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Abstract. Pneumatically supported membrane structures belong to wind-sensi-

tive structures, and the on-site measured wind pressure data is a very valuable 

and intuitive data source for pneumatic membrane structures. However, the ac-

quisition of wind pressure data is difficult, costly, and there is very little research 

on the processing of wind pressure data for pneumatic membrane structures with 

long duration. In this paper, all wind pressure measurement points on-site of the 

pneumatic membrane structure were taken, and based on the characteristics of 

the measured wind pressure data, the data was preprocessed by dividing the data 

into abrupt change points to remove baseline shifts caused by abrupt changes. 

The results show that the algorithm proposed in this paper is efficient, and pro-

vides flexibility in dividing abrupt change points, laying a foundation for further 

extracting useful information from the data. This algorithm can also be applied 

to data processing with similar characteristics in other applications. 

Keywords: wind pressure, data processing, baseline shift, air-supported mem-

brane structure. 
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The pneumatic membrane structure belongs to wind-sensitive structures, and research 
on wind-induced vibration response mainly focuses on three aspects: simulation, wind 
tunnel tests, and field measurements. Field measurements, as the most direct source of 
data, directly verify the above two aspects. However, due to the high engineering cost 
and difficulty in data collection of field measurements, there are relatively few studies 
on monitoring in this area. Yue Yin[1] et al. first established a health monitoring system 
for pneumatic membrane structures at Shanghai Jiao Tong University to determine the 
load and structural response during typhoons. However, the number of measurement 
points is limited, the measurement time is short, and the data volume is difficult to form 
a large-scale data selection. Ying, S.[2] regards the wind pressure on large-span spatial 
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structures as a stationary non-Gaussian field, and discusses simulation algorithms based 
on wind tunnel tests. 

There are also many studies on baseline drift. Xingxi Shi[3] et al. utilized wavelet 
transform for preprocessing GPS data. They considered GPS outliers or cycle slips as 
breakpoints of the signals to be identified, however, these breakpoints still need to be 
manually identified, which can be a significant workload when dealing with a large 
amount of measured data. Chen, Z.[4] proposed a deep neural network model based on 
Empirical Mode Decomposition (EMD-DNN) to address the baseline correction issue 
by removing the drift trend. Barkauskas D. A.[5] et al. focused on extracting key signals 
from background noise. Perhaps there is no need to classify the data baseline into dis-
crete and continuous parts, but first identifying the discrete breakpoints of the baseline 
and then using new technologies such as neural networks for extracting key features 
will definitely have a more positive impact on the convergence of subsequent neural 
networks. Chiu[6] et al. solved the numerical algorithm problem by adding a prefixed 
acceleration pulse and suggested using a third-order polynomial function as the pulse 
function. 

This paper belongs to the wind engineering monitoring project of large-span air-
supported membrane structures, with the core objective of obtaining reliable and stable 
monitoring data for analysis, and ultimately studying the response of large-span air-
supported membrane structures through on-site measurements. The approach of data 
processing in this paper is to divide the baseline shift of the original data into discrete 
and continuous parts. Firstly, identifying the discrete inflection points to segment the 
data reasonably, attempting to remove the offset of the discrete part, and then consid-
ering further processing of the data. Ultimately, the identification of discrete points and 
the rational segmentation of the data were achieved. This approach is inspired by the 
following articles. Lee Eun-Taik[7] et al. proposed a non-baseline damage detection 
method that is less sensitive to noise. This is similar to the research idea of this article. 
However, it requires the use of multiple sensors, and manually dividing the known 
damaged sensor data for comparison with the test data. However, the wind load char-
acteristics in this article are more complex, with most sensors' discrete baseline shifts 
not occurring at the same time, so it is necessary to grasp the key features of the wind 
pressure actual measurement data and identify and eliminate the discrete baseline. 
Wang P.[8] et al. provided a good idea for dealing with the baseline model of a fan 
engine. The core idea is to find the steady working points in the engine, the more steady 
states the engine has, the higher the reliability and accuracy of the baseline model. 
When dealing with baseline shifts in wind pressure data, even if there are problems with 
the baseline processing of discrete points, as long as the baseline shift points can be 
accurately found, the time of the wind pressure load can be correctly partitioned as 
much as possible. Zhang H.[9] et al. proposed a new method to identify the baseline 
period in a long-term historical dataset. Classifying and verifying data segments based 
on the discrete points found in this article can further identify usable and reliable data. 
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2 THE LOCATION OF THE PROJECT. 

This article belongs to the wind engineering monitoring project of large-span pneumatic 
membrane structures. The core objective is to obtain reliable and stable monitoring data 
for analysis, and ultimately to study the response of large-span pneumatic membrane 
structures through on-site measurements. The project is located in the third gas-bearing 
membrane structure coal shed of Yueqing Power Plant in Yueqing City, Zhejiang Prov-
ince, as shown in Figure 1. The location of the wind pressure measuring point is shown 
in Figure 2. 

 

Fig. 1. Relative position of coal shed 

 

Fig. 2. The location of the wind pressure measuring point 
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3 THE MAIN PROCESS OF THE ALGORITHM. 

First, select the wind pressure measurement data from October to December 2022. The 
sampling frequency for the first half of these three months is 10 Hz, while for the second 
half, it is 20 Hz. The purpose of selecting three months of data in this paper is to ensure 
a sufficient amount of valid data segments can be identified for subsequent research. 
Wind speed and direction data inherently exhibit strong randomness, and thus, identi-
fying stable and reasonable time segments necessitates a large amount of statistically 
significant data segments. However, the contradiction arises between the need for a 
high sampling frequency for selecting research-worthy data segments and the associ-
ated challenges in data processing and selection. A higher sampling frequency leads to 
excessively large data volumes, resulting in significant memory usage and time costs 
during overall data processing. Conversely, a lower sampling frequency facilitates data 
selection but may result in the loss of valuable information when studying specific data 
segments subsequently. Upon observing the overall data, it was found that appropri-
ately downsampling the data does not significantly affect the discrete baseline offset 
points. Therefore, the overall approach to baseline correction involves initially analyz-
ing the downsampled data, obtaining downscaled baseline offset data comparable to the 
downsampled data volume, and finally, using interpolation to generate baselines equal 
in size to the original data, thereby further eliminating baseline offsets from the original 
data. The specific steps are illustrated in Fig. 3. 

 

Fig. 3. The process flowchart for Figure 3 baseline removal. 
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Step one, downsample the data reasonably to facilitate computer processing. Step 
two, set a relatively long window length and use the moving average method to obtain 
a smoother data mean curve, eliminating large changes in the mean within a single day. 
The window should not be too large or too small. An excessively large window can 
easily lead to information loss, while a too small window may not provide enough 
smoothing to reflect the baseline characteristics of abrupt change types. Step three, us-
ing the same window length, calculate the mean standard deviation and identify sus-
pected mutation points. Step four, set thresholds for minimum distance and quantity. 
Step five, return the coordinates of the identified mutation points and observe their rea-
sonableness. Step six, if the search for mutation points is deemed reasonable, segment 
the curve and calculate the mean for each segment. Step seven, starting from the 
downsampled coordinates, use the mean of each segment as the baseline value to obtain 
segmented downsampled mutation baselines. Step eight, interpolate the downsampled 
mutation baselines using the nearest neighbor interpolation method to obtain baselines 
of the same scale as the original data. Step nine, subtract the baseline from the original 
wind pressure data to obtain data with removed discrete offsets and the starting points 
of each data segment. 

 

Fig. 4. Original wind pressure data 

We have obtained the raw data for 12 measurement points for the months of October 
to December 2022, as illustrated in Fig. 4. In this study, we gradually tested windows 
ranging from 1% to 5% of the total data length and observed the results. Ultimately, we 
selected a window length of 5% to obtain the smoothed data as shown in Fig. 5. In the 
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three months of actual wind pressure data, this window size is slightly less than a day 
in duration. One assumption we made is that the interval between mutation points is 
less than a day, as evidenced by the case of Point 9, which had baseline mutations oc-
curring at intervals exceeding a month. Additionally, we found that the actual wind 
pressure data exhibits a noticeable periodicity, roughly corresponding to a one-day in-
terval cycle. The reason for this periodicity has not yet been analyzed. Choosing a win-
dow of this size can to some extent mitigate the interference of large changes in daily 
data averages on mutation points, thereby enhancing the robustness of the algorithm. 

 

Fig. 5. Wind pressure mean data after sliding average 

4 RESULTS AND DISCUSSION OF THE ALGORITHM 

This article classifies data segments from few to many through two constraints, one 
being the limitation on the number of breakpoints and the other being the limitation on 
the threshold. Among them, the limitation on the threshold plays a basic discriminative 
role, if the data in the same segment is significantly higher than the standard deviation, 
it is considered that there is a mutation-type offset here. The limitation on the number 
of breakpoints is because the range of wind pressure fluctuations at 12 measuring points 
is different. Only using the threshold constraint may result in some breakpoints between 
measuring points with small fluctuations difficult to find, while lowering the threshold 
will make measuring points with larger fluctuations show breakpoints everywhere. The 
limitation on the number of breakpoints and the setting of the threshold can be gradually 
adjusted to an appropriate value. As shown in Fig. 6, if the data itself has minimal 
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fluctuations, it can be assumed that there are no significant pressure jump points and 
can be directly used for subsequent research. As shown in Fig. 6 to 8, the final results 
obtained in this study are relatively conservative after removing the discrete baselines, 
with a maximum number set to 3 and a threshold set to 0.084. There are a total of 12 
measurement points, among which points 1, 2, 3, 5, 7, 8, 10, 11, and 12 are considered 
to have no significant baseline shift due to their very small variations. Points 4, 6, and 
9 show slight shifts, with point 9 being the most unusual among all measurement points, 
as visible abrupt changes have been identified. For the sake of brevity, this paper only 
presents the baseline identification and elimination figures for three measurement 
points. 

 

Fig. 6. Standard deviation detects mean shift at test point 1. 
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Fig. 7. Standard deviation detects mean shift at test point 9. 
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Fig. 8. Standard deviation detects mean shift at test point 6. 

If a more aggressive strategy is adopted, setting the threshold at 0.05 and limiting 
the number to only 8, the results shown in the figure will be obtained, as shown in Fig. 
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9. We can see that, except for measurement points 3, 7, 10, and 11, there is a baseline 
shift in most of the points. Points 1, 2, 4, and 5 have the same abrupt change in baseline 
position, all contained within the position of point 6. We can consider that the cause of 
the mutation at this time should be the same. 

Therefore, setting a smaller threshold and a larger quantity for the more aggressive 
removal of baseline mutations makes it easier to identify baseline mutation time points 
that cause overall structural changes. Using such data for structural classification is 
more reasonable and also makes it easier to find and filter data in the steady state, re-
ducing the interference of data changes in discrete features on subsequent research. On 
the other hand, setting a larger threshold is more conservative, and the data points of 
the discrete parts found are more accurate, making it less likely to mistakenly identify 
discrete data points. Because subsequent research relies on the continuity of data, mis-
takenly identifying discrete points and then smoothing the data will introduce new dis-
creteness and lead to misjudgments in the results. 

After reasonable data segmentation, the causes of abrupt offset formation in the over-
all data can be analyzed by combining acceleration, displacement, and internal pressure 
data in the monitoring of pneumatic membrane structures. Subsequently, the threshold 
can be set incrementally from large to small, and the number of abrupt points can grad-
ually change from few to many, combined with the data of subsequent structural re-
sponses to further assist in determining the rationality of identifying abrupt points in 
this paper. Each stable period found can be explored for its characteristics using a sim-
ilar continuous data processing approach. 

5 CONCLUSIONS AND PROSPECTS 

This paper presents a relatively free algorithm for detecting discrete baseline shifts in 
wind pressure load data. This approach successfully eliminates discrete baseline shifts 
in wind pressure data for large-span air-supported membrane structures. Taking three 
months of data as an example, based on the maximum number of discrete points and 
standard deviation threshold set in this paper, the effectiveness of the proposed algo-
rithm was verified, providing a basis for further research on measured wind engineering 
data. The main conclusions of this paper are as follows:  

1. The selection of window size: a window length slightly larger than half a day but 
less than a day can effectively eliminate the interference of wind pressure data value 
mutations with a daily cycle.  

2. By using two indicators, threshold and maximum number, baseline shift points 
can be identified effectively, providing a high degree of freedom in selection.  

3. A conservative selection of quantity and threshold can better identify shift points, 
while a more aggressive selection can result in more stable data segments. 

After segmenting the data using mutation points, it is possible to determine the con-
sistency of different mutation points over time to ascertain whether there is a common 
cause for the current mutation. Subsequently, the segmented data can also be further 
processed to remove continuous baseline offsets, or applied to machine learning to 
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capture key features. As machine learning itself requires data stability, normalizing the 
data after eliminating mutations will have a positive effect. 

 

Fig. 9. Standard deviation detects mean shift at test point 6, limit 8 points 
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