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Abstract. Landslides are common geologic hazards in engineering, often causing 

serious destructive consequences. The study of pore water pressure distribution 

on slopes has a positive effect on mitigating the hazards of landslides, but due to 

the limitations of the complex physical mechanisms in engineering practice, the 

variability of natural space, etc., which leads to the existing theoretical studies 

can not completely reflect the law of pore water pressure, many scholars began 

to use machine learning methods applied to the prediction of pore water pressure. 

This paper mainly uses the recurrent neural network and its three variants to pre-

dict the pore water pressure monitored in the actual project, and compares the 

performance of the four models. The study shows that the four models have good 

performance, in which the integrated training time and training effect of Gated 

recurrent unit model is relatively better, while the adjustment of parameters can 

effectively improve the training effect of the model as well as the training time. 
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Landslides are common geologic hazards in engineering and often cause severe de-
structive consequences1-3. It has been proposed that soil slope damage is usually 
caused by the pore water pressure distribution on the slope surface and the change of 
groundwater level. Detection of pore water pressure in engineering can provide useful 
information for evaluating the seepage field and slope stability4-6. Many theoretical 
explanations and numerical simulations have been proposed by many scholars to ad-
dress this issue. However, the complex physical mechanisms, natural spatial variations, 
and limitations of the monitoring instrumentation are such that the measured pore water 
pressure does not fully reflect the complexity of the project. 

With the development of artificial intelligence technology, some scholars have be-
gun to apply machine learning methods to engineering problems. Landslides.Mustafa 
et al. 7-9predicted the variation of pore water pressure with rainfall infiltration using 
multilayer perceptron (MLP) and radial basis function (RBFNN) for several slopes in 
Singapore.Wei et al.10 predicted pore water pressure with rainfall infiltration by using 
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a looped neural network for a case study on a natural slope in Hong Kong using rec-
orded rainfall as well as pore water pressure data. rainfall as well as pore water pressure 
data and used recurrent neural networks to predict pore water pressure. 

Measured data such as air pressure and rainfall may not be available in the actual 
project. Therefore, in this paper, the measured values of pore water pressure are used 
as inputs. Recursive neural network and its variants are applied to analyze the time 
series of pore water pressure. The Nazixia project is used as a case study. This paper 
firstly introduces four kinds of recurrent neural networks. Then the recurrent neural 
network was applied to the time series analysis of pore water pressure engineering mon-
itoring data. A systematic comparison of four recurrent neural networks was made. The 
reliability of recurrent neural networks in pore water pressure time series analysis was 
investigated. 

2 METHODOLOGY 

In this study, only monitoring data of pore water pressure was used as input. Therefore 
it cannot be considered as a static problem. Time series need to be considered. There-
fore recurrent neural networks are used. 

2.1 Standard Recurrent Neural Network 

Recurrent neural networks(RNN) were first proposed by Elman (1990)11. Recurrent 
neural networks were originally proposed to solve time series problems. The structure 
of recurrent neural network is shown in Fig.1. Recurrent neural networks are built on 
the basis of fully connected neural networks. Unlike fully connected neural networks, 
neurons in the hidden layer of recurrent neural networks are interconnected. Therefore, 
the time-related input information can be transmitted through the connections between 
neurons, thus achieving the purpose of dealing with time series problems. The problem 
of gradient vanishing occurs due to the optimization of the loss function using Back 
Propagation Through Time(BPTT) during backpropaga-tion[12]. Therefore, standard 
RNNs can preserve short-term memory but not long-term memory. 

 

Fig. 1. Structures of standard RNN 
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2.2 Long Short-term Memory 

Long short-term memory (LSTM) is a variant of recurrent neural network (RNN) pro-
posed by Hochreiter and Schmidhuber (1997)13, which is used to solve the problem of 
gradient vanishing in RNN for long time series prediction. Compared with RNN, LSTM 
mainly adds a memory unit, which consists of a forgetting gate, an input gate, and an 
output gate for controlling the memory and transportation of information in the 
model.The structure of LSTM is shown in Fig. 2. The LSTM can have the ability to 
add and remove messages through the gating unit. Through the gate it is possible to 
selectively decide whether a message passes or not. 

 

Fig. 2. Structures of LSTM 

2.3 Gated Recurrent Unit 

Cho et al. (2014)14 proposed Gated recurrent unit (GRU) based on Long short-term 
memory (LSTM) optimized for the structure of LSTM.The structure of GRU is shown 
in Fig. 3. Compared with the structure of LSTM, GRU combines the forgetting gate 
and the output gate into a single update gate, and the final model is simpler than the 
LSTM model. The advantage of GRU over LSTM is its simple structure, which saves 
a lot of time when training the model. Generally speaking, the performance of LSTM 
is higher than that of GRU, but in a smaller dataset, GRU will show better performance. 

 

Fig. 3. Structures of GRU 
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2.4 Bidirectional Recurrent Neural Network 

Bidirectional recurrent neural network (BiRNN) is a combination of two RNNs. One 
RNN processes the input sequence from front to back and one RNN processes the input 
sequence from back to front. This structure captures information from both the front 
and back directions in the sequence, thus improving the performance of the model. The 
structure of BiRNN is shown in Fig.4. BiRNN is able to capture both forward and back-
ward information in a sequence and therefore can better handle long sequences of data, 
which can relatively improve the accuracy of the model. Forward propagation of the 
network requires forward and backward recursion in a bidirectional layer, and back-
propagation of the network also depends on the results of forward propagation. There-
fore, the gradient solution will have a very long chain and the model training is slow. 

 

Fig. 4. Structures of Bi-RNN 

3 CASE STUDY 

3.1 Description of the Study Area 

Datong River is a secondary tributary of the Yellow River, a tributary of Huangshui 
River, originated in Tianjun County, Qinghai Province, flowing from northwest to 
southeast through Qinghai Province, Qilian, Haiyan, Menyuan, Mutual, Ledu and other 
counties and Gansu Province, Tianzhu, Yongdeng two counties, and finally in Qinghai 
Province, Minhe County, near the town of Heungtang injected into Huangshui. 

The Datong River is a mountainous river, with abundant water in the main stream 
and steep longitudinal slopes, harboring rich water energy resources. The length of the 
main channel of the Datong River is 560.7km, with a longitudinal gradient of 4.56‰, 
a watershed area of 15,130km2, and a catchment area of 6,593km2 above the Nako 
Gorge dam site. 

Nazixia Hydropower Station is located in the northeastern part of Qinghai Province, 
Menyuan County, Yanmaituhu Township and Qilian County, Huangcheng Township 
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of the junction, in the upper reaches of the Datong River at the end of the section (upper 
reaches: Heyuan ~ Ga Datan, the middle reaches: Ga Datan ~ Liancheng, the lower 
reaches: Liancheng ~ the mouth of the Datong River), the geographic location of the 
longitude of 98º 30′ ~ 103 ° 25′ East, latitude of 36 ° 30′ ~ 38 ° 25′, the highway mileage 
through the Qingshizui (50km) - Darbanshan - Datong County - Xining City, about 
186km. 

3.2 Data Processing 

Data Selection.  
In this study, representative p1-p6 were selected from the installed manometers. The 

measured data has data that cannot be detected in cases such as villagers' obstruction. 
Therefore, there will be problems such as missing data when taking one day as the time 
unit. The data of missing days will not be entered when building the model training set. 
Therefore, the time interval of the data in the training set and the test set in this paper 
is not strictly in units of one day.  

Taking P1 manometer as an example, there are 602 data of P1 manometer data based 
on literature recommendations, the first 75% of data (the first 450 data) are selected as 
the training set and the last 25% of data (the last 150 data) as the test set. In the model 
training of this paper, the validation set and the test set share a common data set. 

The model takes the previous 30 time periods as inputs and the 31st time period as 
the predicted value. That is, the monitoring data of the previous 30 days is used to 
predict the data of the 31st day. For normalization the maximum value of the training 
set is obtained and the minimum value of these attributes inherent in the training set. 
Normalization is performed on the training set and the test set is normalized with the 
properties of the training set. In this the training set is randomly disrupted to improve 
the model training accuracy. 

Normalization.  
Normalization is a commonly used data processing tool in machine learning. In ma-

chine learning, different features in the feature vector usually have different magni-
tudes, which often affects the data processing results. Normalization can make different 
data limited to the same magnitude and improve the efficiency and accuracy of model 
training15. Combined with the feature data considerations in this paper, the maximum-
minimum normalization (see Eq.1) is chosen to transform the original data to the range 
of [0,1] in a linearization method. 

 xᇱ ൌ
௫ି୫୧୬ ሺ௫ሻ

୫ୟ୶ሺ௫ሻି୫୧୬ ሺ௫ሻ
 (1) 

Where x and x' are the original data and normalized data respectively, min(x) and 
max(x) are the minimum and maximum values in the original data respectively.  
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3.3 Development of Models 

Model Structure.  
This paper focuses on the study of common recurrent neural networks and their var-

ious variants, including four neural networks, simpleRNN, LSTM, GRU, and BiRNN, 
are discussed. The code is mainly written through Python Tensorflow. The three net-
works, simpleRNN, LSTM, and GRU, are similar in structure, so all three networks in 
this study are two-layer networks backed by a Dense layer output. 

Model Optimization.  
The optimization of the model structure in this study focuses on the dropout layer as 

well as the Adam optimization. Dropout is a commonly used optimization tool in neural 
network training, proposed by Hinton et al17. Its purpose is to randomly remove neu-
rons in order to prevent overfitting in the training phase. RNN needs to keep the 
memory of time, so using traditional dropout method on RNN is not efficient. Therefore 
the method of RNNDrop is used. In this research paper, the framework used is Tensor-
Flow, call Keras.layers.Dropout to realize the dropout of recurrent neural network, 
which is a high-level API that can realize the function according to the current state. 

ADAM is an adaptive momentum stochastic optimization method, which is used to 
solve optimization problems with large data volume and high feature latitude in ma-
chine learning16. It is one of the most commonly used optimizer algorithms in machine 
learning nowadays. Adam optimization algorithm applied to non-convex optimization 
problems has more advantages: straightforward implementation, efficient computation, 
less memory required, invariance of gradient diagonal scaling. Suitable for solving op-
timization problems containing large-scale data and parameters for non-stationary ob-
jectives. Suitable for solving problems containing very noisy or sparse gradients, where 
the hyperparameters can be interpreted very intuitively and essentially require very lit-
tle tuning parameterization. 

4 RESULTS AND DISCUSSION 

4.1 Comparison Between Models 

This paper focuses on recurrent neural networks and their common variants, and mainly 
focuses on the following four neural networks: SimpleRNN, LSTM, GRU and Bi-RNN, 
which can be categorized into Bi-LSTM and Bi-GRU due to the characteristics of the 
network structure of the Bi-RNN.Taking the seepage manometer P1 as a case study, 
the results of four neural network models are shown in Fig 5.  

Fig. 5 shows the training results of the better (coefficient of determination R2 closest 
to 1) of the training results of each model after debugging. The decision coefficients of 
the models are 0.860819 (RNN), 0.892751 (GRU), 0.881514 (LSTM), 0.892220 (Bi-
GRU), 0.904257 (Bi-LSTM), respectively. It is easy to see that each model can have 
better training accuracy after debugging the parameters, which fully proves the robust-
ness of machine learning. However, there is still a gap between the running efficiency 
and stability among the models. SimpleRNN in the TensorFlow 2.x version used in this 
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study uses the code of TensorFlow 1.x, so the running time is not comparable to that 
between LSTM and GRU. Therefore, SimpleRNN will not be compared together in 
terms of runtime for the time being. Theoretically, the training time of SimpleRNN 
should be smaller than LSTM and GRU. 

 

Fig. 5. Model training results 

Multi-layer models can effectively improve the accuracy of model prediction as well 
as the ability to solve complex problems. Therefore the simpleRNN, GRU, and LSTM 
models are all two-layer models. The Bi-RNN itself is only a one-layer model because 
its network structure is quite different from the other three. Table 1 summarizes the sta-
tistics of the run results after 10 runs of the five models. Table 1 shows that SimpleRNN 
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is worse than the other four models in terms of training accuracy. GRU as well as LSTM 
have higher performance in terms of accuracy as well as training time. GRU has higher 
efficiency due to its simpler structure compared to LSTM and takes less time to train 
compared to LSTM. Bi-RNN has a special network structure, and the training time is 
much longer than the conventional RNN model, but Bi-RNN has a higher upper limit 
of accuracy than the other models. Taken together, the GRU model is more suitable for 
time series prediction of infiltration pressure. 

Table 1. Comparison of prediction performance of models at the testing period 

model R2_max R2_mean time(s) 

SimpleRNN 0.88 0.76  

GRU 0.89 0.81 75.19 

LSTM 0.88 0.83 80.47 

Bi-GRU 0.89 0.69 495.04 

Bi-LSTM 0.90 0.70 603.83 

4.2 Discussion of Parameter Optimization 

There are situations such as missing data in the engineering data used in this study, so 
the maximum value of R2 in the roving results differs from the average value. With the 
network structure determined, to improve the training effect of the model it is necessary 
to optimize the hyperparameters of the model. In this paper, we focus on the three pa-
rameters hidden_dim,epoch,batch_size of GRU model. 

As the memory architecture of CPU and GPU batch_size is mainly determined from 
[8,16,32,64,128]. The epoch is determined from [10,50,100,150,200,250,300,400], and 
hinnden_dim is traversed over 4096 parameters between (16,16) and (80,80). 

 

Fig. 6. Hidden neuron distribution for R2 > 0.89 
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Fig.6 shows the distribution of hidden dim for all R2 > 0.89 for 4096 parameters 
between (16,16) and (80,80), and it can be seen that there is no distribution when the 
first layer neurons are greater than 25 and the second layer neurons are greater than 40, 
and there is no distribution after the first layer hidden neurons are greater than 40. Thus 
the number of hidden neurons in the first layer is not recommended to be set too large, 
and the number of hidden neurons in the second layer does not seem to be limited. 

Comparing the R2 corresponding to batch size and epoch, it can be found that for 
batch size, the impact on model accuracy is not large, for larger batch size can signifi-
cantly reduce the training time, but need to increase the number of training times to 
ensure the accuracy of the training, for example, in the case of batch size = 128, epoch 
= 50, the model predicts a relatively smooth curve, while after increasing the epoch, the 
model predicts a curve that is more in line with the real curve. For example, when the 
batch size=128 and epoch=50, the curve predicted by the model is relatively smooth, 
while the curve predicted by the model after increasing epoch is more in line with the 
real curve. epoch has a relatively large impact on the model, and when epoch is too 
large, it will lead to overfitting of the model and seriously affect the accuracy of the 
model. For the GRU model, the impact of epoch too small on the model does not seem 
to be reflected. 

 

Fig. 7. Comparison of predicted and measured pore-water pressures in the testing period at P1-
P6 
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4.3 Model Performance Evaluation 

This paper focuses on the application of neural network modeling in seepage detection 
in earth and rock dams. Mainly focusing on the seepage pressure inside the dam body, 
the measured data from the seepage manometer placed inside the dam body has been 
used to predict the seepage pressure inside the dam in a time series by means of a re-
current neural network. A comparison of various models of recurrent networks has been 
made in the previous section, and the GRU model has been selected after comprehen-
sive consideration. This section focuses on evaluating the performance of the GRU 
model. In this section, the p1 to p6 seepage manometer measurements are input to the 
GRU model to verify its applicability. 

Fig.7 shows the prediction results of the model on the data of six seepage ma-
nometers, and the prediction results are relatively consistent with the real value, and the 
R2 can basically reach more than 0.8. Since the model has not been de-bugged in detail 
except for the data of the p1 seepage manometer, the accuracy of the results of the 
model run with the data of the rest of the seepage manometers as the inputs is relatively 
poor, but the applicability of the model can still be demonstrated. 

5 CONCLUSIONS 

Machine learning methods are widely used in time series prediction, but recurrent neu-
ral networks are seldom used in the application of seepage in earth and rock dams. In 
this paper, four common recurrent neural networks, namely SimpleRNN, GRU, LSTM 
and Bi-RNN, are used to train and compare the results, and discuss the super- parameter 
optimization of the models and their adaptability. It is concluded that in seepage detec-
tion, the GRU model is more suitable in terms of training accuracy and training effi-
ciency with a relatively small amount of data. In the two-layer GRU model,batch size 
has little effect on the accuracy of model training, but it plays a great role in the running 
time of the model, and the overfitting phenomenon brought by too large epoch has a 
greater effect on the training accuracy of the model, and the number of neurons in the 
first hidden layer should not be too large. The prediction of multiple osmometer data 
also proves the universality of the GRU model. 

The input data of this study only use the monitoring data itself as input, and it can 
be foreseen that some time series data in water conservancy projects can be predicted 
by the method of this study. However, it can also be seen that the prediction results 
using only the monitoring data itself as input are still insufficient in terms of accuracy. 
In summary, the method explored in this paper has some applicability, but it is difficult 
to achieve the ideal accuracy, and the prediction model of neural network can provide 
some reference for the actual project. 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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