
Enhancing Code Retrieval through Deep Learning and

Information Retrieval Fusion

Wenshuo Cheng1,2,a, Jianbo Jiang1,2,b, Junyu Lu3,c*

1AHU-IAI AI Joint Laboratory, Anhui University, Hefei, China
2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China

3School of Data Science, University of Science and Technology of China, China

aWA22301171@stu.ahu.edu.cn,bWA21301043@stu.ahu.edu.cn,
clujunyu@mail.ustc.edu.cn

Abstract. Code retrieval is a widely used technique that can search for the most

relevant code fragments based on developers' natural language queries. Most of

the existing work feeds the whole code directly into the deep learning model for

training, and does not effectively utilize auxiliary information such as method

name or input parameter. In fact, the auxiliary information in the code is intuitive,

easy to obtain, and can be very helpful for the improvement of retrieval results.

In this paper, we summarize the code information into two categories, implicit

structural information and explicit auxiliary information. To make more rational

use of these two types of information, this paper proposes a two-stage code re-

trieval model. In the first stage, deep learning is used to mine the implicit struc-

tural information in the code. We adopted an improved code translation mecha-

nism to recall multiple code segments. In the second stage, information retrieval

is used to mine the explicit auxiliary information in the code, achieving a re-

ranking of the recall results from the first stage. We validated our method on the

Java dataset of CodeSearchNet. The experimental results prove that our method

is effective and achieves good results.

Keywords: code retrieval, information retrieval, code translation

1 Introduction

© The Author(s) 2024
T. Yao et al. (eds.), Proceedings of the 2024 3rd International Conference on Engineering Management and
Information Science (EMIS 2024), Advances in Computer Science Research 111,
https://doi.org/10.2991/978-94-6463-447-1_33

In the era of large-scale code, software developers write code more often by searching
for high-quality code on the Internet, such as Github or Stack Overflow, in order to
improve the efficiency of code development [1]. As the process illustrated in Figure 1,
given a query in natural language by a programmer, one code snippet returned as the
most suitable code segment, code search technology aims to provide faster and more
accurate search results.

Early code retrieval was primarily based on Information Retrieval (IR), treating code
as ordinary text and matching query text with code text through keywords. In this re-
gard, many works have been conducted to expand or reconstruct the matching content.
For example, the model proposed by Lu et al. [2] uses synonyms generated by WordNet

mailto:WA22301171@stu.ahu.edu.cn,bWA21301043@stu.ahu.edu.cn
https://doi.org/10.2991/978-94-6463-447-1_33
http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-447-1_33&domain=pdf

[3] to expand the query. The CodeHow model [4] uses related APIs to expand the query
and searches for code by extending the Boolean model to use matched APIs and query
keywords. However, information retrieval methods always have a significant drawback
in that they can only stay at the level of text information and find it difficult to bridge
the gap between programming languages and natural languages. In 2018, deep learning
was first applied to the field of code retrieval in DeepCS [5]. There have also been more
ways to represent code, such as representing code as an Abstract Syntax Tree (AST) or
Control Flow Graph (CFG) in MMAN [6], and matching text representation graphs and
code representation graphs using the method of Graph Convolutional Networks in
DGMS [7]. However, due to the complexity of high-level programming languages, it
is still very difficult to achieve very good results in code representation and learning of
code semantics.

Regardless of the method, the extraction of code semantics is a crucial step. This
paper summarizes the information in the code into the following two aspects. As shown
in the Figure 2, the first is explicit auxiliary information, such as method names or input
parameters which are highly related to code semantics and are easy to extract. The sec-
ond is implicit structural information, such as code execution logic. Without relevant
knowledge, it is difficult to understand the semantic information of high-level program-
ming languages, so this type of information often requires preliminary code represen-
tation processing. However, existing work does not make a clear distinction between
these two types of information. More consideration is given to the information of the
entire code segment, and explicit auxiliary information often does not get effectively
utilized.

Fig. 1. Code Retrieval Process

Fig. 2. Code Information Classification

In order to utilize the explicit auxiliary information and implicit structural infor-
mation in the code more effectively, this paper proposes a Two-Stage Code Retrieval
model named TS-CR. In the first stage, deep learning methods are used to match the
implicit structural information in the code. In the second stage, information retrieval
methods are used to match the explicit auxiliary information in the code. This approach

300 W. Cheng et al.

allows both types of information to be efficiently utilized. The specific practices are
described in Section 2.

To summarize, this paper makes the following contributions:
• We propose a two-stage code retrieval model, TS-CR, enables both implicit struc-

tural information and explicit auxiliary information to be effectively utilized, ultimately
enhances the effectiveness and interpretability of code retrieval.

• We have improved the code translation techniques to make the result of code
translation more streamlined and the accuracy of code retrieval is improved.

• We evaluated our approach on queries in the CodeSearchNet corpus. The experi-
mental results show that our proposed method is effective and can significantly improve
the retrieval results.

2 Methodology

Fig. 3. Overview of the TS-CR model

The Figure 3 provides an overview of the TS-CR model. In the first stage, deep
learning model is used to mine implicit structural information and recall k segments of
code, this k segments of code are re-ranked in the second stage using explicit auxiliary
information. For the deep learning model in the first stage, we use TranCS [8] and make
improvements in the instruction translation phase, the detailed process is described in
Section 2.1. In the second stage, we will compute the similarity between the code aux-
iliary information and the query using our model (described in Section 2.2) in order to
re-rank the codes. Finally, the re-ranked Top-k codes are returned.

2.1 Translation Rule Optimization

Code translation provide a detailed description of all the operations in the code, better
preserving the semantics of the code. Therefore, we believe that using code translation
techniques is a reasonable method, capable of bridging the significant semantic gap
between natural language and code. The embedding of code translation and the query
are then fed into their Encoder respectively for model training, making the vectors be-
tween the same pair of code and query closer. At the end of this stage, the trained model
will recall Top-k codes and send them to the second stage.

Enhancing Code Retrieval through Deep Learning and Information 301

However, the existing code translation work TranCS has some limitations. The re-
sults of code translation contain a lot of redundancy, which makes the translation results
excessively long and affects the model's performance.

In response to the limitation, we designed the Algorithm - Translation Rule optimi-
zation shown in Figure 4.

Fig. 4. Translation Optimization Algorithm

As shown in Figure 4, 𝕀 denotes an instruction containing a computational op-
eration. After this algorithm, many interdependent instructions can be merged with no
loss of information, thus reducing the length of the final code translation.

2.2 Re-rank with Explicit Auxiliary Information

In the second stage, we re-rank the Top-k code segments with the explicit auxiliary
information (named IR-rerank). We have implemented a detailed word processing
method from the following two aspects:

1. Split Word: Words are generally made up of multiple words, so they need to be split.
2. Word Stem: Get the stem of each word to make them match each other.

As shown in the Figure 3, in the specific re-ranking process, after processing both
the query text and code information, a word list is generated, we represent
word list as a set, where stands for method name, for input parameters, and
for query. The similarity is calculated as the following formula:

 (1)

The higher the similarity, the higher the ranking will be. If the two pieces of code
have the same similarity, the ranking will be based on the first stage. Eventually the re-
ranked codes are returned.

302 W. Cheng et al.

3 Evaluation

3.1 Dataset and Evaluation Metrics

Dataset.
In this paper, we evaluated our performance on the Java code from the CodeSearch-

Net (CSN) public corpus [9]. The baselines we considered for comparison include
DeepCS [5], MMAN [6], and TranCS [8]. Regarding the data, we filtered and reallo-
cated the original data from CSN, ultimately obtaining 69,324 samples as the training
set and 1,000 samples as the test set.

Evaluation Metrics.
During model evaluation, we have 1000 test samples, where each query in the sam-

ple has a corresponding correct code and the remaining 999 codes are interference
terms. We adopt two evaluation metrics widely used in retrieval research [10] to meas-
ure the performance of our model, the success rate at () and the
mean reversal rank (). The higher the and values, the better the
code retrieval performance.

3.2 Evaluation Results

Overall Results.

Table 1. Overall Performance of TS-CR

Tech

DeepCS 0.276 0.524 0.622 0.391
MMAN 0.335 0.562 0.657 0.436
TranCS 0.540 0.770 0.831 0.640

TranCS + TRO 0.542 0.775 0.842 0.654
TranCS + IR-rerank 0.600 0.809 0.831 0.691

TS-CR (ALL) 0.603 0.811 0.842 0.697
From the Table 1, it can be seen that experimental results have made considerable

progress, both the TRO (Translation Rule Optimization) and IR-rerank collectively im-
prove the performance of the TS-CR model, and the final MRR can be improved to
0.697, an increase of 0.057. This proves that our modeling is effective, TRO allows the
code information to be represented more comprehensively, and the explicit auxiliary
information is effectively utilized in the second stage.

Table 2. Effect of Two Messages

Tech
TranCS 0.542 0.775 0.842 0.654

Enhancing Code Retrieval through Deep Learning and Information 303

TranCS + FuncName 0.564 0.796 0.831 0.665
TranCS + InParam 0.556 0.770 0.831 0.656

TS-CR(ALL) 0.603 0.811 0.842 0.697
The Table 2 shows the different impacts of method names and input parameters on

experimental results. It can be observed that when applied individually, the effects are
rather ordinary. After numerous experiments, we find that the best results are achieved
by directly adding the two types of similarity with equal weight, particularly when k is
set to 10.

Table 3. Comparison of the Two Stages

Tech

Only Stage 1 0.542 0.775 0.842 0.654
Only Stage 2 0.372 0.602 0.701 0.483

TS-CR(k=100) 0.556 0.784 0.855 0.658
TS-CR(k=10) 0.603 0.811 0.842 0.697

Analysis of Model Rationality.
In the model of this paper, the two stages are paired and applied, with the first stage

recalling some codes and the second stage re-rank these codes. Table 3 shows the effect
of the two stages when they are applied individually, as well as the effect of combining
the two stages at different k values. As can be seen from the table, when applied alone,
the results are worse when using only the second stage than when using only the first
stage. This shows that the deep learning method has stronger recall ability and the in-
formation retrieval method is able to achieve a small range of word matching, and the

Fig. 5. Change in Ground Truth Ranking

two methods complement each other and promote each other to make TS-CR
achieve better results.

The Table 3 also shows the effect at different values of k. The results show that the
effect is much better when the k value is set to 10 than when k is 100, and according to
our experiments, the highest value of MRR is only obtained when k=10, and the effect
is worse at the rest of the time. This suggests that the combination of the two phases,

304 W. Cheng et al.

although effective, needs to be at the proper k value to be at its best and cannot be
biased towards either stage.

The heatmap presented in Figure 5 illustrates the ranking changes of 1000 samples
after undergoing the second stage. Red indicates an increase in the ranking of the
ground truth, while blue indicates a decrease. It is evident that the number of red in-
stances significantly exceeds the number of blue ones (with 219 samples in red and 129
in blue), thus, the heatmap adequately demonstrates the effectiveness of the second
stage, with an approximate 22% of the samples showing a significant improvement in
their ranking.

4 Conclusions

In this paper, we propose a two-stage code retrieval model, TS-CR, which captures both
the implicit structural information and explicit auxiliary information of the code, ensur-
ing that all information is efficiently utilized. Additionally, we have optimized existing
code translation techniques to make the translation results more concise. Comprehen-
sive experiments conducted on the CSN Java dataset demonstrate that TS-CR is an
effective method of code retrieval, outperforming other existing works.

We believe that the two-stage code retrieval model is reasonable, which allows code
information to be fully and effectively learned. In the future, we will try to apply our
second stage to more other deep learning models to prove that this part of our work can
make a wider contribution. At the same time, we will also explore more effective re-
ranking methods.

References

1. Brandt J, Guo P J, Lewenstein J, et al. Two studies of opportunistic programming: interleav-
ing web foraging, learning, and writing code[C]//Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 2009: 1589-1598.

2. Lu M, Sun X, Wang S, et al. Query expansion via wordnet for effective code search[C]//2015
IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 2015: 545-549.

3. Miller G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995,
38(11): 39-41.

4. Lv F, Zhang H, Lou J, et al. Codehow: Effective code search based on api understanding
and extended boolean model (e)[C]//2015 30th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE). IEEE, 2015: 260-270.

5. Gu X, Zhang H, Kim S. Deep code search[C]//Proceedings of the 40th International Con-
ference on Software Engineering. 2018: 933-944.

6. Wan Y, Shu J, Sui Y, et al. Multi-modal attention network learning for semantic source code
retrieval[C]//2019 34th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). IEEE, 2019: 13-25.

7. Wan Y, Shu J, Sui Y, et al. Multi-modal attention network learning for semantic source code
retrieval[C]//2019 34th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE). IEEE, 2019: 13-25.

Enhancing Code Retrieval through Deep Learning and Information 305

8. Sun W, Fang C, Chen Y, et al. Code search based on context-aware code translation[C]//Pro-
ceedings of the 44th International Conference on Software Engineering. 2022: 388-400.

9. Husain H, Wu H H, Gazit T, et al. Codesearchnet challenge: Evaluating the state of semantic
code search[J]. arXiv preprint arXiv:1909.09436, 2019.

10. Cambronero J, Li H, Kim S, et al. When deep learning met code search[C]//Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. 2019: 964-974.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
 The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

306 W. Cheng et al.

http://creativecommons.org/licenses/by-nc/4.0/

	Enhancing Code Retrieval through Deep Learning and Information Retrieval Fusion

