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Abstract. This study introduces a groundbreaking approach to aircraft detection 

in satellite imagery, featuring an integrated suite of advanced methodologies that 

include the EfficientNet architecture, sophisticated data augmentation, mixed 

precision training, and cosine annealing learning rate optimization. We demon-

strate how the synergy of these innovations significantly enhances model perfor-

mance, providing a nuanced solution to the challenges of small target recognition 

and environmental variability in satellite imagery analysis. EfficientNet, re-

nowned for its balance between computational efficiency and accuracy, is metic-

ulously fine-tuned with a comprehensive set of data augmentation techniques 

such as RandomResizedCrop and RandomHorizontalFlip, enriching the training 

dataset and bolstering the model’s generalization capacity. The incorporation of 

mixed precision training facilitates faster computation and reduced memory us-

age, while the cosine annealing scheduler adeptly modulates the learning rate, 

fostering improved model convergence and robustness. The empirical outcomes 

underscore the superior detection capabilities of our model, marked by a high 

accuracy close to 95%, high precision, recall, and F1 scores, thereby establishing 

a new standard in satellite-based aircraft detection. This research not only propels 

the domain of remote sensing forward but also offers a scalable and efficient 

framework for real-time aerial surveillance and monitoring. 
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1 Introduction 

The advent of satellite technology has revolutionized various sectors, with satellite-

based aircraft detection emerging as a critical application in national security, air traffic 

management, and surveillance. This technology, however, faces several challenges, 

such as the small target size of aircraft in vast landscapes, leading to detection difficul-

ties. Environmental variability further complicates this task, as changes in weather,  
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lighting, and seasonal conditions affect the visibility and recognition of aircraft. More-
over, the issue of class imbalance, where non-aircraft elements vastly outnumber actual 
aircraft in images, poses a significant challenge in training effective detection models, 
often leading to biased predictions toward the more frequent classes [1]. 

To address these challenges, this paper aims to develop a high-accuracy, computa-
tionally efficient model for real-time aircraft identification and categorization in satel-
lite imagery. The proposed model leverages the EfficientNet architecture, known for 
its balance between accuracy and computational efficiency [2]. By integrating ad-
vanced data augmentation techniques, such as RandomResizedCrop and RandomHori-
zontalFlip, the model aims to improve generalization across diverse environmental con-
ditions and mitigate the effects of class imbalance [3]. Mixed precision training meth-
ods will be employed to enhance training speed and reduce memory usage, while a 
cosine annealing learning rate scheduler will be used to optimize the learning process, 
adjusting the rate in a cyclic pattern to better converge on the model’s parameters [4]. 

2 Methodological Framework 

2.1 Comprehensive Data Augmentation for Robustness 

To enhance the robustness of the aircraft detection model, a comprehensive data aug-
mentation strategy will be employed, utilizing the following techniques: 

1.RandomResizedCrop: The operation is defined by: 𝐼ᇱ = 𝑐𝑟𝑜𝑝(𝐼, 𝑠, 𝑟)                                                        (1) 

where 𝐼 is the original image, 𝐼ᇱ is the cropped image, 𝑠 is the scale of the crop rela-
tive to the original image, and 𝑟 is the aspect ratio of the crop [5]. 

2.RandomHorizontalFlip: This operation flips the image horizontally with a prob-
ability 𝑝 : 𝐼ᇱ = ቄ𝑓𝑙𝑖𝑝(𝐼)      𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐼                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                         (2) 

3.RandomRotation: The image is rotated by an angle 𝜃, randomly chosen from a 
predefined range: 𝐼ᇱ = 𝑟𝑜𝑡𝑎𝑡𝑒(𝐼, 𝜃)                                                  (3) 

where 𝜃  is typically within  [−𝜃௠௔௫, 𝜃௠௔௫]. 
4.ColorJitter: Adjusts the brightness, contrast, saturation, and hue of the image by 

factors 𝑏,c,s and ℎ respectively: 𝐼ᇱ = 𝑗𝑖𝑡𝑡𝑒𝑟(𝐼, 𝑏, 𝑐, 𝑠, ℎ)                                          (4) 

5.RandomAffine: Applies affine transformations including translation, scale, rota-
tion, and shear: 𝐼ᇱ = 𝑎𝑓𝑓𝑖𝑛𝑒൫𝐼, 𝑡௫, 𝑡௬, 𝜃, 𝑠, 𝑠ℎ𝑒𝑎𝑟൯                                  (5) 
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Where 𝑡௫ , 𝑡௬ are translations, 𝜃 is the rotation angle, 𝑠 is the scale, and shear refers 
to the affine shear parameters. 

6.RandomPerspective: Warps the perspective of the image with a distortion scale 𝑑 : 𝐼ᇱ = 𝑝𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒(𝐼, 𝑑)                                                    (6) 

 

Fig. 1. Six examples of advanced data enhancement 

These data augmentation techniques collectively enhance the diversity of the train-
ing dataset, enabling the model to learn robust features invariant to scale, orientation, 
lighting, and perspective (Fig 1). By presenting the model with a broader range of po-
tential scenarios, these methods prevent overfitting and improve the model's ability to 
generalize to new, unseen satellite images, ultimately lead. 

2.2 Mixed Precision Training with Gradient Scaling 

Mixed precision training utilizes both single-precision (float32) and half-precision 
(float16) formats to accelerate training and reduce memory consumption. This process 
is facilitated by torch.cuda.amp in PyTorch, which includes GradScaler and autocast. 
The methodology involves: 

1.Autocast: Automatically casts variables to float16 where beneficial, preserving 
float32 where necessary for numerical stability: 𝑤𝑖𝑡ℎ 𝑡𝑜𝑟𝑐ℎ. 𝑐𝑢𝑑𝑎. 𝑎𝑚𝑝. 𝑎𝑢𝑡𝑜𝑐𝑎𝑠𝑡(⬚): 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑚𝑜𝑑𝑒(𝐼)          (7) 

 
2.Gradient Scaling: Scales the loss before backpropagation to prevent gradient un-

derflow in float16: 𝐿ᇱ = 𝐺𝑟𝑎𝑑𝑆𝑐𝑎𝑙𝑒𝑟. 𝑠𝑐𝑎𝑙𝑒(𝐿)                                         (8) 
where 𝐿 is is the original loss, and 𝐿ᇱ is the scaled loss. 
3.Backward Pass and Step: 𝐺𝑟𝑎𝑑𝑆𝑐𝑎𝑙𝑒𝑟. backward(𝐿)                                       (9) 𝐺𝑟𝑎𝑑𝑆𝑐𝑎𝑙𝑒𝑟. step(𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟)                             (10) 𝐺𝑟𝑎𝑑𝑆𝑐𝑎𝑙𝑒𝑟. update(⬚)                                    (11) 
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Mixed precision training, especially with gradient scaling, allows for a reduction in 
memory usage, enabling larger batches or more complex models to be trained on the 
same hardware. This approach can significantly accelerate training speed due to faster 
computation in float16, while maintaining the accuracy provided by float32 calcula-
tions where needed, thus optimizing the training process of the aircraft detection model 
in satellite imagery efficiently. 

2.3 Learning Rate Optimization with Cosine Annealing 

Cosine Annealing is a learning rate scheduling technique that adjusts the learning rate 𝜂 following a cosine curve between an upper bound 𝜂௠௔௫ and a lower bound 𝜂௠௔௫ The 
learning rate at epoch 𝑡  is computed as: 𝜂௧ = 𝜂௠௜௡ + ଵଶ (𝜂௠௔௫ − 𝜂௠௜௡)(1 + cos ቀ ௧  ೘்ೌೣ 𝜋ቁ)                   (12) 

where  𝑇௠௔௫ is the maximum number of epochs. This method allows for large learn-
ing rates initially for rapid descent towards minima, followed by smaller learning rates 
to fine-tune the approach to the minima, simulating a restart mechanism. 

Cosine Annealing helps in avoiding local minima and ensures more robust conver-
gence in training deep neural networks. For satellite-based aircraft detection, this adap-
tive learning rate strategy fine-tunes the EfficientNet-based model to effectively learn 
from diverse and complex datasets, improving generalization and reducing the risk of 
overfitting. By dynamically adjusting the learning rate, Cosine Annealing aids in stabi-
lizing and optimizing the training phase, especially beneficial for nuanced tasks like 
detecting small objects (aircraft) in large satellite images. 

3 Experimental Setup and Evaluation 

3.1 Dataset  

The "Planes in Satellite Imagery" [6] dataset is employed for this study, consisting of 
32,000 20x20 pixel RGB images labeled as 'plane' (8,000 images) and 'no-plane' 
(24,000 images). These images are derived from Planet satellite imagery, specifically 
over California airports, and are intended for the development and evaluation of ma-
chine learning models capable of detecting aircraft. 

The preprocessing steps for this dataset are as follows: 
1.Resizing: Images are upscaled to 256x256 pixels to provide a more detailed input 

for the neural network. 
2.Augmentation: To enhance model robustness and generalization, several aug-

mentations are applied: 

• RandomResizedCrop to 224x224 pixels, adapting to EfficientNet's input require-
ments. 

• RandomHorizontalFlip, RandomRotation, ColorJitter, RandomAffine, and 
RandomPerspective are used to introduce variability and simulate different view-
ing conditions. 
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3.2 Model Training and Testing 

The model of choice is EfficientNet-B0 (Fig 2), known for its balance between effi-
ciency and accuracy. The training setup is structured as follows: 

 

Fig. 2. Image of Improved EfficientNet network architecture  

Loading the Model: 

• EfficientNet-B0 is initialized with pre-trained weights from ImageNet to leverage 
transfer learning for feature extraction relevant to aerial image classification. 

Training Environment: 

• The training is conducted on a GPU-enabled environment to leverage CUDA for 
accelerated computing, ensuring rapid model iterations and evaluations. 

Training Details: 

• Optimizer: AdamW is used with an initial learning rate of 0.001 and weight decay 
set at 1e-3, optimizing for both speed and regularization. 

• Loss Function: CrossEntropyLoss is employed to differentiate between the 'plane' 
and 'no-plane' classes effectively. 

• Batch Size: Set to 32, balancing the trade-off between memory usage and speed. 
• Epochs: The model is trained for 100 epochs, with periodic evaluation to monitor 

progress and performance. 
• Learning Rate Scheduler: CosineAnnealingLR is utilized, decreasing the learn-

ing rate periodically in a cosine pattern to refine training stability and convergence. 

Mixed Precision Training: 

• Implemented using torch.cuda.amp for GradScaler and autocast, enhancing the 
training efficiency by allowing faster computation and reduced memory usage. 

Training Loop: 
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• Each epoch consists of training and validation phases, where model parameters are 
updated, and performance is assessed, respectively. 

• The best model state is saved based on the highest accuracy achieved on the valida-
tion set. 

Performance Metrics: 

• After training, the model is evaluated on the test set, calculating accuracy, precision, 
recall, and F1 score to assess its classification efficacy. 

The parameters and superparameters designed are as follows (Table 1): 

Table 1. Statistical table of experimental specific parameters and superparameters 

Parameter/Hyperpa-
rameter Value Parameter/Hy-

perparameter Value 

Dataset Image Resize 256x256 pixels Random Resized 
Crop Size 224x224 pixels 

Random Horizontal Flip Enabled Random Rotation 45 degrees 

Color Jitter (Brightness, 
Contrast, Saturation, 

Hue) 
0.3, 0.3, 0.3, 0.2 

Random Affine 
(Degrees, Translate, 

Scale) 

20 degrees, (0.1, 
0.1) translate, 
(0.8, 1.2) scale 

Random Perspective Dis-
tortion Scale 0.3 Normalization 

Mean 
[0.485, 0.456, 

0.406] 
Normalization Standard 

Deviation 
[0.229, 0.224, 

0.225] Batch Size 32 

Number of Epochs 100 Loss Function CrossEn-
tropyLoss 

Optimizer AdamW Learning Rate (LR) 0.001 

Weight Decay 1e-3 LR Scheduler CosineAnneal-
ingLR 

T_max for CosineAn-
nealingLR 20 

Gradient Scaling 
(for Mixed Preci-

sion) 

Enabled with 
GradScaler 

3.3 Results Discussion and Evaluation 

In the airplane satellite image recognition project, we employed the improved Efficient-
Net model for classification (Fig 3), yielding impressive results: an accuracy of 94.94%, 
precision of 93.22%, recall of 93.39%, and an F1 score of 93.31% (Table 2). These 
metrics underscore EfficientNet's robust capability in distinguishing airplanes from 
non-airplanes within satellite imagery. Notably, the high precision and recall rates re-
flect the model's efficacy in accurately detecting airplanes and minimizing false nega-
tives. The F1 score corroborates the model's consistent and reliable performance.  
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Table 2.    The classification results of the EfficientNet model. 

Accuracy  Precision Recall F1 Score 
0.9494 0.9322 0.9339 0.9331 

 
Fig. 3. Loss in training process and the changing image of accuracy 

In advancing the field of aircraft detection from satellite images, our study distin-
guishes itself by utilizing a vast dataset of 32,000 images and incorporating the Effi-
cientNet model, significantly enhancing model robustness and accuracy with an mAP 
of 0.9494. In contrast, previous efforts, such as Chen et al. (2013) utilizing Deep Belief 
Networks (DBN) achieved an mAP of 0.7954 [7], and Wu et al. (2015) applying Con-
volutional Neural Networks (CNN) reached 0.8425 [8]. Zhao & Ren (2019) improved 
detection with YOLOv3, securing an mAP of 0.93 [9], while Maher, Gu, & Zhang 
(2018) combined YOLO with the Deep-patch Orientation Network (DON) for an mAP 
of 0.85 [10] (Table 3). These studies, though innovative, were limited by smaller, less 
diverse datasets and methods that offered narrower applicability. Our approach not only 
addresses these limitations by employing a broader dataset but also sets a new bench-
mark by being the first to apply EfficientNet in this context, thus achieving superior 
accuracy and model generalization across complex scenarios. 

Table 3. Overview of various aircraft detection approaches. 

 Author Sample size Resolution Source Technique mAP 
1 
2 
3 
4 
5 

Chen 
Wu 

Zhao 
Ali  
Our 

25 
26 

350 
600 

32000 

- 
565*369 
600*600 
511*511 
20*20 

Google 
earth 

Google 
earth 

Google 
earth 

UCAS-
AOD 

Kaggle 

DBN 
BING+CNN 

YOLOv3 
YOLO+DON 
EfficientNet 

0.7954 
0.8425 
0.93 
0.85 

0.9494 

Integrating EfficientNet, Cosine Annealing, and Advanced Data Augmentation             225



4 Conclusions 

Our investigation has elucidated the efficacy of the EfficientNet architecture within the 
domain of satellite-based aircraft detection, achieving notable metrics in accuracy, pre-
cision, recall, and F1 score. The employment of a vast and heterogeneous dataset, com-
bined with this sophisticated convolutional neural network, has culminated in a model 
with enhanced generalizability and resilience against diverse imaging conditions. This 
advancement in methodological approach signifies a substantial progression in the an-
alytical capabilities applied to satellite imagery for aircraft recognition. 

Future endeavors will concentrate on the exploration of cutting-edge neural network 
architectures that promise further enhancements in computational efficiency and ana-
lytical precision. Delving into more intricate data augmentation methodologies will also 
be pivotal, aiming to simulate an expansive array of operational scenarios to amplify 
the model’s adaptability and performance consistency across a spectrum of aerial sur-
veillance challenges.  
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