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Abstract. This paper presents a convolutional neural network (CNN) and support 

vector machine (SVM) based analysis model for apparent features of electric arc 

pressure welding joints, aiming to enhance detection accuracy and replace tradi-

tional manual visual inspection methods. The model utilizes a training set of im-

ages of rebar welding joints processed by CNN to extract apparent feature vectors 

through denoising, matrix transformation, convolutional operations, and pooling 

steps. Simultaneously, the rebar undergoes tensile strength experiments, catego-

rized as qualified and unqualified products. The extracted feature vectors are in-

putted into the SVM model, establishing a binary classification function model 

with the tensile strength results, and training the parameters of the CNN-SVM 

model. Finally, the welding joint test set is inputted into this model for inspection 

to observe the detection performance. The study demonstrates that the model 

achieves an accuracy of over 0.95, significantly higher than manual inspection, 

showing notable advantages. 
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As the number of high-rise buildings, bridges, and other large structures continues to 
increase, the demand for the strength and seismic resistance of rebars is also growing. 
Electric arc pressure welding, as an efficient and reliable rebar connection technology, 
has been widely applied in construction and structural engineering [1]. However, the 
quality issues of electric arc pressure welding joints have always been a significant 
challenge in engineering practice. Traditional welding quality inspection methods typ-
ically rely on a combination of destructive tensile strength tests of rebar welding joints 
and manual visual inspection of welding joints. The rebars subjected to destructive tests 
cannot be used in the main structure of buildings, where the quality of rebars directly 
affects the structural load-bearing capacity. Currently, the inspection of electric arc 
pressure welding joints in the main structure of buildings primarily relies on manual 
visual inspection, which is subjective, inefficient, and susceptible to environmental 
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factors and operator skill levels. This method fails to accurately reflect the quality of 
welding joints, leading to potential weak points in structural load-bearing capacity. At 
present, research on the visual inspection of electric arc pressure welding joints for re-
bars is still lacking domestically. Therefore, seeking a new method to rapidly and ac-
curately assess the quality of electric arc pressure welding joints is crucial for improv-
ing the safety and reliability of structures. 

With the development of computer vision and machine learning technologies, auto-
mated inspection of welding joints has become feasible. Convolutional Neural Net-
works (CNN), as powerful deep learning models, excel in feature extraction and have 
achieved numerous successful applications in image recognition and classification [2-3]. 
When combined with machine learning algorithms such as Support Vector Machines 
(SVM), more flexible and efficient models can be constructed to address complex clas-
sification and regression problems [4-6]. Utilizing CNN-SVM models with samples of 
electric arc pressure welding joint images from construction sites, real data on the ap-
parent features of rebar welding joints are extracted using CNN. The robust classifica-
tion capabilities of SVM then categorize the electric arc pressure welding joints into 
qualified and unqualified products, effectively overcoming the subjectivity, ineffi-
ciency, and susceptibility to environmental and operator skill level influences associ-
ated with manual visual inspection. Therefore, integrating CNN and SVM to establish 
an apparent feature analysis model for evaluating the quality of electric arc pressure 
welding joints for rebars holds significant theoretical and practical significance. 

The objective of this study is to construct a CNN-SVM model and train it using a 
large number of samples of electric arc pressure welding joints for rebars. Through 
multiple iterations, the optimal number of iterations will be determined, and the param-
eters of the CNN-SVM model will be optimized. This process aims to provide a more 
advanced and accurate tool for the visual inspection of electric arc pressure welding 
joints for rebars, replacing outdated manual visual inspection methods. Additionally, it 
will offer insights and methods for the visual inspection of welding joints in other rebar 
welding techniques. 

2 THEORETICAL FOUNDATION 

2.1 Theoretical Basis of CNN Model 

Convolution is a crucial operation in mathematical analysis, primarily used in image 
processing where two-dimensional convolution is predominantly employed, extending 
from one-dimensional convolution[7]. Given an image 𝑋 ∈ 𝑅  and a filter 𝑊 ∈
𝑅 , typically with U≪M and V≪N, the convolution operation is defined as follows: 

𝑦 𝑤 𝑥𝑖 𝑢 1，𝑗 𝑣 1 

The two-dimensional convolution of an input signal X and a filter W is defined as: 
𝑌 𝑊 ∗ 𝑋 
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By performing convolution calculations on the matrices that make up an image, im-
age recognition can be achieved, key feature vectors can be extracted from the image, 
and the dimensionality of the image matrix can be significantly reduced, reducing the 
workload for subsequent computations. 

2.2 Theoretical Basis of SVM Model 

The SVM model is primarily divided into linear and nonlinear models, with a nonlinear 
model being utilized here. In the classification problem of nonlinear SVM, the SVM 
model transforms the inner product 𝑥 ∙ 𝑥 in the transformed space by introducing a 
kernel function K 𝑥 ∙ 𝑥  into a function in the original space K 𝑥 ∙ 𝑥 ∅ 𝑥 ∙
∅ 𝑥 , mapping the samples x to a high-dimensional space H, and performing linear 
separation of the original problem. After replacing the inner product with the kernel 
function, the original quadratic programming problem remains convex, ensuring the 
existence of a global optimal solution. The following dual optimization problem is con-
structed: 

𝑚𝑎𝑥𝑄 𝑎 𝑎
1
2

𝑎 𝑎
,

𝑦 𝑦 𝐾 𝑥 , 𝑥  

𝑠. 𝑡. 𝑎
,

𝑦 0 

0 𝑎 𝐶, 𝑖 1,2 ∙∙∙, 𝑛 
The corresponding optimal decision function at this point is: 

𝑓 𝑥 𝑠𝑔𝑛 𝑦 𝑎∗𝐾 𝑥, 𝑥 𝑏∗  

This theory serves as the mathematical foundation of SVM, determining the optimal 
solution of equations to obtain coefficients such as SVM function weights. This lays 
the groundwork for classifying multidimensional vector data inputs. 

3 METHODS AND EXPERIMENTAL DESIGN 

3.1 Basic Approach 

The aim of this study is to build an efficient and accurate apparent feature analysis 
model for electric arc pressure welding joints based on CNN-SVM, replacing tradi-
tional manual visual inspection methods. 

Firstly, we preprocess the images of rebar welding joints using CNN. During the 
training process of the CNN model, we apply a series of steps to the images, including 
denoising, matrix transformation, convolutional operations, and pooling, to extract the 
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apparent feature vectors of the rebar. Simultaneously, we conduct tensile strength ex-
periments on the rebar and categorize the samples into qualified and unqualified prod-
ucts based on the experimental results. These tensile strength data serve as labels for 
our model, used in supervised learning and model training. 

Next, we input the extracted apparent feature vectors from the CNN model into the 
support vector machine (SVM) model. The feature vectors extracted are compared with 
the tensile strength experimental results of the electric arc pressure welding joints to 
establish a binary classification function model for the CNN-SVM model, with outputs 
of qualified and unqualified products. 

Finally, we train the parameters of the constructed CNN-SVM model and input the 
test set of electric arc pressure welding joints into the model for verification, observing 
the detection performance. By comparing the detection results with the actual tensile 
strength data, we evaluate the accuracy and reliability of the model. The algorithm flow 
is illustrated in Figure 1.  

 

Fig. 1. CNN-SVM Model Algorithm Flowchart 

3.2 Data Acquisition 

The data consists of two parts: electric arc pressure welding joint images obtained 
through IoT or manual photography (Data1) and the required strength data for the weld-
ing joints (Data 2). 

(1) Acquisition of Data1 and the test set 
Due to the various limitations and complexities of the testing environment at con-

struction sites, it is challenging to collect data directly for building high-precision pre-
diction models, thus limiting the on-site data collection for electric arc pressure welding 
joint strength detection. Therefore, the collection of images in this part mainly occurs 
in the laboratory. We take photos of a large number of electric arc pressure welding 
joints, collect, encode, and store them to form the training data (Data1) and test set data 
for our model. Some welding joints are shown in Figure 2. 
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Fig. 2. Picture of the steel bar electric slag pressure welding joint 

(2) Acquisition of Data2 
The required strength data for welding joints (Data2) varies depending on different 

materials and application scenarios. For instance, the tensile strength of ordinary carbon 
steel welding joints should comply with the standard requirements of GB/T 3323-200, 
while the standard tensile strength of high-strength rebar welding joints should not be 
less than 85% of the tensile strength of a single rebar. Welding joints of ordinary steel 
should generally have a tensile strength not less than that of the parent material of the 
rebar. In this study, the main focus is on ordinary rebars, where the qualified Data2 
values correspond to the tensile strength of the rebar's parent material. Joints with a 
tensile strength lower than that of the rebar's parent material are classified as unquali-
fied products in Data2. 

3.3 Design and Implementation of CNN-SVM Model 

(1) CNN Model Design and Implementation 
Firstly, design and train a convolutional neural network (CNN) model suitable for 

processing images of rebar electric arc pressure welding joints. Based on an analysis of 
classical CNN architectures, SqueezeNet is chosen as the alternative base model, and 
recognition training operations are implemented on the MATLAB platform. The spe-
cific structure of the CNN model in this paper includes the following parts: 

Input layer: Converts each photo sample into a 227*227*3 dimensional image, in-
putting rebar electric arc pressure welding joint image data. 

Convolutional layer: Extracts various indicator feature vectors from the rebar elec-
tric arc pressure welding joint image data. The convolutional layer 𝐻  is obtained as 
follows: 

𝐻 𝑓 𝐻 ⊗ 𝑊 𝑏  
In this context, the weight vector of the i-th layer's convolutional kernel is denoted 

as 𝑊  ；⊗represents the convolution operation of the kernel with the 𝑖 1-th layer's 
feature map; the output of the convolution operation is added to the offset vector 𝑏 of 
the i-th layer, and the sum is inputted into the nonlinear activation function 𝑓 𝑥 , re-
sulting in the 𝑖-th layer's feature map 𝐻 . 
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The third part involves the pooling layer, which learns the crucial features of rebar 
electric arc pressure welding joint data. The commonly used pooling method in practi-
cal applications is max pooling, which selects the maximum value from each part of 
the input matrix as the corresponding value in the output matrix. 

During the model training process, a large amount of rebar welding joint image da-
taset is used for training, and optimization algorithms such as stochastic gradient de-
scent are applied to adjust the model's parameters, aiming to improve the model's accu-
racy and generalization ability. A screenshot of the SqueezeNet model in MATLAB is 
shown in Figure 3. 

 

Fig. 3. SqueezeNet Model Diagram 

(2) Feature Extraction and Transformation 
After training the CNN model, the trained model will be used to extract and trans-

form features from images of rebar welding joints. By inputting images into the CNN 
model, high-dimensional feature vectors corresponding to each image can be obtained, 
reflecting key feature information in the images. To further optimize the representation 
and extraction effectiveness of the feature vectors, preprocessing operations such as 
dimensionality reduction and normalization will be applied to ensure that the feature 
vectors have good interpretability and discriminability. The extracted partial feature 
vectors after normalization are shown in Table 1. 

Table 1. Multi-dimensional Vector Table of Rebar Electric Arc Pressure Welding Joints 

  Feature 
 
 

Sample   

𝑥  𝑥  𝑥  𝑥  𝑥  ⋯ 

𝑛  0.3858 0.4687 0.2819 0.3561 0.4326 ⋯ 
𝑛  0.4871 0.6110 0.5467 0.3549 0.4535 ⋯ 
𝑛  0.9218 0.4103 0.3522 0.6416 0.4223 ⋯ 
𝑛  0.7382 0.8936 0.6446 0.4462 0.5218 ⋯ 
𝑛  0.1763 0.0579 0.2161 0.6465 0.1773 ⋯ 
𝑛  0.4057 0.3529 0.9434 0.1846 0.1563 ⋯ 
𝑛  0.9355 0.8132 0.6871 0.1653 0.4186 ⋯ 
𝑛  0.2146 0.0099 0.3591 0.1651 0.1831 ⋯ 
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𝑛  ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 

(3) SVM Model Design and Implementation 
Next, the support vector machine (SVM) algorithm will be used to classify the fea-

ture vectors extracted by CNN and the results of tensile strength experiments on rebars 
(qualified, unqualified). This classification training will be implemented using the built-
in MATLAB function fitcsvm, and a screenshot of the designed model is shown in 
Figure 4.  

 

Fig. 4. SVM Model Diagram 

In this model, the labels y for rebar electric arc pressure welding joints with tensile 
strength below the specified value are set to -1, while the labels y for those with tensile 
strength above the specified value are set to 1. During training, we will adjust the pa-
rameters of the SVM model, such as the type of kernel function and penalty parameter, 
to improve the model's classification performance and generalization ability. Addition-
ally, dimensionality reduction will be applied to the high-dimensional vectors obtained 
from the CNN model. 

4 DISCUSSION OF CNN-SVM MODEL TESTING AND 
EXPERIMENTAL RESULTS 

The testing set of images of electric arc pressure welding joints for rebars is fed into the 
CNN model to generate apparent feature vectors of these welding joints. These vectors 
are then inputted into the SVM model for iterative operations. The impact of the number 
of iterations on various evaluation metrics is observed, with Table 2 listing the predic-
tive accuracy of the model at different iteration numbers, and Table 3 presenting the 
results of the average values of other evaluation metrics for the model.  
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Table 2. Model Prediction Accuracy at Different Iteration Counts 

Test set 10 50 100 500 1000 
1 0.515 0.774 0.827 0.904 0.952 
2 0.838 0.877 0.869 0.907 0.958 
3 0.602 0.842 0.885 0.863 0.963 
4 0.496 0.843 0.846 0.946 0.951 
5 0.749 0.715 0.795 0.908 0.972 
6 0.603 0.869 0.885 0.922 0.954 
7 0.505 0.806 0.853 0.925 0.956 
8 0.657 0.814 0.852 0.917 0.962 
9 0.613 0.830 0.906 0.944 0.950 

10 0.387 0.793 0.887 0.928 0.971 

Table 3. Results of Other Evaluation Metrics for the Model at Different Iteration Numbers 

Test set 10 50 100 500 1000 

Precision 40.62 47.93 62.31 82.35 96.65 

Recall 42.37 50.26 57.46 83.27 97.57 

F1-Meas-
ure 

41.25 49.37 64.89 81.49 95.78 

It can be observed that after 1000 iterations, comparing the model's predicted results 
with the actual tensile strength results (qualified, unqualified), the evaluation metrics 
such as accuracy, precision, recall rate, etc., meet the requirements. This indicates the 
development of an accurate and reliable CNN-SVM predictive model, suitable for prac-
tical assessment and detection of welding joint quality in real-world applications. 

5 CONCLUSION 

This study constructed a CNN-SVM model to investigate the relationship between ap-
parent features of steel rebar electric arc pressure welding joints and tensile strength. 
The empirical results validate the good performance of the CNN-SVM model in ex-
tracting features from panel data in the construction technology domain and in binary 
classification tasks. The iteration count of the model indicates fast training speed. Com-
paring the actual separation situation of the test set with the predicted results shows that 
the CNN-SVM model has high prediction accuracy, accurately describing the relation-
ship between the apparent features of steel rebar electric arc pressure welding joints and 
tensile strength. It demonstrates strong applicability and flexibility. 
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