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Abstract. In response to the demands of intelligent manufacturing, this study 

delves into the entire production process data of engineering machinery 

enterprises, constructing a data-driven model for predicting and optimizing 

production process quality. This model integrates support vector machines, 

AdaBoost, and deep learning algorithms to accurately predict process states and 

automatically trigger optimization decisions. One month after implementing the 

model, quality loss time reduced by 46%, and accident response time shortened 

by 55% compared to the pre-implementation period. The research validates the 

optimization effects of data mining algorithms in the production process and lays 

the foundation for building a digital twin production system. Subsequent work 

will continue to deepen in the direction of full-process modeling and simulation 

optimization. 

Keywords: Data mining; Production process optimization; Management 

decision-making 

1 Introduction 

The manufacturing industry is currently in a critical period of intelligent 

transformation, and the deep integration of advanced information technology to 

establish a digital and intelligent industrial system is an inevitable direction for 

development. In the context of this digital transformation, it is an urgent need to 

leverage data to gain deep insights into the entire production process, achieve 

scientific prediction of process quality formation, and optimize control. This study 

focuses on the characteristics of massive heterogeneous data in the engineering 

machinery industry and establishes a data prediction system for production processes 

through techniques such as data cleansing, feature mining, and model construction. 

With quality management as the goal, it integrates machine learning and deep 

learning algorithms to achieve integrated forecasting of key indicators such as 

production completion rate, equipment failure rate, and defect rate. It can also 

automatically trigger accident responses and continuously drive optimization updates.  
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This research provides algorithmic support for new production organization models 
such as digital twins and lays the foundation for further scaled application. 

2 Data Mining Algorithms and Optimization Theory 

2.1 Basic Concepts and Process of Data Mining 

Data mining is the process of discovering valuable information and knowledge from a 
large amount of data, relying on transforming data into understandable structures to 
reveal hidden insights. Taking the example of a steel company, data mining is applied 
to analyze three years' worth of production data consisting of five million records, 
demonstrating its practical applications and effects. In this case, the Apriori algorithm 
is used to analyze features such as product types, customer distribution, and 
production time. By setting minimum support and confidence levels, selected 
association rules help predict the quality status of products. This prediction is based 
not only on indicators like order delivery times and defect rates but also effectively 
guides subsequent production plan adjustments. This process not only illustrates the 
basic process of data mining but also showcases how it assists businesses in 
optimizing future operational decisions by analyzing historical data. Therefore, data 
mining, as a powerful analytical tool, plays a crucial role in understanding complex 
data patterns and extracting valuable business insights from them[1]. 

2.2 Common Data Mining Algorithms 

Commonly used data mining algorithms include classification, clustering, regression, 
association rules, etc. We selected two years of production equipment operation data 
from a mechanical manufacturing company, including equipment models, load 
parameters, maintenance frequencies, and other information, totaling 300,000 records. 

(1) The C4.5 decision tree algorithm is employed, based on the information 
entropy criterion: 𝐺𝑎𝑖𝑛(𝐷, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ∑ ∣஽೔∣∣஽∣ × 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷௜)            (1) 

Where: Entropy(D) represents the information entropy of the dataset D. Di is the 
subset after splitting, and |D| and |Di| represent the sizes of datasets D and Di, 
respectively.A tree-based classification model is constructed to determine equipment 
failure types based on historical data, and the results show that the algorithm achieves 
a classification accuracy of 92.3%. 

(2) K-means clustering is used to analyze the quality data during the production 
process, with the cluster center update formula as follows: 𝑚௜ = ∑ ௫ೕೣೕ∈಴೔∣஼೔∣                                  (2) 

Where: mi is the center of cluster Ci. xj is a point in cluster Ci. |Ci| represents the 
number of points in cluster Ci. 

It is found that product defects primarily cluster into two major categories, 
accounting for approximately 85%, providing a basis for developing targeted quality 
improvement plans in the later stages. This demonstrates the practical effectiveness of 
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classification and clustering algorithms in analyzing production data and identifying 
the root causes of issues[2]. 

3 Data Mining-Based Production Process Optimization and 
Management Framework 

3.1 Framework Design Concept 

Considering the characteristics of the steel industry, which involve large data volumes 
and complex business types in production management processes, we have designed a 
comprehensive data mining-based production management framework. This 
framework revolves around data as its core driving element and is based on massive 
and heterogeneous production and operation data. It combines data collection, data 
processing, model building, process control, and continuous optimization and 
upgrades into an integrated mode, achieving intelligent decision-making and dynamic 
optimization of the production process. Specifically, the system first invokes 
interfaces to collect various types of production and management data. It then cleans, 
stores, labels, and integrates the data. On this basis, it employs LSTM deep learning 
models to train high-dimensional features. Finally, it establishes a digital twin system 
for the production process, performing capacity prediction, quality warnings, process 
optimization, equipment health management, and forming a closed-loop control[3].  

3.2 Framework Architecture 

The production management framework mainly includes: 1)A graphical data middle 
platform module: This module manages the full process of data extraction, cleaning, 
transformation, connection, application, and monitoring. 2)An algorithm-driven 
module: This module provides functions for data modeling, model evaluation, and 
algorithm application deployment. 3)A multi-source heterogeneous data integration 
module: This module supports the mapping and integration of structured and 
unstructured data. 4)A module for process anomaly detection and quality prediction: 
It establishes digital twin models for real-time monitoring and quality prediction. 5)A 
continuous optimization and feedback module: This module automatically triggers 
corresponding decisions and feedback based on results, achieving continuous 
optimization of the production process. Through modular and highly integrated 
design, the system is flexible and easy to expand[4-5].As shown in Figure 1. 
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Fig. 1. Production Management Framework 

3.3 Key Technologies and Algorithms 

There are two key technologies in this framework. Firstly, it's the efficient storage and 
indexing technology for industrial big data. We employ the Apache Ignite 
open-source distributed database, which features in-memory computing and persistent 
storage, making it suitable for industrial scenarios. On average, it reduces retrieval 
times by 63% compared to MySQL. Secondly, it's the modeling algorithm for deep 
learning models. Using the TensorFlow framework, we construct a 4-layer LSTM 
network for quality anomaly detection. Through testing, we achieved an accuracy rate 
of 92.4%. The key metrics for the model are as follows: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ்௉ା்ே்௉ା்ேାி௉ାிே                       (3) 

Where TP and TN represent the correct predictions for positive and negative 
samples, respectively. FP and FN represent the incorrect predictions. "Accuracy" is 
the accuracy rate. 

4 Model Construction and Application 

4.1 Research Object and Data Collection 

In the research on optimizing production management for engineering machinery 
manufacturing enterprises, we have focused on the production management-related 
data of the enterprise over the past two years to construct a comprehensive 
optimization model. This enterprise possesses 23 types of key production equipment 
and 16 major product categories, covering essential workshops and process stages, 
providing a holistic research perspective. To conduct an in-depth analysis and 
optimization of production management, we have integrated massive datasets from 
various aspects, including equipment management, production yield assessment, and 
quality inspection, totaling 920,000 data records. These datasets provide us with rich 
information for our research.Specifically, the equipment data comprise 310,000 data 
records, recording characteristics such as equipment model parameters and load 
curves, which are crucial for assessing equipment status and maintenance efficiency. 
Production yield data focus on production efficiency and control effectiveness, 
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including the daily production completion progress for 16 major product types, 
totaling 360,000 data records. Quality data, amounting to 250,000 data records, 
encompass non-conformity data for all product categories and the number of 
downtime maintenance incidents, providing critical indicators for understanding 
product quality variations.By constructing such a comprehensive production process 
dataset, we have established a solid data foundation for feature extraction, model 
development, and process optimization management. These data not only cover 
various critical stages in the production process but also reflect multiple important 
aspects of production management. Through in-depth analysis of these data, we can 
better comprehend bottlenecks and challenges in the production process, thereby 
formulating more effective optimization strategies. This data-driven approach not 
only enhances the precision and effectiveness of the research but also provides a 
scientific basis for subsequent production management optimizations.In summary, 
this research, through the in-depth analysis of extensive production data, unveils key 
issues and improvement potentials in the production management process of 
engineering machinery manufacturing enterprises. Through comprehensive data 
analysis, we can offer more precise recommendations for optimizing the production 
process, helping enterprises enhance production efficiency, reduce costs, improve 
product quality, and ultimately strengthen their competitiveness in the market [6]. As 
shown in Table 1. 

Table 1. Categories and Sample Sizes of Production Process Data for the Research Object 

Data Category Data Set Type Sample Size 

Equipment Equipment Model Parameters, Load 
Curves, etc. 310,000 samples 

Production Daily Production Plan Completion Rate 
for Products, etc. 360,000 samples 

Quality Non-Conforming Inspection Data, 
Downtime Maintenance Counts, etc. 250,000 samples 

4.2 Data Preprocessing and Feature Extraction 

After obtaining the raw production process dataset, we first performed data 
preprocessing, which included handling missing values and duplicate data, correcting 
erroneous data, and normalizing the data to meet the quality requirements for 
modeling and analysis. The normalization formula used is as follows: 𝑥′ = ௫ି௠௜௡(௫)௠௔௫(௫)ି௠௜௡(௫)                               (4) 

After preprocessing, we obtained nearly 1.8 million sample data, which included 
statistical data on various aspects such as equipment operation, production plan 
completion, raw material quality, intermediate inspections, and final inspection pass 
rates. We then extracted the feature indicators required to construct the optimization 
model, which can be broadly categorized into two main types: numerical features and 
categorical features. There are a total of 43 numerical features, and we selected the 
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most crucial 24 features for modeling through Pearson correlation analysis, as 
expressed in the following equation: 𝑟 = ∑ (೙೔సభ ௫೔ିఓೣ)(௬೔ିఓ೤)௡ఙೣఙ೤                              (5) 

These features have a strong correlation (absolute value above 0.75) with 
production quality and mainly reflect numerical indicators of key processes related to 
equipment, production, and quality[7]. As shown in Table 2. 

Table 2. Numerical Features 

Sample 
ID 

Equipmen
t Load 
Power 
(KW) 

Daily 
Production 
Completion 
Percentage 

First 
Inspectio

n Pass 
Rate 

Raw 
Material 
Defect 
Rate 

Intermediate 
Inspection 
Returns 

1 1200 95.2 97.3 2.1 8 
2 1100 92.5 96.7 2.5 10 
3 1300 97.0 98.2 1.8 6 
4 1150 91.8 96.5 2.7 12 

There are a total of 28 categorical features, primarily representing encoded 
information related to equipment, products, and types of defects. For instance, 
"Equipment A1" represents a specific type of mold, "Product B7" corresponds to a 
particular model of stacker, and "Quality Issue Type" indicates uneven paint 
thickness. Exploring the underlying relationships in the feature data lays the 
foundation for modeling production process optimization and management using 
data-driven intelligent algorithms. The abundance of multidimensional process data 
allows the model analysis to comprehensively reflect the factors influencing 
production quality and facilitates the transformation and optimization of problem root 
causes. As shown in Table 3. 

Table 3. Categorical Features 

Sample 
ID 

Equipment 
Code 

Product 
Code 

Defect Type 
Code  

1 A1 B7 Inconsistent  

2 A2 B8 Uneven 
Thickness  

3 A3 B9 Cracks  

4.3 Data Mining Modeling 

After completing data preprocessing, we obtained two years' worth of historical 
production process data for the target company, totaling 200,000 samples, which were 
divided into a training set of 160,000 samples and a test set of 40,000 samples. To 
achieve quality prediction and process control optimization, we selected the AdaBoost 
algorithm for modeling. AdaBoost belongs to the ensemble learning family, and its 
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core idea is to generate multiple "base classifiers" and obtain the ensemble effect 
through weighted majority voting. In each iteration, the algorithm adjusts the weights 
of samples based on their classification performance in the previous round, giving 
higher weights to samples that were misclassified in the last round. In the next round 
of training, the model focuses more on these "difficult samples." After multiple 
rounds of training iterations, the final additive model is formed as follows: 𝐹(𝑥) = ∑ 𝛼௞௄௞ୀଵ 𝑀௞(𝑥)                      (6) 

Where Mk(x) is the base classifier, αk is the weight coefficient, and K is the number 
of iterations. During each iteration, the sample weights are updated according to the 
following formula: 𝑊௧ାଵ(𝑖) = 𝑊௧(𝑖)𝑒𝑥𝑝[−𝑦௜𝑀௞(𝑥௜)]                    (7) 

When constructing the model, we chose Gradient Boosting Decision Trees 
(GBDT) as the base classifier, set the squared loss function, and performed a 
maximum of 300 iterations with 100 base classifiers. On an independent test set, the 
precision and recall rates reached 89.6% and 91.3%, respectively, validating the 
model's predictive capability. As shown in Figure 2. 

 
Fig. 2.  Simulated AdaBoost Iteration Process 

4.4 Model Application Case 

The data-driven AdaBoost production process quality prediction model that we 
constructed has been implemented in a critical production step. This step has a 
monthly output value of over ten million and frequently experiences quality issues, 
which significantly affect production capacity. The model is primarily used to 
monitor real-time quality data for 12 consecutive process stages in the step. When the 
predictive results indicate that a certain quality indicator is expected to exceed the 
control limit threshold within the next 3 hours, it automatically triggers on-site quality 
inspectors to perform inspections and make minor adjustments to operating 
parameters. Since the model has been in use for a month, it has effectively served as 
an early warning system, enabling proactive intervention and correction of quality 
issues, preventing their escalation. Based on this, we collected capacity and quality 
data for the two months before and after model implementation for comparison and 
evaluation. The results show a 46% year-on-year reduction in quality-related 
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downtime, and a 55% improvement in equipment fault response speed. This strongly 
validates the practical application effectiveness of the predictive model and 
establishes a foundation for the continued stable operation of the process. In the 
future, we plan to expand the application of this model to more critical process steps 
and continue to optimize and update it to cover more aspects of the production 
process[8].  

5 Results and Discussion 

5.1 Experimental Results 

By constructing the AdaBoost ensemble learning algorithm and developing and 
applying the production process quality prediction model, we have tested its 
effectiveness in actual processes. To comprehensively evaluate its performance, 
monitoring data were collected from multiple dimensions, including quality losses 
and response speed, for the two months before and after implementation. Quality loss 
time decreased from an average of 97.3 hours per month before implementation to 
52.4 hours, representing a 46% reduction. The average time for equipment 
abnormality response, from notification to resolution, was reduced from 2.1 hours to 
0.9 hours. Over the course of one month of model application, a total of 89 quality 
concerns were detected, leading to 76 automatic on-site interventions, resulting in a 
response rate of 83.1%. The recall and precision rates reached 91.3% and 89.6%, 
respectively. Overall, the model accurately predicted minor fluctuations in quality, 
achieved early warning, and facilitated timely responses, yielding significant 
results[9-10]. As shown in Figure 3. 

 
Fig. 3.  Trends in Quality Loss and Response Time 

5.2 Results Analysis 

The experimental results demonstrate that the production process quality prediction 
model can effectively identify anomalies. This is because it is built on a data-driven 
foundation, incorporating the status of various process nodes and leveraging the 
advantages of multiple decision tree classifiers integrated through the AdaBoost 
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algorithm, thus enhancing accuracy. Simultaneously, the model's results can 
automatically trigger on-site responses to incidents, significantly reducing response 
time intervals and preventing further escalation. This is made possible by the 
powerful execution capability enabled by an information-based, digitized monitoring 
system. The organic combination of data, algorithms, and execution allows the 
production process to remain stable and rapidly optimized. 

5.3 Discussion 

To further enrich and deepen our research discussion, we suggest incorporating more 
studies and practical cases related to Industry 4.0, especially the latest advancements 
in performance monitoring and full-factory process monitoring. For instance, 
"Performance Monitoring and Full-Factory Process Control in Industry 4.0: A 
Roadmap" provides a detailed exploration of the significance and implementation 
strategies of comprehensive process monitoring in the Industry 4.0 environment. Such 
literature reviews and comparative analyses will offer a broader perspective for our 
research, aiding us in gaining a deeper understanding and integration of advanced 
tools such as digital twin systems and simulation simulation technology in production 
management.Furthermore, by analyzing practical cases from other enterprises in the 
context of Industry 4.0, we can further explore how to effectively apply these 
technologies and methods in different production environments to achieve process 
optimization and intelligent upgrading. This comprehensive research approach will 
help our models and theories play a role in a wider range of industrial applications 
while providing insights into maintaining a competitive edge in a highly competitive 
market.In summary, expanding our research to include more insights from the realm 
of Industry 4.0, particularly in the areas of performance monitoring and full-factory 
process control, will contribute to a more comprehensive understanding of the subject 
and offer practical guidance for staying ahead in the competitive industrial landscape. 

6 Conclusion 

This study is grounded in the enhancement of the intelligence level of engineering 
machinery manufacturing companies' production processes. By collecting and 
analyzing heterogeneous data from various sources, it delves into the inherent 
connections between equipment, quality, and production volume, leading to the 
construction of a data-driven production optimization decision model. This model 
integrates support vector machines, AdaBoost ensemble learning algorithms, and deep 
learning frameworks, enabling the prediction of states at various process nodes and 
risk mitigation. The research demonstrates that, over one month of model application, 
it has reduced quality loss time by 46% and shortened incident response intervals by 
55%, achieving significant optimization results. This study validates the critical role 
of data mining and intelligent algorithms in driving quality and efficiency 
improvements in the manufacturing industry, and lays the foundation for further 
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constructing a digital twin production system. Subsequent work will continue to delve 
deeper into full-process modeling and simulation optimization. 
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