will focus on the data preprocessing stage and describe how to optimize the splitting
and traversal of the AST by our algorithm.

3.1 Round Splitting Algorithm

The current mainstream split method is the sliding window split method, which dra-
matically disrupts node dependency relationships [9]. To address this issue, we analyzed
the node characteristics of the AST and found that certain specialized nodes contain
structural information. The nodes, like class nodes, often represent the beginning of a
code structure and are very suitable as split points. Furthermore, to preserve the integ-
rity of the code structure as much as possible, the size of the structure that these nodes
contained can be further distinguished, which can be used as a standard to set split
rounds. As shown in Figure 2, we designed the round-splitting algorithm.

Enhancing Code Completion with Round Splitting and Unique 293

Fig. 2. The round-splitting algorithm and an example.

The round-splitting algorithm is based on three main strategies:

1. The round-splitting is performed according to the size of the structure information
contained in the nodes. In round 1, nodes representing classes are split. In round 2,
nodes representing functions are split. In round 3, nodes representing the loop or
condition are split. Strategy 1 preserves large-scale code structures as much as pos-
sible.

2. Upon completing each split, immediately evaluate whether the splitting termination
condition is met and terminate the split promptly, reducing meaningless splits.

3. Both trees retain the split node after splitting to preserve information further.

Figure 2 also shows an example. Our algorithm selects specialized nodes as split
points according to the split rounds, effectively reducing the disruption of node depend-
encies during the splitting process. When the round-splitting algorithm fails to achieve
the splitting objective, the sliding window splitting method is used for post-processing.

3.2 Unique Traversal Algorithm

The mainstream traversal methods currently in use are depth-first traversal or breadth-
first traversal. Although these two algorithms can convert a tree into a unique sequence,
restoring the original tree structure from this sequence is not unique. In other words,
neither method provides a one-to-one mapping traversal, which will result in missing
parent-child or sibling relationships between nodes in the traversed sequence. To solve
this problem, it is necessary to provide an algorithm to preserve the containment rela-
tionships between nodes, and then reduce the loss of information in the traversal pro-
cess. We were inspired by how compilers mark the start and end of code blocks with
“start” and “end” identifiers during syntax analysis, thereby establishing correct syntax
or parse trees. As shown in Figure 3, we designed the unique traversal algorithm.

294 J. Li et al.

Fig. 3. The unique traversal algorithm and an example.

This algorithm is deterministic. Given an AST as input, it produces a unique se-
quence. The uniqueness of the conversion from sequence to tree can be proven using
mathematical induction. As shown in Figure 3, the example shows that our algorithm
achieves a one-to-one mapping relationship between the AST and the sequence, reduc-
ing the loss of tree structure information during the traversal process.

4 Experiments

This section will introduce the datasets used in the experiment and the evaluation met-
ric. Subsequently, we will elaborate on the details of the related experiments. Finally,
we will analyze the results of the experiments.

4.1 Dataset and Evaluation Metric

The dataset used in this study is the PY150 dataset, a public dataset in the code com-
pletion field [10]. The training set includes 100k code snippets; the test set contains 50k.
Because the code completion task is a recommendation task, we chose Mean Reciprocal
Rank (MRR) as the evaluation metric for our experiment. The MRR formula is as fol-
lows:

𝑀𝑅𝑅 = 1𝑛 1𝑟𝑎𝑛𝑘𝑖𝑛
𝑖=1 2

Where n represents the number of queries, and 𝑟𝑎𝑛𝑘 is the position of the first rel-
evant document in the 𝑖 query.

Enhancing Code Completion with Round Splitting and Unique 295

4.2 Experiment Detail

To evaluate the effectiveness of our model more comprehensively, we selected four
mainstream code completion methods as baselines, namely Code2Seq, SeqRNN, Se-
qTrans, and TravTrans [9][11]. These methods treat code directly as text or use AST to
represent code and then use LSTM or GPT-2 as the base models. We built the base
models used by the baselines. The GPT-2 model contains only six decoder modules.

4.3 Results

The experimental results are shown in Table 1, which displays the performance of var-
ious code completion methods. The CodeSeq and TrvaTrans methods, which use AST
representations, do not show comprehensive advantages over the SeqRNN and Se-
qTrans methods that treat code directly as text. The reason is that these methods do not
utilize the rich information contained in the trees effectively. Therefore, our model,
called “CodeRU”, has significantly improved task performance after enhancing the use
of AST through our two innovative algorithms.

Table 1. MRR of Baseline and Our Model

 Prior work Our
model

Application Code2Seq SeqRNN SeqTrans TravTrans CodeRU
Attribute 39.3% 51.7% 69.6% 64.3% 67.1%
Numeric 49.5% 47.5% 63.8% 64.1% 67.3%

Name 45.8% 46.5% 64.5% 69.9% 72.3%
Parameter 56.8% 66.0% 74.3% 66.7% 69.2%

All 43.7% 67.4% 75.6% 79.9% 81.5%
Subsequently, we conducted ablation experiments to verify the roles of the round-

splitting and unique traversal algorithms separately. As shown in Table 2, when our
two algorithms are used individually, the overall effect improves compared to the base-
line. When the two algorithms are combined, the model achieves the best performance.
Experiments prove that our two algorithms are effective, and the gain effect can be
superimposed.

Table 2. Ablation Study

 Effects of different parts Our model
Applica-

tion

sliding window
split

depth-first traversal

round-splitting
depth-first traversal

sliding window
split

unique traversal

round-splitting
unique traversal

Attribute 64.3% 67.1% 64.3% 67.1%

Numeric 64.1% 66.5% 64.1% 67.3%

Name 69.9% 72.1% 70.1% 72.3%

Parameter 66.7% 68.3% 68.0% 69.2%

All 79.9% 81.2% 80.2% 81.5%

296 J. Li et al.

5 Conclusions

We delved into code completion methods predicated on the representation of AST and
have developed a round-splitting algorithm and a unique traversal algorithm to address
the shortcomings in AST split and traversal preprocessing steps. The effectiveness of
our algorithms has been empirically validated through our experiments.
Compared to past work, our model can better learn the rich syntactic and structural
information embedded within the code by mitigating information loss. However, the
study of positional encoding is temporarily missing from our model. In the future, we
will try to combine the AST to construct the feature positional encoding, so that the
model can learn the positional information of the AST.

References

1. Tu Z, Su Z, Devanbu P. On the localness of software[C]//Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. 2014: 269-
280.

2. Devanbu P. On the naturalness of software[C]//Proceedings of the 6th India Software Engi-
neering Conference. 2013: 61-61.

3. Raychev V, Bielik P, Vechev M. Probabilistic model for code with decision trees[J]. ACM
SIGPLAN Notices, 2016, 51(10): 731-747.

4. Li J, Wang Y, Lyu M R, et al. Code completion with neural attention and pointer net-
works[J]. arXiv preprint arXiv:1711.09573, 2017.

5. Izadi M, Gismondi R, Gousios G. Codefill: Multi-token code completion by jointly learning
from the structure and naming sequences[C]//Proceedings of the 44th International Confer-
ence on Software Engineering. 2022: 401-412.

6. Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by gener-
ative pre-training[J]. 2018.

7. Lin C, Ouyang Z, Zhuang J, et al. Improving code summarization with block-wise abstract
syntax tree splitting[C]//2021 IEEE/ACM 29th International Conference on Program Com-
prehension (ICPC). IEEE, 2021: 184-195.

8. Shi E, Wang Y, Du L, et al. Cast: Enhancing code summarization with hierarchical splitting
and reconstruction of abstract syntax trees[J]. arXiv preprint arXiv:2108.12987, 2021.

9. Kim S, Zhao J, Tian Y, et al. Code prediction by feeding trees to transformers[C]//2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 2021:
150-162.

10. Lu S, Guo D, Ren S, et al. Codexglue: A machine learning benchmark dataset for code
understanding and generation[J]. arXiv preprint arXiv:2102.04664, 2021.

11. Alon U, Brody S, Levy O, et al. code2seq: Generating sequences from structured represen-
tations of code[J]. arXiv preprint arXiv:1808.01400, 2018.

Enhancing Code Completion with Round Splitting and Unique 297

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

298 J. Li et al.

http://creativecommons.org/licenses/by-nc/4.0/

	Enhancing Code Completion with Round Splitting and Unique Traversal of Abstract Syntax Tree

