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ABSTRACT
Achieving flexibility through energy storage will be a key element in the transition to a low carbon energy grid. Decision making
around investment in energy storage assets is a challenging task, and is typically reliant upon evaluating the expected performance
of the planned asset on the basis of a set of economic metrics. The levelised cost of storage (LCOS) is one such metric, although
significant limitations have been recognised, not least that temporal characteristics are not included. This means that the arbitrage
value that may be achieved by the store - in the general case that charging and discharging prices vary over time - cannot be
represented, with standing losses also not straightforwardly included. A potential solution is presented by the net present value
(NPV) metric. The NPV describes the discounted present value of an asset considering both costs and revenue streams. As such,
it offers a means of incorporating temporal behaviour including arbitrage value into the value calculation. This paper focuses on
the development of a highly efficient method for estimating an upper bound on the arbitrage value that may be achieved by a given
storage device, such that it may be included with the NPV metric.
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1. INTRODUCTION
It is widely accepted that energy storage will be

key to unlocking the benefits of future energy systems
driven by renewable generation. It is expected that the
storage options to be implemented will span a huge
range of scales and technologies, and having access to
efficient and reliable evaluation metrics will be of great
importance in arriving at the most appropriate option
for a given application. This paper focuses on one such
metric, net present value (NPV), and in particular the
development of an efficient method for evaluating the
revenue term that is central to its calculation.

1.1. Storage Metrics

A number of metrics have been proposed for eval-
uating the economic benefit of energy storage devices.
Among these, the levelised cost of storage (LCOS) has
found particular traction, and is broadly defined as the
total lifetime cost of the storage device divided by the
total energy delivered over that time. The LCOS metric
is derived from the widely used levelised cost of energy
(LCOE) metric developed for comparison of energy
generators. The commonly adopted definition in recent

literature is,

LCOS =
CAPEX +

∑N
n=1

CCn+OPEXn

(1+r)n + EoL
(1+r)N+1∑N

n=1
Eoutn
(1+r)n

(1)
where CAPEX is capital expenditure, OPEX is oper-
ational expenditure, EoL is the end of life cost, CC is
the charging cost, Eout is the energy discharged from
the system, n denotes the year of operation of the system
up to the end of its lifetime in year N and r is the
discount rate.

However, LCOS as commonly applied presents sev-
eral limitations, the most significant of which is that
temporal characteristics are not naturally included. It
remains common practice for a constant energy price to
be assumed, with the energy output by the system Eout
and the cost of charging the system CC being based on
an assumed number of charge cycles per annum.

One alternative is the NPV metric, which describes
the discounted present value of an asset considering
both costs (one-off and recurring) and revenue streams.
As such, it offers a means of incorporating temporal
behaviour including arbitrage value into the value cal-
culation via the revenue term. The NPV of a storage
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asset may be defined as,

NPV =
N∑

n=1

Rn −OPEXn

(1 + r)n
− EoL

(1 + r)N+1
−CAPEX

(2)
where Rn denotes the revenue returned within year n.

The research question addressed in this paper is how
to go about evaluating revenue for a given period based
upon the characteristics of the storage device and the
available energy price records, focusing on arbitrage as
a key revenue stream. An approach is developed that
makes use of graphical modelling methods to efficiently
arrive at an estimate of the upper bound on the arbitrage
value that may be achieved for a given set of storage
parameters, facilitating evaluation of storage assets using
the NPV metric. This enables a range of analyses,
from comparison of competing storage technologies for
a given application to decisions on whether increased
CAPEX costs to achieve improved system performance
can be justified. These analyses may be further extended
by considering the carbon arbitrage benefits that may be
achieved, using the same graphical modelling approach.

The layout of the paper is as follows. The proposed
methodology is presented in §2, with demonstration for
a representative set of storage devices in §3. Discussion
and brief conclusions are presented in §4.

2. METHODOLOGY
The approach adopted in this paper employs graph-

ical modelling techniques, and proceeds by:

1) Ingesting and preprocessing historical (or fore-
cast) time series data on available energy prices
and associated carbon intensities.

2) Identifying peaks and troughs in the time series
that represent candidate ‘sell’ and ‘buy’ points,
respectively.

3) Setting up a directed acyclic graph (DAG) to
represent the buy/sell/hold actions (‘edges’) con-
necting the identified buy/sell points (‘vertices’).

4) Searching for the path through this graph that op-
timises carbon/cost benefits, efficiently returning
an estimated upper bound on cost and/or carbon
savings.

The approach is motivated by methods employed
with financial analysis which seek to identify the max-
imum profit that may be realised over a period of
time through optimisation of trading decisions. This
application is illustrated in §2.1, followed by extension
to the energy arbitrage case in §2.2.

2.1. Stock Trading

The approach proceeds by constructing a weighted,
bipartite DAG denoted G(U, V,E,R) to represent the
trading problem. A bipartite graph is one whereby the
vertices may be partitioned into two disjoint, indepen-
dent, nonempty subsets U and V , with all edges in E

connecting a vertex in U to a vertex in V . In a weighted
graph, the set R contains values assigned to each edge
in E.

In the stock trading problem, we may consider U to
contain the set of all candidate “buy” points and V to
contain the candidate “sell” points. The set E consists of
two types of directed edge: trading edges which start at a
vertex in U and end at a vertex in V , and forward edges
which start at a vertex in V and end at a vertex in U . It
should be noted that this approach essentially represents
an all-in, “buy low, sell high” approach to maximising
profit. It is also an ex-post analysis, so assumes that data
is perfectly known for the period considered.

Graph construction begins with identification of the
subsets U and V (e.g. through application of a peak
picking method to identify local maxima and minima
within the price record) and by setting E = R = ∅.

A new trading edge (i, j) between a vertex i ∈ U
and j ∈ V is created and assigned a weight Ri,j if and
only if:

• tj ≥ ti to ensure temporal consistency, where ti
and tj are the timestamps associated with i and j
respectively.

• The trade is profitable, i.e.,

Ri,j = pj(1− c)− pi(1 + c) ≥ 0 (3)

where c is the rate of transaction costs (here
treated as equal for buy and sell actions) and pi
and pj are the prices associated with i and j
respectively.

A new forward edge between vertices j ∈ V and i ∈ U
is created and assigned a weight Rj,i = 0 if and only
if:

• ti ≥ tj to ensure temporal consistency.

Once the graph is constructed a range of analyses
may be performed. Most pertinently, the length of the
longest admissible path through the graph represents
the optimal solution to the problem i.e. the maximum
profit that may be made during the period considered
for the stock trading case. Note that in practice it is
commonplace to replace searching for the longest path
through G(U, V,E,R) with a search for the shortest path
through G(U, V,E,−R) (commonly referred to as −G);
these approaches are equivalent for DAGs and allow
the use of efficient shortest path search algorithms. The

Table 1. Stock trading data: buy points

t 1 3 5 7 9 11

pt 100 90 126 140 110 168

Table 2. Stock trading data: sell points

t 2 4 6 8 10 12

pt 120 160 150 160 170 185
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shortest path algorithm is of complexity O(|E|), solving
in linear time. Retaining only those trading edges that are
profitable promotes sparsity within the graph and thus
increases the efficiency of solution. A second analysis
of less relevance to the stock trading case but of value is
to the energy storage scenario is to consider the returns
that may be realised as the number of trades within the
period is constrained. This extension is omitted from the
current study but will be returned to in future work.

In order to illustrate the method, the example pre-
sented in [1] is recreated. The example is based on the
artificial stock price data shown in Fig. 1, with the data
is sliced into candidate buy and sell points as shown in
Tables 1 and 2. The resulting graph for a transaction cost
of c = 10% is shown in Fig. 2, with the optimal path
through the graph shown in red. Note that dummy start
and end points (labelled 13 and 14) are included to aid
illustration; the start node has all i ∈ U as successor
vertices, with the end node being a successor to all
j ∈ V . In both cases the edges from/to these nodes
are zero-weighted. The optimal profit returned by the
sequence of trades illustrated in Fig. 2 is 91.4, the sum
of the weights associated with the trading edges on the
optimal path.

2.2. Energy Arbitrage

Adapting the approach presented in §2.1 to the
case of energy arbitrage requires modification of the
trading edge weight calculation, and consideration of
the price record used. These steps allow the incorpo-
ration of key storage parameters (e.g. overall capacity,
charge and discharge rates and efficiencies, standing
losses) within the optimal revenue calculation. Graph
construction proceeds along similar lines, with subsets

Figure 1 Exemplar stock trading data.

Figure 2 Directed acyclic graph (blue) and optimal path
(red) for the stock trading problem.

of candidate charge and discharge points identified from
the appropriate price record, and with E = R = ∅.

The only difference in graph construction arises from
definition of the trading edge weights. A new trading
edge (i, j) between a vertex i ∈ U and j ∈ V is created
and assigned a weight Ri,j if and only if:

• tj ≥ ti to ensure temporal consistency, where ti
and tj are the timestamps associated with i and j
respectively.

• The trade is profitable, i.e.,

Ri,j = pjηdchf(ti, tj)− piηch ≥ 0 (4)

where and ηch and ηdch are respectively the charge
and discharge efficiencies and f(ti, tj) is a stand-
ing loss function.

As before, a new forward edge between vertices j ∈ V
and i ∈ U is created and assigned a weight Rj,i = 0 if
and only if:

• ti ≥ tj to ensure temporal consistency.

The second element in tailoring the approach to the
energy arbitrage case is through consideration of the
price record from which the graph is constructed. In
general, the cost of fully charging the store from empty
at a given time ti will be given by,

pi =

∫ ti+T ch

t=ti

p(t)P ch(t)dt (5)

where Pch(t) describes the charging power profile, p(t)
represents the energy price record and T ch is the time
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taken to complete a full charge. If the charge rate P ch(t)
is assumed to be constant for the duration of the charging
process, the charging time is given by,

T ch =
E

P ch
(6)

with the time-dependency of P ch omitted. Similarly, the
energy cost associated with complete discharge of the
store starting at time tj may be expressed as,

pj =

∫ tj+Tdch

t=tj

p(t)P dch(t)dt (7)

Note that there is no requirement for P ch(t) and
P dch(t) to be either constant or to be linear functions
of time, as would be required with a linear program-
ming approach to the arbitrage estimation problem. This
permits accurate representation of arbitrarily complex
charge and discharge profiles without impacting com-
putational efficiency. It also allows for the inclusion
of other impacts on the charging price, as is the case
in the demonstration example presented in §3. In the
example, it is assumed that the (thermal) storage device
is charged via a heat pump, conferring a coefficient of
performance (CoP) advantage. The charge and discharge
costs in Eqns. 5 and 7 may be be straightforwardly ad-
justed to consider the combined heat pump and thermal
store system through addition of the time varying CoP,
resulting in,

pi =

∫ ti+T ch

t=ti

p(t)P ch(t)

CoP (t)
dt (8)

and,

pi =

∫ ti+Tdch

t=ti

p(t)P dch(t)

CoP (t)
dt (9)

Note that positive CoP values will have the effect of
reducing the “spread” between charge and discharge
costs, and thus the arbitrage value returned.

Finally, the approach shown in Eqns. 8 and 9 for
energy prices may equivalently be applied to carbon
intensity data through simple substitution of p(t). This
is demonstrated in § 3.3.

3. DEMONSTRATION
The approach introduced in §2.2 is demonstrated for

a full year of weather, carbon and energy data for a
location in Nottingham, UK. The period considered is
1st January to 31st December 2021. The parameters of
the storage device used for illustration are presented
in Table 3. These are chosen to be representative of a
thermal storage device used to service intraday domestic
hot water (DHW) demand within a residential property.
The system configuration considered is that the thermal
storage system is used in conjunction with an air source
heat pump, modelled using the method proposed in [2]
and assuming a charging temperature of Tch = 60◦C.

3.1. Price Arbitrage

The effective price record for 2021 is shown in
Fig. 3. The data used is taken from the Octopus Agile
Incoming tariff for the Nottingham region. This tariff
is broadly based upon the UK wholesale energy price,
although weighted such that higher prices are charged
during peak periods (5pm-10pm daily) with lower prices
offered through the rest of the day. It should be noted
that 2021 represented a somewhat atypical period for
energy prices which rose markedly towards the end of
the year. This resulted in a reduction in the effective
spread between candidate buy and sell points, and thus
a reduction in the density of profitable trading edges
in this portion of the graph. This is apparent when
considering the sequence of optimal trades presented
in Fig. 4, with fewer trades made during December.
Indeed, the optimal number of trades for the given year
was 320, indicating that there were days within the year
when it would not be profitable to operate the store.
For the period shown, the optimal strategy would save
£18.67 per kWh of storage, or £186.72 pa in total. By
evaluating the carbon arbitrage outcome that would be
returned by the price optimal approach, it was found that
a comparatively small quantity (20.05 kgCO2 ) would be
saved. The following section considers the savings that
may be achieved by adopting a carbon optimal approach.

3.2. Carbon Arbitrage

Information on operational carbon savings is of value
for numerous purposes, from whole life carbon assess-
ment (WLCA) to the evaluation of trade offs between
cost and carbon optimal approaches. In this section, the
analysis applied to arrive at a price-optimal strategy is
repeated in order to arrive at a carbon-optimal alternative
through substitution of the price record with appropriate
grid carbon intensity (GCI) data. The effective carbon
intensity for the period considered is presented in Fig. 6.
The data is provided by National Grid ESO’s Carbon In-
tensity API, which provides both forecast and historical
national and regional level UK GCI data at a half hourly
time resolution.

For the period shown, the carbon optimal strat-
egy involved 308 charge cycles and would save 14.0
kgCO2 /kWh of storage, or 140.42 kgCO2pa in total. It
would also deliver £25.38 of total price arbitrage benefit.
It is informative to compare these values to the £186.72
pa and 20.05 kgCO

2
pa savings returned by the price op-

timal strategy in §3.1. These represent the (approximate)
extrema of the operational cost/carbon trade off that may

Table 3. Storage parameters used for
demonstration

Cap Pch Pdch ηch ηdch ϵloss

[kWh] [kW] [kW] [%] [%] [%/∆t]

10 8 8 93 93 99.58
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Figure 3 Effective energy price plot showing candidate buy (blue) and sell (red) points.

Figure 4 Directed acyclic graph (blue) and optimal path (red) for the price arbitrage problem.

be achieved for the given data and storage parameters.
Extension to more formal consideration of this trade off
is briefly discussed in §4.

3.3. NPV and LCOS outcomes

To enable an initial demonstration of NPV outcomes
using the DAG-based arbitrage estimation approach,
and to indicate how these outcomes could be used to
inform development decisions, a simplified sensitivity

Table 4. Exemplar storage device parameters

Store CAPEX OPEX EOL r Life
[£] [£/pa] [£] [%]

1 3000 50 100 3 25

study is presented. The adopted economic parameters
for the storage device are presented in Table 4. Table
5 presents the arbitrage and subsequent NPV outcomes
for variations on the exemplar storage device used for
illustration in §3.1 and 3.3. With the NPV value to hand,
it is straightforward to evaluate whether an additional
CAPEX investment is justified

4. DISCUSSION
Extensive discussion is not warranted given the com-

paratively early stage of the work. However, a number
of advantages of the approach are apparent from the
initial exposition presented in this paper. Central to
this is the efficiency of the method: once the graph is
constructed, an optimal solution may be achieved in
linear time (O(|E|)). By way of illustration, for the
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Figure 5 Effective carbon price plot showing candidate buy (blue) and sell (red) points.

Figure 6 Effective carbon price plot showing candidate buy (blue) and sell (red) points.

Table 5. NPV results

Case Pch Pdch ηch ηdch Ploss ϵloss R NPV
[kW] [kW] [%] [%] [W] [%/∆t] [£ pa] [£]

Ideal 11 11 100 100 0 100 271 2858

Midpoint 8 8 93 93 77 99.58 187 758

Losslow 8 8 93 93 27 99.86 207 1258

Losshigh 8 8 93 93 127 99.25 168 283

Powerhigh 11 11 93 93 77 99.58 191 858

Powerlow 5 5 93 93 77 99.58 177 508

Effhigh 8 8 98 98 77 99.58 219 1558

Efflow 8 8 88 88 77 99.58 156 -17
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examples shown in §3.1 and 3.3, graph construction
took approximately 0.1s and shortest path optimisation
approximately 0.02s using a modern laptop (Apple M1
Pro). A second major advantage of the approach is that
it presents the possibility of including accurate nonlinear
charge and discharge behaviour without any increase
in computation cost. This sets the approach apart from
linear programming approaches, which require linear (or
linearised) behaviour.

The principal limitation of the approach as presented
in the current study is the fact that it is restricted to
representing an “all in” arbitrage strategy. Crucially, this
assumes that demand must exist at all discharge points,
which may not be the case in all applications (e.g. use
of thermal energy for domestic space heating). It also
omits consideration of part-charging; while it can be
demonstrated that part-charging will play no role in
the optimal solution for situations where there are no
standing losses (see [1]), this is not the case for the
majority of energy storage technologies. Implementing
peak picking to identify candidate buy and sell points
and thus limit the size of the graph introduces a further
contribution potential contribution to sub-optimality. Fi-
nally, as stated at the outset this is an ex-post analysis;
data must be available, whether from historical records
or through forecasting. Achieving performance close to
the identified optima in practice is the remit of effective
control.

The next stage for the presented work is to conduct
a full comparison to alternative approaches, principally
linear programming (LP). This will enable both com-
parison of execution times and quantification of the
deviation from the true optimum that arises due to the
“all in” investment strategy. It will also be informative to
more thoroughly explore use of the metric to evaluate the
trade off between cost and carbon optimal approaches;
the efficiency of graph construction and solution presents
the possibility of exploring such trade offs in a detailed
fashion without excessive computational expense.
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