

# NMTCM Polynomial Analysis in the Study of Anticancer Drugs

A S Maragadam,<sup>1</sup> Sushmitha Jain,<sup>2</sup> V Lokesha,<sup>1</sup> Dafik,<sup>3</sup> and I H Agustin<sup>4</sup>

<sup>1</sup>Department of Studies in Mathematics, Vijayanagara Sri Krishnadevaraya University, Ballari, India<sup>a</sup>
<sup>2</sup>Department of Studies in Mathematics, Ballari Institute of Technology and Management, Ballari, India<sup>b</sup>
<sup>3</sup>Department of Studies in Mathematics Education, Universitas Jember, Indonesia<sup>c</sup>
<sup>4</sup>Department of Studies in Mathematics, Universitas Jember, Indonesia<sup>d</sup>

<sup>a)</sup>maragadamvijay@gmail.com <sup>b)</sup>sushmithajain9@gmail.com <sup>c)</sup>d.dafik@unej.ac.id <sup>d)</sup>ikahesti.fmipa@unej.ac.id

**Abstract.** Topological coindices serve as numerical descriptors that capture the structural intricacies of a molecular graph. These indices offer valuable insights into the spatial arrangement of atoms and bonds within a molecule, shedding light on its connectivity and overall structural relationships. In the context of this research, the focus is on calculating the *M*-polynomial and *NM*-polynomial for anticancer drugs. These polynomials are employed as tools to extract specific degree-based topological indices. The study further entails the computation and comparative analysis of NM-polynomials and molecular graph structures, particularly those relevant to effective cancer treatment. Additionally, the research establishes a mathematical relationship between the *NM*-polynomial and *NMTCM* polynomials.

Keywords: topological indices, topological coindices, M-polynomial, molecular graph, NM-polynomial.

## INTRODUCTION

A topological index is a numeric measure linked to a graph, reflecting its topology or connectivity. In contrast, the topological coindex is a complementary graph invariant frequently employed in the analysis of chemical graphs and molecular structures [1, 2, 3, 4].

The genetic conditions category, encompassing cancer, a potentially fatal ailment, is distinguished by the uncontrolled multiplication of abnormal blood cells, disrupting crucial bodily functions and heightening vulnerability to infections. Carcinogens, such as specific components found in tobacco smoke, play a role in the onset of cancer. This condition has the potential to spread to different body parts, exhibiting symptoms like weight loss, irregular bleeding, prolonged coughing and the presence of lumps [5].

Key factors contributing to this cancerous state involve the use of chewing tobacco, obesity, unhealthy dietary habits, lack of physical activity and excessive alcohol consumption. Various treatment options, including surgery, radiation, chemotherapy, hormone therapy, targeted therapy, among others are available to address this severe ailment. The cancer illnesses category also encompasses alkylates and metabolites, which are targeted by anticancer drugs.

This article represents the forefront of progress in comprehending and researching anticancer drugs. It places special emphasis on introducing the *NMTCM* polynomial and exploring its applications within the realm of topological indices and coindices. The content encapsulates the most recent developments in this field, highlighting the innovative approaches taken to enhance our understanding of anticancer drug properties and their molecular structures.

This article maintains its focus on investigating anticancer drugs and introducing the concept of a *NMTCM* polynomial. This polynomial evaluates contributions from pairs of nonadjacent vertices, measuring the potential influence of distant vertex pairs on the molecule's attributes [6]. The *NMTCM* polynomial's strength lies in its comprehensiveness, providing valuable information on degree-based graph invariants. Additionally, it yields numerous degree-based topological co-indices, linking chemical features of the material under research, derived in closed forms using elementary calculus.

#### METHODOLOGY

**Definition 1.** [7] For a connected graph  $\chi$  of order n, we have

$$\overline{m}_{ij} = |\overline{E}_{ij}| = \begin{cases} \frac{n_i(n_i-1)}{2} - m_{ii}, & \text{for } i = j\\ n_i n_j - m_{ij}, & \text{for } i < j. \end{cases}$$

where  $n_i = |V_i|$  for  $V_i = \{v \in V(G) | d(v) = i\}$ ,  $m_{ij} = |E_{ij}|$ ,  $E_{ij} = \{pq \in E(G) | d(p) = i, d(q) = j\}$  and  $\overline{m_{ij}} = |\overline{E_{ij}}|$  for  $\overline{E_{ij}} = \{pq \in E(\overline{G}) | d(p) = i$  and  $d(q) = j\}$ .

Using the notation mentioned above, we expand the notion of an *NM*-polynomial to apply to non-adjacent pairs of vertices and introduce the concept of *NMTCM* polynomial (NM polynomials with neighbourhood coindex) in the following manner:

$$NMTCM(\boldsymbol{\chi};p,q) = \overline{NM}(\boldsymbol{\chi};p,q) = \sum_{i \leq j} \overline{nm}_{ij}(\boldsymbol{\chi}) p^i q^j$$

where,  $\overline{m}_{ij}(\chi), i, j \ge 1$ , be the number of edges  $pq \notin E(\chi)$  such that  $\{(d(p), d(q)) = \{i, j\}\}$ .

|                             | benninen er toperogiear marees and e                                                                                         | stresponding topological contaices.                                                                                                   |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| TI                          | Degree based index                                                                                                           | Degree based coindex                                                                                                                  |
| $M_1(\chi)$ [8]             | $M_1(oldsymbol{\chi}) = \sum_{pq \in E(oldsymbol{\chi})} [\Psi_p + \Psi_q]$                                                  | $\overline{NM_1}(\chi) = \sum_{pq \notin E(\chi)} [\Psi_p + \Psi_q].$                                                                 |
| $M_2(\chi)$ [8]             | $M_2(\boldsymbol{\chi}) = \sum_{pq \in F(\boldsymbol{\chi})} [\Psi_p.\Psi_q]$                                                | $\overline{NM_2}(\boldsymbol{\chi}) = \sum_{pa \notin F(\boldsymbol{\chi})} [\Psi_p.\Psi_q].$                                         |
| $mM_2(\chi)$ [9]            | $mM_2(\boldsymbol{\chi}) = \sum_{pq \in E(\boldsymbol{\chi})} \left[ \frac{1}{\Psi_p \cdot \Psi_q} \right]$                  | $\overline{NmM_2}(\chi) = \sum_{pq\notin E(\chi)}^{pq \notin E(\chi)} \left[ \frac{1}{\Psi_p.\Psi_q}  ight].$                         |
| $I(\chi)$ [10]              | $I(oldsymbol{\chi}) = \sum_{pq \in E(oldsymbol{\chi})} \left[ rac{\Psi_p.\Psi_q}{\Psi_p+\Psi_q}  ight]$                     | $\overline{NI}(\boldsymbol{\chi}) = \sum_{pq \notin E(\boldsymbol{\chi})} \left[ \frac{\Psi_p \cdot \Psi_q}{\Psi_p + \Psi_q} \right]$ |
| $ReZG_3(\chi)$ [11]         | $ReZG_3(\boldsymbol{\chi}) = \sum_{pq \in E(\boldsymbol{\chi})} \Psi_p \Psi_q [\Psi_p + \Psi_q]$                             | $\overline{NReZG_3}(\boldsymbol{\chi}) = \sum_{pa \notin E(\boldsymbol{\chi})} \Psi_p \Psi_q [\Psi_p + \Psi_q]$                       |
| SDD( $\chi$ ) [12]          | $SDD(\chi) = \sum_{pq \in E(\chi)} \left[ \frac{\Psi_p^2 + \Psi_q^2}{\Psi_p \cdot \Psi_q} \right]$                           | $\overline{NSDD}(\chi) = \sum_{pq \notin E(\chi)} \left[ \frac{\Psi_p^2 + \Psi_q^2}{\Psi_p \cdot \Psi_q} \right]$                     |
| $A(\boldsymbol{\chi})$ [13] | $A(\boldsymbol{\chi}) = \sum_{pq \in E(\boldsymbol{\chi})} \left[ \frac{\Psi_p \cdot \Psi_q}{\Psi_p + \Psi_q - 2} \right]^3$ | $\overline{NA}(oldsymbol{\chi}) = \sum_{pq \notin E(oldsymbol{\chi})} \left[ rac{\Psi_p.\Psi_q}{\Psi_p+\Psi_q-2}  ight]^3$           |
| $F(\chi)$ [14]              | $F(\boldsymbol{\chi}) = \sum_{pq \in E(\boldsymbol{\chi})} [\Psi_p^2 + \Psi_q^2]$                                            | $\overline{NF}(\boldsymbol{\chi}) = \sum_{pa \notin E(\boldsymbol{\chi})} [\Psi_p^2 + \Psi_q^2]$                                      |
| <i>H</i> ( <b>χ</b> ) [15]  | $H(\boldsymbol{\chi}) = \sum_{pq \in E(\boldsymbol{\chi})}^{PP} \left[ \frac{2}{\Psi_p + \Psi_q} \right]$                    | $\overline{NH}(\chi) = \sum_{pq\notin E(\chi)}^{PHF(\chi)} \left[ rac{2}{\Psi_p + \Psi_q}  ight]$                                    |

TABLE 1. Definition of topological indices and corresponding topological coindices.

# DERIVING TOPOLOGICAL COINDEX NM-POLYNOMIALS

The study establishes a noteworthy correlation between the physicochemical properties of potential anticancer drugs in question and the examined topological coindices. This indicates that topological coindices have the potential to serve as valuable tools for future QSPR (Quantitative Structure-Property Relationship) analysis in exploring anticancer medications [16, 17]. Figure 1 presents 3D structures of some of the considered anticancer drugs, while their corresponding molecular structures can be found in figure 2.

TABLE 2. Derivation of degree based topological coindices.

| Topological coindex                                       | <b>Derivation from</b> $f(p,q) = NMTCM(\chi : p,q)$ |
|-----------------------------------------------------------|-----------------------------------------------------|
| First Zagreb coindex: $\overline{M_1}(\chi)$              | $(D_p + D_q)(f(p,q))_{p=q=1}$                       |
| Second Zagreb coindex: $\overline{M_2}(\chi)$             | $(D_p D_q)(f(p,q))_{p=q=1}$                         |
| Second modified Zagreb coindex: $\overline{mM_2}(\chi)$   | $(S_pS_q)(f(p,q))_{p=q=1}$                          |
| Inverse sum indeg coindex: $\overline{I}(\chi)$           | $(S_p j D_p D_q)(f(p,q))_{p=q=1}$                   |
| Redefined third Zagreb coindex: $\overline{ReZG_3}(\chi)$ | $D_p D_q (D_p + D_q) (f(p,q))_{p=q=1}$              |
| Symmetric division coindex: $\overline{SDD}(\chi)$        | $(D_pS_q + S_pD_q)(f(p,q))_{p=q=1}$                 |
| Augmented zagreb coindex: $\overline{A}(\chi)$            | $(S_p^3 Q_{-2} J D_p^3 D_q^3) (f(p,q))_{p=q=1}$     |
| Forgotten topological coindex: $\overline{F}(\chi)$       | $(D_p^2 + D_q^2)(f(p,q))_{p=q=1}$                   |
| Harmonic coindex: $\overline{H}(\chi)$                    | $(2S_pJ)(f(p,q))_{p=q=1}$                           |

The presented table 2 is related to some of the most important degree-based topological coindices with NM-polynomial [18, 19] and the following fixed notations.

$$D_p = p \frac{\partial (f(p,q))}{\partial p}, D_q = q \frac{\partial (f(p,q))}{\partial q}, S_p = \int_0^p \frac{f(p,t)}{t} dt, S_q = \int_0^q \frac{f(p,t)}{t} dt$$

$$J(f(p,q)) = f(p,p), Q_{\phi}(f(p,q)) = p^{\phi}f(p,q)$$

## VISUALIZING ANTICANCER DRUGS IN 3D GRAPHS

In this section, a combination of combinatorial computation, edge partition technique, vertex partition technique, and nonedge counting method is employed to determine the *NMTCM* polynomial of several anticancer drugs, including Amathaspiramide-E ( $A_m - E$ ), Aminopterin ( $A_m - P$ ), Aspidostomide ( $A_s - E$ ), Carmustine ( $C_s - N$ ), Caulibugulone-E ( $C_b - E$ ), Convolutamide-A ( $C_n - A$ ), Convolutamine-F ( $C_t - F$ ), Convolutamydine-A ( $C_m - A$ ), Daunorubicin ( $D_r - N$ ), Deguelin ( $D_g - N$ ), Melatonin ( $M_e - N$ ), Minocycline ( $M_i - E$ ), Perfragilin-A ( $P_f - A$ ), Podophyllotoxin ( $P_p - N$ ), Perocellin-B ( $P_t - B$ ), Raloxifene ( $R_f - N$ ) and Tambjamine-K ( $T_j - K$ ). These graphs can help illustrate various aspects of the drugs efficacy, toxicity, mechanisms of action, or other relevant factors. Additionally, various well-known topological coindices are derived for the provided anticancer drugs. This section also presents *NMTCM* polynomial graphs in three dimensions for a diverse set of anticancer drugs. A 3D surface plot is an effective way to visualize the dose-response relationship of an anticancer drug. In this type of plot, the drug concentration is represented on the x-axis, the time of treatment on the y-axis and the drug's response (e.g., cell viability or tumor size) on the z-axis.













**FIGURE 1.** Molecular graphs of *TCOM* of a)( $A_m - E$ ), b)( $A_m - P$ ), c)( $A_s - E$ ), d)( $C_s - N$ ), e)( $C_b - E$ ), f)( $C_n - A$ ), g)( $C_t - F$ ), h)( $C_m - A$ ), i)( $D_r - N$ ), J)( $D_g - N$ ), k)( $M_e - N$ ), l)( $M_i - E$ ), m)( $P_f - A$ ), n)( $P_p - N$ ), o)( $P_t - B$ ), p)( $R_f - N$ ), q)( $T_j - K$ )

# DISCUSSION AND MAIN RESULTS

This segment employs combinatorial calculations, the edge partition method, the vertex partition method and the nonedge counting technique to obtain *NMTCM* polynomials of molecular graphs of anticancer drugs. Additionally, we provide insights into several prominent topological co-indices for the given molecular graphs.

**Theorem 2.** The NMTCM polynomial for  $A_m - E$  given by

$$TCOM(A_m - E; p, q) = 2p^2q^4 + 28p^3q^6 + 13p^3q^7 + 9p^3q^8 + 2p^4q^4 + 16p^4q^6 + 8p^4q^7 + 13p^6q^6 + 16p^6q^7 + 10p^6q^8 + 10p^6q^{10} + 2p^7q^7 + 5p^7q^8 + 4p^7q^{10} + 2p^8q^{10}.$$

*Proof.* Let  $\chi_1$  be the molecular graph of amathaspiramide E. From the figure, it is straightforward to deduce that  $|V(\chi_1)| = 22$  and  $|E(\chi_1)| = 24$ .  $\chi_1$  vertex set can be classified into seven classes based on their degrees.  $n_2^* = 1, n_3^8 = 5, n_4^* = 3, n_6^* = 6, n_7^* = 3, n_8^* = 2, n_{10}^* = 2$ Using definition, we have,  $\overline{nm_{12}} = n_1n_2 - m_{12} = 41$  similarly,

| $\overline{nm}_{ij}$ | $\overline{nm}_{24}$ | $\overline{nm}_{36}$ | $\overline{nm}_{37}$ | $\overline{nm}_{38}$ | $\overline{nm}_{44}$ | $\overline{nm}_{46}$ | $\overline{nm}_{47}$ | $\overline{nm}_{66}$ | $\overline{nm}_{67}$ | $\overline{nm}_{68}$ |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| frequency            | 2                    | 28                   | 13                   | 9                    | 2                    | 16                   | 8                    | 13                   | 16                   | 10                   |

| $\overline{nm}_{ij}$ | $\overline{nm}_{6(10)}$ | $\overline{nm}_{77}$ | $\overline{nm}_{78}$ | $\overline{nm}_{7(10)}$ | $\overline{nm}_{8(10)}$ | $\overline{nm}_{(10)(10)}$ |
|----------------------|-------------------------|----------------------|----------------------|-------------------------|-------------------------|----------------------------|
| frequency            | 10                      | 2                    | 5                    | 4                       | 2                       | 0                          |

$$\begin{split} Let, NM(\chi_1, p, q) &= \sum_{i \leq j} \overline{nm}_{ij}(\chi) p^i q^j \\ &= \sum_{2 \leq 4} \overline{nm}_{24}(\chi_1)) p^2 q^4 + \sum_{3 \leq 6} \overline{nm}_{36}(\chi_1) p^3 q^6 + \sum_{3 \leq 7} \overline{nm}_{37}(\chi_1)) p^3 q^7 \\ &+ \sum_{3 \leq 8} \overline{nm}_{38}(\chi_1) p^3 q^8 + \sum_{4 \leq 4} \overline{nm}_{44}(\chi_1) p^4 q^4 + \sum_{4 \leq 6} \overline{nm}_{46}(\chi_1)) p^4 q^6 \\ &+ \sum_{4 \leq 7} \overline{nm}_{47}(\chi_1) p^4 q^7 + \sum_{6 \leq 6} \overline{nm}_{66}(\chi_1) p^6 q^6 + \sum_{6 \leq 7} \overline{nm}_{67}(\chi_1) p^6 q^7 \\ &+ \sum_{6 \leq 8} \overline{nm}_{68}(\chi_1) p^6 q^8 + \sum_{6 \leq 10} \overline{nm}_{6(10)}(\chi_1) p^6 q^{10} + \sum_{7 \leq 7} \overline{nm}_{77}(\chi_1) p^7 q^7 \\ &+ \sum_{7 \leq 8} \overline{nm}_{78}(\chi_1) p^7 q^8 + \sum_{7 \leq 10} \overline{nm}_{7(10)}(\chi_1) p^7 q^{10} + \sum_{8 \leq 10} \overline{nm}_{8(10)}(\chi_1) p^8 q^{10} \\ &+ \sum_{10 \leq 10} \overline{nm}_{10(10)}(\chi_1) p^{10} q^{10}. \\ &= |E_{(2,4)}| p^2 q^4 + |E_{(3,6)}| p^3 q^6 + |E_{(3,7)}| p^3 q^7 + |E_{(3,8)}| p^3 q^8 \\ &+ |E_{(4,4)}| p^4 q^4 + |E_{(4,6)}| p^4 q^6 + |E_{(4,7)}| p^4 q^7 + |E_{(6,6)}| p^6 q^6 \\ &+ |E_{(7,7)}| p^6 q^7 + |E_{(6,8)}| p^6 q^8 + |E_{(6,10)}| p^8 q^{10} + |E_{(10,10)}| p^{10} q^{10} \\ &= 2p^2 q^4 + 28p^3 q^6 + 13p^3 q^7 + 9p^3 q^8 + 2p^4 q^4 + 16p^4 q^6 + 8p^4 q^7 + 13p^6 q^6 \\ &+ 16p^6 q^7 + 10p^6 q^8 + 10p^6 q^{10} + 2p^7 q^7 + 5p^7 q^8 + 4p^7 q^{10} + 2p^8 q^{10}. \end{split}$$

Hence, we get the required *NMTCM* polynomial equation of  $A_m - E$ .

With the given NMTCM polynomial equation at hand, we can now proceed to analyze its implications.

**Corollary 3.** Let  $\chi_1$  be a molecular graphs of  $A_m - E$  then

1. 
$$NM_1(\chi_1) = 1628$$
  
2.  $\overline{NM}_2(\chi_1) = 4687$   
3.  $\overline{NmM}_2(\chi_1) = 5.19$   
4.  $\overline{NI}(\chi_1) = 395.50$   
5.  $\overline{NRZ}_3(\chi_1) = 60190$   
6.  $\overline{NSDD}(\chi_1) = 324.036$   
7.  $\overline{NAZ}(\chi_1) = 7232.632$   
8.  $\overline{NF}(\chi_1) = 10468$   
9.  $\overline{NH}(\chi_1) = 25.225$ .

Proof. Let,

$$f(p,q) = NMTCM(\boldsymbol{\chi};p,q) = \overline{NM}(\boldsymbol{\chi};p,q) = \sum_{i \leq j} \overline{nm}_{ij}(\boldsymbol{\chi}) p^i q^j$$

Then, you can utilize the above formulas to perform the following calculations

$$\begin{split} & \mathsf{NM}(\chi_1, p, q) = 2p^2q^4 + 28p^3q^6 + 13p^3q^7 + 9p^3q^8 + 2p^4q^4 + 16p^4q^6 + 8p^4q^7 + 13p^6q^6 + 16p^6q^7 \\ & +10p^6q^8 + 10p^6q^{10} + 2p^7q^7 + 5p^7q^8 + 4p^7q^{10} + 2p^8q^{10}. \\ & D_p(\chi_1) = 4p^2q^4 + 84p^3q^6 + 39p^3q^7 + 27p^3q^8 + 8p^4q^4 + 64p^4q^6 + 32p^4q^7 + 78p^6q^6 + 96p^6q^7 \\ & +60p^6q^8 + 60p^6q^{10} + 14p^7q^7 + 35p^7q^8 + 28p^7q^{10} + 16p^8q^{10}. \\ & D_q(\chi_1) = 8p^2q^4 + 168p^3q^6 + 91p^3q^7 + 72p^3q^8 + 8p^4q^4 + 96p^4q^6 + 56p^4q^7 + 78p^6q^6 + 112p^6q^7 \\ & +80p^6q^8 + 100p^6q^{10} + 14p^7q^7 + 40p^7q^8 + 40p^7q^{10} + 20p^8q^{10}. \\ & (D_p + D_q)(\chi_1) = 12p^2q^4 + 252p^3q^6 + 130p^3q^7 + 99p^3q^8 + 16p^4q^4 + 160p^4q^6 + 88p^4q^7 + 156p^6q^6 \\ & +208p^6q^7 + 140p^6q^8 + 160p^6q^{10} + 28p^7q^7 + 75p^7q^8 + 68p^7q^{10} + 36p^8q^{10}. \\ & D_pD_q(\chi_1) = 16p^2q^4 + 504p^3q^6 + 273p^3q^7 + 216p^3q^8 + 32p^4q^4 + 384p^4q^6 + 224p^4q^7 + 468p^6q^6 \\ & +672p^6q^7 + 480p^6q^8 + 600p^6q^{10} + 98p^7q^7 + 280p^7q^8 + 280p^7q^{10} + 160p^8q^{10}. \\ & (D_p^2 + D_q^2)(\chi_1) = 40p^2q^4 + 1260p^3q^6 + 754p^3q^7 + 657p^3q^8 + 64p^4q^4 + 832p^4q^6 + 520p^4q^7 + 936p^6q^6 \\ & +1360p^6q^7 + 1000p^6q^8 + 1360p^6q^{10} + 196p^7q^7 + 565p^7q^8 + 596p^7q^{10} + 328p^8q^{10}. \\ & D_pD_q(D_p + D_q)(\chi_1) = 96p^2q^4 + 4536p^3q^6 + 2730p^3q^7 + 2370p^3q^8 + 256p^4q^4 + 3840p^4q^6 + 2464p^4q^7 \\ & +5616p^6q^6 + 8736q^6q^7 + 6720p^6q^8 + 9600p^6q^{10} + 1372p^7q^7 + 4200p^7q^8 + 4760p^7q^{10} + 2.880p^8q^{10}. \\ & S_q(\chi_1) = 0.5p^2q^4 + 24.66p^3q^6 + 1.85p^3q^7 + 1.2p^3q^8 + 0.5p^4q^4 + 2.66p^4q^6 + 1.14p^4q^7 + 2.16p^6q^6 \\ & +2.28p^6q^7 + 1.25p^6q^8 + p^6q^{10} + .28p^7q^7 + .625p^7q^8 + 0.4p^7q^{10} + 0.2p^8q^{10}. \\ & S_pS_q(\chi_1) = 0.5p^2q^4 + 120.98p_3q^6 + 35.88p^3q^7 + 27.36p^3q^8 + 4264p^4q^5 + 1.856p^4q^7 \\ & +2.596p^6q^6 + 32.34p^6q^7 + 20.83p^6q^5 + 35.88p^3q^7 + 27.36p^3q^8 + 4.96p^4q^6 + 1.8.66p^4q^6 + 1.8.56p^4q^7 \\ & +2.596p^6q^6 + 32.34p^6q^7 + 20.83p^6q^5 + 25.3p^{10} + 1.63p^{11} + 0.5p^8 + 3.2p^{10} + 1.45p^{11} + 2.16p^{12} + 2.46p^{13} \\ & 1.42p^{14} + 1.25p^{16} + 0.28p^{14} + 0.66p^{$$

Figure 1 displays the surface representation of NMTCM-polynomials for  $A_m - E$  drugs, depicting distinct behaviors resulting from the manipulation of parameters p and q.

**Theorem 4.** The NMTCM polynomial for  $A_m - P$  given by

$$\begin{split} \textit{NMTCM}(\textit{A}_m-\textit{P};\textit{p},q) &= 12p^3q^4 + 74p^3q^5 + 54p^3q^6 + 20p^4q^5 + 15p^4q^6 + 51p^6q^5 + 25p^6q^6 + 82p^5q^6 \\ &\quad + 28p^5q^7 + 21p^6q^7 + 6p^6q^8 + 2p^7q^8. \end{split}$$

*Proof.* Let  $\chi_2$  be the molecular graph of aminopterin. From the figure, it is straightforward to deduce that  $|V(\chi_2)| = 32$  and  $|E(\chi_2)| = 34$ .  $\chi_1$  vertex set can be classified into six classes based on their degrees.  $n_3 = 7$ ,  $n_4 = 2$ ,  $n_5 = 11$ ,  $n_6 = 8$ ,  $n_7 = 3$ ,  $n_8 = 1$ ,. Using definition, we have,

| $\overline{m}_{ij}$ | $\overline{nm}_{(34)}$ | $\overline{nm}_{35}$ | $\overline{nm}_{36}$ | $\overline{nm}_{45}$ | $\overline{nm}_{(46)}$ | $\overline{nm}_{55}$ | $\overline{nm}_{66}$ | $\overline{nm}_{56}$ | $\overline{nm}_{57}$ |
|---------------------|------------------------|----------------------|----------------------|----------------------|------------------------|----------------------|----------------------|----------------------|----------------------|
| frequency           | 12                     | 74                   | 54                   | 20                   | 15                     | 51                   | 25                   | 82                   | 28                   |

| $\overline{m}_{ij}$ | $\overline{nm}_{(67)}$ | $\overline{nm}_{68}$ | $\overline{nm}_{78}$ |
|---------------------|------------------------|----------------------|----------------------|
| frequency           | 21                     | 6                    | 2                    |

$$\begin{aligned} \text{Let}, \text{NM}(\chi_2, p, q) &= \sum_{i \leq j} \overline{nm_{ij}}(G) p^i q^j \\ &= \sum_{3 \leq 4} \overline{nm_{34}}(\chi_2) p^3 q^4 + \sum_{3 \leq 5} \overline{nm_{35}}(\chi_2) p^3 q^5 + \sum_{3 \leq 6} \overline{nm_{36}}(\chi_2) p^3 q^6 \\ &+ \sum_{4 \leq 5} \overline{nm_{45}}(\chi_2) p^4 q^5 + \sum_{4 \leq 6} \overline{nm_{46}}(\chi_2) p^4 q^6 + \sum_{5 \leq 5} \overline{nm_{55}}(\chi_2) p^5 q^5 \\ &+ \sum_{6 \leq 6} \overline{nm_{66}}(\chi_2) p^6 q^6 + \sum_{5 \leq 6} \overline{nm_{56}}(\chi_2) p^5 q^6 + \sum_{5 \leq 7} \overline{nm_{57}}(\chi_2) p^5 q^7 \\ &+ \sum_{6 \leq 7} \overline{nm_{67}}(\chi_2) p^6 q^7 + \sum_{6 \leq 8} \overline{nm_{68}}(\chi_2) p^6 q^8 + \sum_{7 \leq 8} \overline{nm_{78}}(\chi_2) p^7 q^8. \\ &= |E_{(3,4)}| p^3 q^4 + |E_{(5,5)}| p^5 q^5 |E_{(6,6)}| p^6 q^6 + |E_{(4,5)}| p^4 q^5 \\ &+ |E_{(4,6)}| p^4 q^6 + |E_{(5,7)}| p^5 q^7 + |E_{(6,8)}| p^6 q^8 + |E_{(7,8)}| p^7 q^8 \\ &= 12 p^3 q^4 + 74 p^3 q^5 + 54 p^3 q^6 + 20 p^4 q^5 + 15 p^4 q^6 51 p^6 q^5 + 25 p^6 q^6 \\ &+ 82 p^5 q^6 + 28 p^5 q^7 + 21 p^6 q^7 + 6 p^6 q^8 + 2 p^7 q^8. \end{aligned}$$

Hence, we get the required NMTCM-polynomial equation of  $A_m - P$ .

**Corollary 5.** Let  $\chi_2$  be a molecular graphs of  $A_m - P$  then

1.  $\overline{NM}_1(\chi_2) = 3927.$ 2.  $\overline{NM}_2(\chi_2) = 9883.$ 3.  $\overline{NmM}_2(\chi_2) = 17.486$ 4.  $\overline{NI}(\chi_2) = 951.433.$ 5.  $\overline{NRZ}_3(\chi_2) = 105392.$ 6.  $\overline{NSDD}(\chi_2) = 837.916.$ 7.  $\overline{NAZ}(\chi_2) = 11762.3$ 8.  $\overline{NF}(\chi_2) = 20881.$ 9.  $\overline{NH}(\chi_2) = 79.99.$ 

**Theorem 6.** The NMTCM-polynomial for  $A_s - E$  given by

$$\begin{split} NMTCM(A_s-E;p,q) &= 17p^3q^5 + 28p^3q^6 + 27p^3q^7 + 4p^4q^7 + 1p^5q^5 + 14p^5q^6 + 14p^5q^7 + 8p^6q^6 \\ &\quad + 23p^6q^7 + 4p^6q^8 + 18p^6q^9 + 8p^7q^7 + 17p^7q^9 + 4p^7q^8 + 3p^8q^9 + 4p^9q^9. \end{split}$$

*Proof.* Let  $\chi_3$  be the molecular graph of  $A_s - E$  From the figure, it is straightforward to deduce that  $|V(\chi_3)| = 26$  and  $|E(\chi_3)| = 28$ . Vertex set can be classified into eight classes based on their degrees.  $n_2^* = 1, n_3^* = 6, n_4^* = 1, n_5^* = 3, n_6^* = 5, n_7^* = 5, n_8^* = 1, n_9^* = 4$ . Using definition, we have,

| $\overline{m}_{ij}$ | $\overline{m}_{24}$ | $\overline{m}_{35}$ | $\overline{m}_{36}$ | $\overline{m}_{37}$ | $\overline{m}_{47}$ | $\overline{m}_{55}$ | $\overline{m}_{56}$ | $\overline{m}_{57}$ | $\overline{m}_{66}$ | $\overline{m}_{67}$ |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| frequency           | 0                   | 17                  | 28                  | 27                  | 4                   | 1                   | 14                  | 14                  | 8                   | 23                  |

| $\overline{m}_{ij}$ | $\overline{m}_{68}$ | $\overline{m}_{69}$ | $\overline{m}_{77}$ | $\overline{m}_{79}$ | $\overline{m}_{78}$ | $\overline{m}_{89}$ | <u>m</u> 99 |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------|
| frequency           | 4                   | 18                  | 8                   | 17                  | 4                   | 3                   | 4           |

$$\begin{aligned} Let, NM(\chi_{3}, p, q) &= \sum_{i \leq j} \overline{nm}_{ij}(G) p^{i} q^{j} \\ &= \sum_{2 \leq 4} \overline{nm}_{24}(\chi_{3}) p^{2} q^{4} + \sum_{3 \leq 5} \overline{nm}_{35}(\chi_{3}) p^{3} q^{5} + \sum_{3 \leq 6} \overline{nm}_{36}(\chi_{3}) p^{3} q^{6} \\ &+ \sum_{3 \leq 7} \overline{nm}_{37}(\chi_{3}) p^{3} q^{7} + \sum_{4 \leq 7} \overline{nm}_{47}(G) p^{4} q^{7} + \sum_{5 \leq 5} \overline{nm}_{55}(\chi_{3}) p^{5} q^{5} \\ &+ \sum_{5 \leq 6} \overline{nm}_{56}(\chi_{3}) p^{5} q^{6} + \sum_{5 \leq 7} \overline{nm}_{57}(\chi_{3}) p^{5} q^{7} + \sum_{6 \leq 6} \overline{nm}_{66}(\chi_{3}) p^{6} q^{6} \\ &+ \sum_{6 \leq 7} \overline{nm}_{67}(G) p^{6} q^{7} + \sum_{6 \leq 8} \overline{nm}_{68}(\chi_{3}) p^{6} q^{8} + \sum_{6 \leq 9} \overline{nm}_{69}(\chi_{3}) p^{6} q^{9} \\ &+ \sum_{7 \leq 7} \overline{nm}_{77}(\chi_{3}) p^{7} q^{7} + \sum_{7 \leq 9} \overline{nm}_{79}(\chi_{3}) p^{7} q^{9} + \sum_{7 \leq 8} \overline{nm}_{78}(G) p^{7} q^{8} . \\ &+ \sum_{8 \leq 9} \overline{nm}_{89}(\chi_{3}) p^{8} q^{9} + \sum_{9 \leq 9} \overline{nm}_{99}(\chi_{3}) p^{9} q^{9} . \end{aligned}$$

$$\begin{split} NM(\chi_3, p, q) &= |E_{(2,4)}| p^2 q^4 + |E_{(3,5)}| p^3 q^5 + |E_{(3,6)}| p^3 q^6 + |E_{(3,7)}| p^3 q^7 \\ &+ |E_{(4,7)}| p^4 q^7 + |E_{(5,5)}| p^5 q^5 + |E_{(5,6)}| p^5 q^6 + |E_{(5,7)}| p^5 q^7 \\ &+ |E_{(6,6)}| p^6 q^6 + |E_{(6,7)}| p^6 q^7 + |E_{(6,8)}| p^6 q^8 + |E_{(6,9)}| p^6 q^9 \\ &+ |E_{(7,7)}| p^7 q^7 + |E_{(7,9)}| p^7 q^9 + |E_{(7,8)}| p^7 q^8 + |E_{(8,9)}| p^8 q^9 \\ &+ |E_{(9,9)}| p^9 q^9 \\ &= 17 p^3 q^5 + 28 p^3 q^6 + 27 p^3 q^7 + 4 p^4 q^7 + 1 p^5 q^5 + 14 p^5 q^6 + 14 p^5 q^7 + 8 p^6 q^6 \\ &+ 23 p^6 q^7 + 4 p^6 q^8 + 18 p^6 q^9 + 8 p^7 q^7 + 17 p^7 q^9 + 4 p^7 q^8 + 3 p^8 q^9 + 4 p^9 q^9. \end{split}$$

Hence, we get the required *NMTCM*-polynomial equation of  $A_s - E$ .

**Corollary 7.** Let  $\chi_3$  be a molecular graphs of  $A_s - E$  then topological coindices for  $\chi_3$ 

1. 
$$\overline{NM}_1(\chi_3) = 2322.$$
  
2.  $\overline{NM}_2(\chi_3) = 7018.$   
3.  $\overline{NmM}_2(\chi_3) = 6.797.$   
4.  $\overline{NI}(\chi_3) = 553.66$   
5.  $\overline{NRZ}_3(\chi_3) = 90568.$   
6.  $\overline{NSDD}(\chi_3) = 435.52$   
7.  $\overline{NAZ}(\chi_3) = 8858.7.$   
8.  $\overline{NF}(\chi_3) = 15170$   
9.  $\overline{NH}(\chi_3) = 34.11.$ 

**Theorem 8.** The NMTCM-polynomial for  $C_s - N$  given by

$$NMTCM(C_s - N; p, q) = 7p^2q^3 + 5p^2q^4 + 5p^3q^4 + 5p^3q^5 + 2p^3q^6 + 3p^4q^5 + 1p^4q^7 + p^5q^6 + p^5q^7.$$

*Proof.* Let  $\chi_4$  be the molecular graph of  $C_s - N$  From the figure, it is straightforward to deduce that  $|V(\chi_4)| = 11$  and  $|E(\chi_4)| = 12$ . Vertex set can be classified into three classes based on their degrees.  $n_2^* = 3, n_3^* = 3, n_4^* = 2, n_5^* = 2, n_6^* = 1, n_7^* = 1$ . Using definition, we have,

| $\overline{m}_{ij}$ | $\overline{nm}_{23}$ | $\overline{nm}_{24}$ | $\overline{nm}_{34}$ | $\overline{nm}_{35}$ | $\overline{nm}_{36}$ | $\overline{nm}_{45}$ | $\overline{nm}_{47}$ | $\overline{nm}_{56}$ | $\overline{nm}_{57}$ | nm <sub>67</sub> |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------|
| frequency           | 7                    | 5                    | 5                    | 5                    | 2                    | 3                    | 1                    | 1                    | 1                    | 0                |

$$\begin{split} Let, \mathcal{M}(\chi_{4}, p, q) &= \sum_{i \leq j} \overline{m}_{ij}(G) p^{i} q^{j} \\ &= \sum_{2 \leq 3} \overline{m}_{23}(\chi_{4}) p^{2} q^{3} + \sum_{2 \leq 4} \overline{m}_{24}(\chi_{4})) p^{2} q^{4} + \sum_{3 \leq 4} m_{34}(\chi_{4})) p^{3} q^{4} \\ &+ \sum_{3 \leq 5} \overline{m}_{35}(\chi_{4}) p^{3} q^{5} + \sum_{3 \leq 6} \overline{m}_{36}(\chi_{4}) p^{3} q^{6} + \sum_{4 \leq 5} \overline{m}_{45}(\chi_{4}) p^{4} q^{5} \\ &+ \sum_{4 \leq 7} \overline{m}_{47}(\chi_{4}) p^{4} q^{7} + \sum_{5 \leq 6} \overline{m}_{56}(\chi_{4}) p^{5} q^{6} + \sum_{5 \leq 7} \overline{m}_{57}(\chi_{4}) p^{5} q^{7} \\ &+ \sum_{6 \leq 7} \overline{m}_{67}(\chi_{4}) p^{6} q^{7}. \\ &= |E_{(2,3)}| p^{2} q^{3} + |E_{(2,4)}| p^{2} q^{4} + |E_{(3,4)}| p^{3} q^{4} + |E_{(3,5)}| p^{3} q^{5} \\ &+ |E_{(3,6)}| p^{3} q^{6} + |E_{(4,5)}| p^{4} q^{5} + |E_{(4,7)}| p^{4} q^{7} + |E_{(5,6)}| p^{5} q^{6} + |E_{(5,7)}| p^{5} q^{7}. \\ &= 7p^{2} q^{3} + 5p^{2} q^{4} + 5p^{3} q^{4} + 5p^{3} q^{5} + 2p^{3} q^{6} + 3p^{4} q^{5} + 1p^{4} q^{7} + p^{5} q^{6} + p^{5} q^{7}. \end{split}$$

Hence, we get the required NMTCM-polynomial equation of Cs - E.

Now, using this *NMTCM*-polynomial equation of Cs - E, we have,

**Corollary 9.** Let  $\chi_4$  be a molecular graphs of Cs - E then topological co-indices for  $\chi_4$  are given by

1. 
$$\overline{M}_1(\chi_4) = 219.$$
  
2.  $\overline{M}_2(\chi_4) = 406.$   
3.  $\overline{NmM}_2(\chi_4) = 2.8917$   
4.  $\overline{I}(\chi_4) = 51.854.$   
5.  $\overline{NRZ}_3(\chi_4) = 3392.$   
6.  $\overline{NSDD}(\chi_4) = 67.03$   
7.  $\overline{NAZ}(\chi_4) = 456.50$   
8.  $\overline{NF}(\chi_4) = 899.$   
9.  $\overline{NH}(\chi_4) = 8.776.$ 

**Theorem 10.** The NMTCM-polynomial for  $C_b - E$  given by

$$NMTCM(C_b - E; p, q) = 2p^2q^4 + 3p^3q^6 + 3p^3q^7 + 5p^4q^7 + 4p^5q^4 + 2p^5q^8 + 3p^6q^7 + 3p^6q^8 + 2p^4q^4 + 3p^7q^8 + 3p^6q^8 + 3p^6q^8 + 2p^4q^4 + 3p^7q^8 + 3p^6q^8 + 3$$

*Proof.* Let  $\chi_5$  be the molecular graph of  $C_b - E$  From the figure, it is straightforward to deduce that  $|V(\chi_5)| = 14$  and  $|E(\chi_5)| = 15$ . Vertex set can be classified into seven classes based on their degrees.  $n_2^* = |v_2| = 1, n_3^* = |v_3| = 2, n_4^* = |v_4| = 3, n_5^* = |v_5| = 2, n_6^* = |v_6| = 2, n_7^* = |v_7| = 2, n_8^* = |v_8| = 2$ . Using definition, we have,

| $\overline{nm}_{ij}$ | $\overline{nm}_{24}$ | $\overline{nm}_{36}$ | $\overline{nm}_{37}$ | $\overline{nm}_{47}$ | $\overline{nm}_{54}$ | $\overline{nm}_{58}$ | $\overline{nm}_{66}$ |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| frequency            | 2                    | 3                    | 3                    | 5                    | 4                    | 2                    | 0                    |
|                      |                      |                      |                      |                      |                      |                      |                      |
|                      |                      |                      |                      |                      |                      |                      |                      |
|                      |                      |                      |                      |                      |                      |                      |                      |
| nm <sub>ij</sub>     | nı                   | n <sub>67</sub> n    | n <sub>68</sub> nn   | n <sub>44</sub> nn   | n <sub>77</sub> nn   | n <sub>78</sub> nn   | ī <sub>88</sub>      |

$$\begin{aligned} Let, NM(\chi_{5}, p, q) &= \sum_{i \leq j} \overline{nm}_{ij}(G) p^{i} q^{j} \\ &= \sum_{2 \leq 4} \overline{nm}_{24}(\chi_{5}) p^{2} q^{4} + \sum_{3 \leq 6} \overline{nm}_{36}(\chi_{5}) p^{3} q^{6} + \sum_{3 \leq 7} \overline{nm}_{37}(\chi_{5}) p^{3} q^{7} \\ &+ \sum_{4 \leq 7} \overline{nm}_{47}(\chi_{5}) p^{4} q^{7} + \sum_{5 \leq 4} \overline{nm}_{54}(\chi_{5}) p^{5} q^{4} + \sum_{5 \leq 8} \overline{nm}_{58}(\chi_{5}) p^{5} q^{8} \\ &+ \sum_{6 \leq 6} \overline{nm}_{66}(\chi_{5}) p^{6} q^{6} + \sum_{6 \leq 7} \overline{nm}_{77}(\chi_{5}) p^{6} q^{7} + \sum_{7 \leq 8} \overline{nm}_{78}(\chi_{5}) p^{7} q^{8} \\ &+ \sum_{4 \leq 4} \overline{nm}_{44}(\chi_{5}) p^{4} q^{4} + \sum_{7 \leq 7} \overline{nm}_{77}(\chi_{5}) p^{7} q^{7} + \sum_{7 \leq 8} \overline{nm}_{78}(\chi_{5}) p^{7} q^{8} \\ &+ \sum_{8 \leq 8} \overline{nm}_{88}(\chi_{5}) p^{8} q^{8} \end{aligned}$$

$$\begin{split} NM(\chi_5, p, q) &= |E_{(2,4)}| p^2 q^4 + |E_{(3,6)}| p^3 q^6 + |E_{(3,7)}| p^3 q^7 \\ &+ |E_{(4,7)}| p^4 q^7 + |E_{(5,4)}| p^5 q^4 + |E_{(5,8)}| p^5 q^8. \\ &+ |E_{(6,6)}| p^6 q^6 + |E_{(6,7)}| p^6 q^7 + |E_{(6,8)}| p^6 q^8 \\ &+ |E_{(4,4)}| p^4 q^4 + |E_{(7,7)}| p^7 q^7 + |E_{(7,8)}| p^7 q^8 \\ &+ |E_{(8,8)}| p^8 q^8. \\ &= 2 p^2 q^4 + 3 p^3 q^6 + 3 p^3 q^7 + 5 p^4 q^7 + 4 p^5 q^4 + 2 p^5 q^8 + 3 p^6 q^7 + 3 p^6 q^8 + 2 p^4 q^4 + 3 p^7 q^8. \end{split}$$

Hence, we get the required *NMTCM*-polynomial equation of  $C_b - E$ .

Now, using this *NMTCM*-polynomial equation of  $C_b - E$ , we have,

**Corollary 11.** Let  $\chi_5$  be a molecular graphs of  $C_b - E$  then topological co-indices for  $\chi_5$  are given by

1.  $\overline{M}_1(\chi_5) = 328.$ 2.  $\overline{M}_2(\chi_5) = 903$ 3.  $\overline{NmM}_2(\chi_5) = 1.297$ 4.  $\overline{I}(\chi_5) = 77.89$ 5.  $\overline{RZ_3}(\chi_4) = 10942.$ 6.  $\overline{NSDD}(\chi_5) = 67.42$ 7.  $\overline{NAZ}(\chi_5) = 1093.93.$ 8.  $\overline{NF}(\chi_5) = 1974.$ 9.  $\overline{NH}(\chi_5) = 5.825.$  **Theorem 12.** *The NMTCM-polynomial for*  $C_n - A$  *given by* 

$$NMTCM(C_n - A; p, q) = 5p^2q^3 + 33p^3q^6 + 10p^3q^7 + 46p^4q^4 + 21p^4q^5 + 10p^4q^9 + 10p^5q^6 + 15p^5q^8 + 13p^6q^6 + 10p^6q^7 + 10p^6q^8 + 5p^6q^9 + 1p^8q^9 + 3p^7q^8 + 1p^7q^9 + 65p^3q^4.$$

*Proof.* Let  $\chi_6$  be the molecular graph of  $C_n - A$  From the figure, it is straightforward to deduce that  $|V(\chi_6)| = 31$  and  $|E(\chi_6)| = 32$ . Vertex set can be classified into eight classes based on their degrees.  $n_2^* = |v_2| = 1, n_3^* = |v_3| = 6, n_4^* = |v_4| = 11, n_5^* = |v_5| = 2, n_6^* = |v_6| = 6, n_7^* = |v_7| = 2, n_8^* = |v_8| = 2, n_9^* = |v_9| = 1.$ 

Using definition, we have,

| _      |                     |                      |                      |                      |                      |                      |                      |                      |             |
|--------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------|
|        | $\overline{m}_{ij}$ | $\overline{nm}_{23}$ | $\overline{nm}_{36}$ | $\overline{nm}_{37}$ | $\overline{nm}_{44}$ | $\overline{nm}_{45}$ | $\overline{nm}_{49}$ | $\overline{nm}_{56}$ |             |
| 1      | frequency           | 5                    | 33                   | 10                   | 46                   | 21                   | 10                   | 10                   |             |
| -      |                     |                      |                      |                      |                      |                      |                      |                      |             |
| m.     | <u>nm</u> =0        | nmee                 | <u>nm</u> ca         | <u>nm</u> co         | <del>nm</del> co     | <del>nm</del> ee     | <u>nm</u> ao         | <u>nm</u> ao         | <u>nm</u> - |
| mij    | 111158              | 111166               | 11116/               | 111168               | 111169               | 111189               | 1111/8               | 1111/9               | ning        |
| freque | ncy 15              | 13                   | 10                   | 10                   | 5                    | 1                    | 3                    | 1                    | 65          |

By definition of NMTCM polynomial,

$$\begin{split} Let, NM(\chi_{6}, p, q) &= \sum_{i \leq j} \overline{nm}_{ij}(G) p^{i} q^{j} \\ &= \sum_{2 \leq 3} \overline{nm}_{23}(\chi_{6}) p^{2} q^{3} + \sum_{3 \leq 6} \overline{nm}_{36}(\chi_{6}) p^{3} q^{6} + \sum_{3 \leq 7} \overline{nm}_{37}(\chi_{6}) p^{3} q^{7} \\ &+ \sum_{4 \leq 4} \overline{nm}_{44}(\chi_{6}) p^{4} q^{4} + \sum_{4 \leq 5} \overline{nm}_{45}(\chi_{6}) p^{4} q^{5} + \sum_{4 \leq 9} \overline{nm}_{49}(\chi_{6}) p^{4} q^{9} \\ &+ \sum_{5 \leq 6} \overline{nm}_{56}(\chi_{6}) p^{5} q^{6} + \sum_{5 \leq 8} \overline{nm}_{58}(G) p^{5} q^{8} + \sum_{6 \leq 6} \overline{nm}_{69}(\chi_{6}) p^{6} q^{9} \\ &+ \sum_{6 \leq 7} \overline{nm}_{67}(\chi_{6}) p^{6} q^{7} + \sum_{6 \leq 8} \overline{nm}_{78}(\chi_{6}) p^{7} q^{8} + \sum_{6 \leq 9} \overline{nm}_{79}(\chi_{6}) p^{6} q^{9} \\ &+ \sum_{8 \leq 9} \overline{nm}_{89}(\chi_{6}) p^{8} q^{9} + \sum_{7 \leq 8} \overline{nm}_{78}(\chi_{6}) p^{7} q^{8} + \sum_{7 \leq 9} \overline{nm}_{79}(\chi_{6}) p^{7} q^{9} \\ &+ \sum_{8 \leq 9} \overline{nm}_{34}(\chi_{6}) p^{3} q^{4}. \\ &= |E_{(2,3)}| p^{2} q^{3} + |E_{(3,6)}| p^{3} q^{6} + |E_{(3,7)}| p^{3} q^{7} + |E_{(6,6)}| p^{6} q^{6} + |E_{(6,7)}| p^{6} q^{7} \\ &+ |E_{(6,8)}| p^{6} q^{8} + |E_{(6,9)}| p^{6} q^{9} + |E_{(8,9)}| p^{8} q^{9} + |E_{(7,8)}| p^{7} q^{8} \\ &+ |E_{(7,9)}| p^{7} q^{9} + |E_{(3,4)}| p^{3} q^{4}. \\ &= 5p^{2} q^{3} + 36p^{3} q^{3} + 10p^{3} q^{7} + 46p^{4} q^{4} + 21p^{4} q^{5} + 10p^{4} q^{9} + 10p^{5} q^{6} \\ &+ 15p^{5} q^{8} + 13p^{6} q^{6} + 10p^{6} q^{7} + 10p^{6} q^{8} + 5p^{6} q^{9} + 1p^{8} q^{9} + 3p^{7} q^{8} \\ &+ 1p^{7} q^{9} + 65p^{3} q^{4}. \end{split}$$

Hence, we get the required NMTCM-polynomial equation of  $C_n - A$ .

Now, using this *NMTCM*-polynomial equation of  $C_n - A$ , we have,

**Corollary 13.** Let  $\chi_6$  be a molecular graphs of Convolutamide A then topological co-indices for  $\chi_6$  are given by

1.  $\overline{M}_1(\chi_6) = 2448.$ 2.  $\overline{M}_2(\chi_6) = 5971.$ 3.  $\overline{NmM}_2(\chi_6) = 14.44$ 4.  $\overline{I}(\chi_6) = 587.15$ 5.  $\overline{RZ_3}(\chi_6) = 65102.$ 6.  $\overline{NSDD}(\chi_6) = 560.04$ 7.  $\overline{NAZ}(\chi_6) = 7065.19.$ 8.  $\overline{NF}(\chi_6) = 12988.$ 9.  $\overline{NH}(\chi_6) = 58.118.$ 

**Theorem 14.** The NMTCM-polynomial for  $C_t - F$  given by

$$NMTCM(C_t - F; p, q) = 7p^2q^3 + 3p^2q^4 + 7p^3q^4 + 10p^3q^6 + 3p^3q^7 + 1p^4q^5 + 3p^4q^8 + p^5q^8 + p^6q^6 + 4p^6q^8.$$

*Proof.* Let  $\chi_7$  be the molecular graph of  $C_t - F$  From the figure, it is straightforward to deduce that  $|V(\chi_7)| = 15$  and  $|E(\chi_7)| = 15$ . Vertex set can be classified into seven classes based on their degrees.  $n_2^* = |v_2| = 2, n_3^* = |v_3| = 4, n_4^* = |v_4| = 2, n_5^* = |v_5| = 1, n_6^* = |v_6| = 3, n_7^* = |v_7| = 1, n_8^* = |v_8| = 2$ . Using definition, we have,

| $\overline{nm}_{ij}$ | $\overline{nm}_{23}$ | $\overline{nm}_{24}$ | <u>nm</u> 34 | $\overline{nm}_{36}$ | <u>nm</u> 37 | $\overline{nm}_{45}$ | $\overline{nm}_{48}$ | $\overline{nm}_{58}$ | $\overline{nm}_{66}$ | $\overline{nm}_{68}$ | $\overline{nm}_{78}$ |
|----------------------|----------------------|----------------------|--------------|----------------------|--------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| frequency            | 7                    | 3                    | 7            | 10                   | 3            | 1                    | 3                    | 1                    | 1                    | 4                    | 0                    |

By definition of NMTCM polynomial,

$$\begin{split} Let, \mathcal{M}(\chi_{7}, p, q) &= \sum_{i \leq j} \overline{n}\overline{m}_{ij}(G)p^{i}q^{j} \\ &= \sum_{2 \leq 3} \overline{n}\overline{m}_{23}(\chi_{7})p^{2}q^{3} + \sum_{2 \leq 4} \overline{n}\overline{m}_{24}(\chi_{7})p^{2}q^{4} + \sum_{3 \leq 4} \overline{n}\overline{m}_{34}(\chi_{7})p^{3}q^{4} \\ &+ \sum_{3 \leq 6} \overline{n}\overline{m}_{36}(\chi_{7})p^{3}q^{6} + \sum_{3 \leq 7} \overline{n}\overline{m}_{37}(\chi_{7})p^{3}q^{7} + \sum_{4 \leq 5} \overline{n}\overline{m}_{45}(\chi_{7})p^{4}q^{5}. \\ &+ \sum_{4 \leq 8} \overline{n}\overline{m}_{48}(\chi_{7})x4q^{8} + \sum_{5 \leq 8} \overline{n}\overline{m}_{58}(\chi_{7})p^{5}q^{8} + \sum_{6 \leq 6} \overline{n}\overline{m}_{66}(\chi_{7})p^{6}q^{6} \\ &+ \sum_{6 \leq 8} \overline{n}\overline{m}_{68}(\chi_{7})p^{6}q^{8} + \sum_{7 \leq 8} \overline{n}\overline{n}_{78}(\chi_{7})p^{7}q^{8} \\ &= |E_{(2,3)}|p^{2}q^{3} + |E_{(2,4)}|p^{2}q^{4} + |E_{(3,4)}|p^{3}q^{4} + |E_{(3,6)}|p^{3}q^{6} \\ &+ |E_{(3,7)}|p^{3}q^{7} + |E_{(4,5)}|p^{4}q^{5} + |E_{(4,8)}|p^{4}q^{8} + |E_{(5,8)}|p^{5}q^{8} \\ &+ |E_{(6,6)}|p^{6}q^{6} + |E_{(6,8)}|p^{6}q^{8} + |E_{(7,8)}|p^{7}q^{8} \\ &= 7p^{2}q^{3} + 3p^{2}q^{4} + 7p^{3}q^{4} + 10p^{3}q^{6} + 3p^{3}q^{7} + 1p^{4}q^{5} + 3p^{4}q^{8} + p^{5}q^{8} + p^{6}q^{6} + 4p^{6}q^{8}. \end{split}$$

Hence, we get the required NMTCM-polynomial equation of  $C_t - F$ .

Now, using this *NMTCM*-polynomial equation of  $C_t - F$ , we have,

**Corollary 15.** Let  $\chi_7$  be a molecular graphs of Convolutamine F then topological co-indices for  $\chi_7$  are given by

1.  $\overline{NM}_{1}(\chi_{7}) = 348.$ 2.  $\overline{NM}_{2}(\chi_{7}) = 777.$ 3.  $\overline{NmM}_{2}(\chi_{7}) = 3.093.$ 4.  $\overline{NI}(\chi_{7}) = 80.706.$ 5.  $\overline{NRZ}_{3}(\chi_{7}) = 8164.$ 6.  $\overline{NSDD}(\chi_{7}) = 92.63.$ 7.  $\overline{NAZ}(\chi_{7}) = 872.71$ 8.  $\overline{NF}(\chi_{7}) = 1792.$ 9.  $\overline{NH}(\chi_{7}) = 10.23.$ 

**Theorem 16.** The NMTCM-polynomial for  $C_m - A$  given by

$$NMTCM(C_m - A; p, q) = 10p^3q^4 + 14p^3q^3 + 5p^3q^5 + 22p^3q^6 + 5p^3q^9 + p^4q^9 + 2p^5q^6 + 5p^6q^6 + 6p^6q^7 + 3p^6q^{10} + p^7q^{10} + p^7q^9 + 3p^4q^7.$$

*Proof.* Let  $\chi_8$  be the molecular graph of  $C_m - A$  From the figure, it is straightforward to deduce that  $|V(\chi_8)| = 17$  and  $|E(\chi_8)| = 18$ . Vertex set can be classified into seven classes based on their degrees.  $n_3^* = 6, n_4^* = 2, n_5^* = 1, n_6^* = 4, n_7^* = 2, n_9^* = 1, n_{10}^* = 1$ . Using definition, we have,

| $\overline{nm}_{ij}$   | į ī               | <u>nm</u> 34    | $\overline{nm}_{33}$ | nm <sub>35</sub> | 5 <i>nm</i> <sub>36</sub> | <u>nm</u> 39      | $\overline{nm}_{49}$  | nm                  | 56           |
|------------------------|-------------------|-----------------|----------------------|------------------|---------------------------|-------------------|-----------------------|---------------------|--------------|
| freque                 | ncy               | 10              | 14                   | 5                | 22                        | 5                 | 1                     | 2                   |              |
| <u>nm<sub>ii</sub></u> | $\overline{nm}_6$ | <sub>6</sub> nm | 67 nm                | 6(10)            | $\overline{nm}_{7(10)}$   | $\overline{nm}_9$ | $(10)$ $\overline{n}$ | $\overline{n}_{79}$ | <u>nm</u> 47 |
| frequency              | 5                 | 6               | 5                    | 3                | 1                         | 0                 |                       | 1                   | 3            |

By definition of NMTCM polynomial,

$$\begin{aligned} Let, NM(\chi_8, p, q) &= \sum_{i \leq j} \overline{nm}_{ij}(G) p^i q^j \\ &= \sum_{3 \leq 4} \overline{nm}_{34}(\chi_8) p^3 q^4 + \sum_{3 \leq 3} \overline{nm}_{33}(\chi_8) p^3 q^3 + \sum_{3 \leq 5} \overline{nm}_{35}(\chi_8) p^3 q^5 \\ &+ \sum_{3 \leq 6} \overline{nm}_{36}(\chi_8) p^3 q^6 + \sum_{4 \leq 9} \overline{nm}_{49}(\chi_8) p^4 q^9 + \sum_{4 \leq 5} \overline{nm}_{45}(\chi_7) p^4 q^5. \\ &+ \sum_{5 \leq 6} \overline{nm}_{56}(\chi_8) x5 q^6 + \sum_{6 \leq 6} \overline{nm}_{66}(\chi_8) p^6 q^6 + \sum_{6 \leq 7} \overline{nm}_{67}(\chi_8) p^6 q^7 \\ &+ \sum_{5 \leq 6} \overline{nm}_{6(10)}(\chi_8) p^6 q^{10} + \sum_{7 \leq 10} \overline{nm}_{7(10)}(\chi_8) p^7 q^{10} + \sum_{9 \leq 10} \overline{nm}_{9(10)}(\chi_8) p^9 q^{10} \\ &+ \sum_{7 \leq 9} \overline{nm}_{79}(\chi_8) p^7 q^9 + \sum_{4 \leq 7} \overline{nm}_{47}(\chi_8) p^4 q^7 \\ &= |E_{(3,4)}| p^3 q^4 + |E_{(3,3)}| p^3 q^3 + |E_{(3,5)}| p^3 q^5 + |E_{(3,6)}| p^5 q^6 \\ &+ |E_{(3,9)}| p^3 q^9 + |E_{(4,9)}| p^4 q^9 + |E_{(5,6)}| p^5 q^6 + |E_{(6,6)}| p^6 q^6 \\ &+ |E_{(6,7)}| p^6 q^7 + |E_{(6,10)}| p^6 q^{10} + |E_{(7,10)}| p^7 q^{10} + |E_{(9,10)}| p^9 q^{10} \\ &+ |E_{(7,9)}| p^7 q^9 + |E_{(4,7)}| p^4 q^7. \\ &= 10p^3 q^4 + 14p^3 q^3 + 5p^3 q^5 + 22p^3 q^6 + 5p^3 q^9 + p^4 q^9 + 2p^5 q^6 + 5p^6 q^6 \\ &+ 6p^6 q^7 + 3p^6 q^{10} + p^7 q^{10} + p^7 q^9 + 3p^4 q^7. \end{aligned}$$

Hence, we get the required NMTCM-polynomial equation of  $C_m - A$ .

Now, using this *NMTCM*-polynomial equation of  $C_m - A$ , we have,

**Corollary 17.** Let  $\chi_8$  be a molecular graphs of convolutamydine A then topological co-indices for  $\chi_8$  are given by

1.  $\overline{NM}_1(\chi_8) = 739.$ 2.  $\overline{NM}_2(\chi_8) = 1777.$ 3.  $\overline{NmM}_2(\chi_8) = 4.678.$ 4.  $\overline{NI}(\chi_8) = 172.27.$ 5.  $\overline{NRZ}_3(\chi_8) = 19946.$ 6.  $\overline{NSDD}(\chi_8) = 176.9.$ 7.  $\overline{NAZ}(\chi_8) = 2039.35.$ 8.  $\overline{NF}(\chi_8) = 4083.$ 9.  $\overline{NH}(\chi_8) = 17.90.$ 

**Theorem 18.** The NMTCM-polynomial for  $D_r - N$  given by

$$\begin{split} \textit{NMTCM}(D_r-N;p,q) &= 2p^2q^4 + 20p^3q^6 + 76p^3q^7 + 5p^4q^5 + 26p^4q^7 + 18p^4q^8 \\ &\quad + 8p^4q^8 + 17p^5q^7 + 5p^5q^8 + 23p^6q^6 + 67p^6q^7 + 22p^6q^8 + 22p^7q^8 \\ &\quad + 21p^7q^9 + 35p^7q^7 + 8p^8q^9 + 2p^9q^9. \end{split}$$

*Proof.* Let  $\chi_9$  be the molecular graph of  $D_r - N$  From the figure, it is straightforward to deduce that  $|V(\chi_9)| = 38$  and  $|E(\chi_9)| = 42$ . Vertex set can be classified into eight classes based on their degrees.  $n_2^* = 1, n_3^* = 9, n_4^* = 3, n_5^* = 2, n_6^* = 8, n_7^* = 9, n_8^* = 3, n_9^* = 3$ . Using definition, we have,

| $\overline{m}_{ij}$ | $\overline{nm}_{24}$ | $\overline{nm}_{36}$ | $\overline{nm}_{37}$ | $\overline{nm}_{45}$ | $\overline{nm}_{47}$ | $\overline{nm}_{48}$ | $\overline{nm}_{57}$ |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| frequency           | 2                    | 20                   | 76                   | 5                    | 26                   | 8                    | 17                   |

| $\overline{m}_{ij}$ | $\overline{nm}_{58}$ | $\overline{nm}_{66}$ | $\overline{nm}_{67}$ | $\overline{nm}_{68}$ | $\overline{nm}_{78}$ | $\overline{nm}_{79}$ | $\overline{nm}_{77}$ | $\overline{nm}_{89}$ | <u>nm</u> 99 |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------|
| frequency           | 5                    | 23                   | 67                   | 22                   | 22                   | 21                   | 35                   | 8                    | 2            |

$$\begin{aligned} Let, NM(\chi_9, p, q) &= \sum_{i \leq j} \overline{nm}_{ij}(G) p^i q^j \\ &= \sum_{2 \leq 4} \overline{nm}_{24}(\chi_9) p^2 q^4 + \sum_{3 \leq 6} \overline{nm}_{36}(\chi_9) p^3 q^6 + \sum_{3 \leq 7} \overline{nm}_{37}(\chi_9) p^3 q^7 \\ &+ \sum_{4 \leq 5} \overline{nm}_{45}(\chi_9) p^4 q^5 + \sum_{4 \leq 7} \overline{nm}_{47}(\chi_9) p^4 q^7 + \sum_{4 \leq 9} \overline{nm}_{48}(\chi_9) p^4 q^8 \\ &+ \sum_{5 \leq 7} \overline{nm}_{57}(\chi_9) p^5 q^7 + \sum_{5 \leq 8} \overline{nm}_{58}(G) p^5 q^8 \\ &+ \sum_{6 \leq 6} \overline{nm}_{66}(\chi_9) p^6 q^6 + \sum_{6 \leq 7} \overline{nm}_{79}(\chi_9) p^5 q^7 + \sum_{6 \leq 8} \overline{nm}_{77}(\chi_9) p^7 q^7 \\ &+ \sum_{7 \leq 8} \overline{nm}_{78}(\chi_9) p^7 q^8 + \sum_{7 \leq 9} \overline{nm}_{79}(\chi_9) p^7 q^9 + \sum_{7 \leq 7} \overline{nm}_{77}(\chi_9) p^7 q^7 \\ &+ \sum_{8 \leq 9} \overline{nm}_{89}(\chi_9) p^8 q^9 + \sum_{9 \leq 9} \overline{nm}_{99}(\chi_9) p^9 q^9. \end{aligned}$$

$$= |E_{(2,4)}| p^2 q^4 + |E_{(3,6)}| p^3 q^6 + |E_{(3,7)}| p^3 q^7 + |E_{(4,5)}| p^4 q^5 \\ &+ |E_{(4,7)}| p^4 q^7 + |E_{(4,8)}| p^4 q^8 + |E_{(5,7)}| p^5 q^7 + |E_{(5,8)}| p^5 q^8 \\ &+ |E_{(6,6)}| p^6 q^6 + |E_{(6,7)}| p^6 q^7 + |E_{(6,8)}| p^6 q^8 + |E_{(7,7)}| p^7 q^7 \\ &+ |E_{(8,9)}| p^7 q^9 + |E_{(7,8)}| p^7 q^8 + |E_{(7,9)}| p^7 q^9 + |E_{(7,7)}| p^7 q^7 \\ &+ |E_{(8,9)}| p^8 q^9 + |E_{(9,9)}| p^9 q^9 \\ &= 2p^2 q^4 + 20p^3 q^6 + 76p^3 q^7 + 5p^4 q^5 + 26p^4 q^7 + 18p^4 q^8 \\ &+ 8p^4 q^8 + 17p^5 q^7 + 5p^5 q^8 + 23p^6 q^6 + 67p^6 q^7 + 22p^6 q^8 + 22p^7 q^8 \\ &+ 21p^7 q^9 + 35p^7 q^7 + 8p^8 q^9 + 2p^9 q^9. \end{aligned}$$

Hence, we get the required NMTCM-polynomial equation of  $D_r - N$ .

Now, using this *NMTCM*-polynomial equation of  $D_r - N$ , we have,

**Corollary 19.** Let  $\chi_9$  be a molecular graphs of Daunorubicin then topological co-indices for  $\chi_9$  are given by

1.  $\overline{NM}_1(\chi_9) = 4431.$ 2.  $\overline{NM}_2(\chi_9) = 13557.$ 3.  $\overline{NmM}_2(\chi_9) = 11.233.$ 4.  $\overline{NI}(\chi_9) = 1056.91$ 5.  $\overline{NRZ}_3(\chi_9) = 178684.$ 6.  $\overline{NSDD}(\chi_9) = 807.81.$ 7.  $\overline{NAZ}(\chi_9) = 17202.4.$ 8.  $\overline{NF}(\chi_9) = 29267.$ 9.  $\overline{NH}(\chi_9) = 59.19.$ 

**Theorem 20.** The NMTCM-polynomial for  $D_g - N$  given by

$$\begin{split} \textit{NMTCM}(D_g - N; p, q) &= 10p^2q^4 + 2p^3q^8 + 28p^4q^6 + 34p^4q^7 + 11p^4q^9 + 5p^4q^{11} \\ &+ 23p^5q^6 + 27p^5q^7 + 9p^5q^5 + 11p^5q^8 + 8p^6q^9 + 9p^6q^6 + 13p^7q^7 \\ &+ 26p^6q^7 + 17p^7q^8 + 10p^7q^9 + 2p^8q^8 + 2p^8q^{11}. \end{split}$$

*Proof.* Let  $\chi_{10}$  be the molecular graph of  $D_g - N$  From the figure, it is straightforward to deduce that  $|V(\chi_{10})| = 31$  and  $|E(\chi_{10})| = 35$ . Vertex set can be classified into nine classes based on their degrees.  $n_2^* = 2$ ,  $n_3^* = 12$ ,  $n_4^* = 6$ ,  $n_5^* = 5$ ,  $n_7^* = 6$ ,  $n_8^* = 3$ ,  $n_9^* = 2$ ,  $n_{11}^* = 1$ . Using definition, we have,

| $\overline{m}_{ij}$ | $\overline{nm}_{24}$ | $\overline{nm}_{38}$ | $\overline{nm}_{46}$ | $\overline{nm}_{47}$ | $\overline{nm}_{49}$ | $\overline{nm}_{4(11)}$ | $\overline{nm}_{56}$ | $\overline{nm}_{57}$ | $\overline{nm}_{55}$ | $\overline{nm}_{58}$ | nm <sub>69</sub> |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|-------------------------|----------------------|----------------------|----------------------|----------------------|------------------|
| frequency           | / 10                 | 2                    | 28                   | 34                   | 11                   | 5                       | 23                   | 27                   | 9                    | 11                   | 8                |
|                     |                      |                      |                      |                      |                      |                         |                      |                      |                      |                      |                  |
|                     |                      |                      |                      |                      |                      |                         |                      |                      |                      |                      |                  |

|     | m <sub>ij</sub> | $nm_{66}$ | nm77 | $nm_{67}$ | $nm_{78}$ | <i>nm</i> 79 | $nm_{9(11)}$ | $nm_{88}$ | $nm_{8(11)}$ |
|-----|-----------------|-----------|------|-----------|-----------|--------------|--------------|-----------|--------------|
| fre | quency          | 9         | 13   | 26        | 17        | 10           | 0            | 2         | 2            |

$$\begin{split} Let, NM(\chi_9, p, q) &= \sum_{i \leq j} \overline{nm}_{ij}(G) p^i q^j \\ &= \sum_{2 \leq 4} \overline{nm}_{24}(\chi_{10}) p^2 q^4 + \sum_{3 \leq 8} \overline{nm}_{38}(\chi_{10}) p^3 q^8 + \sum_{4 \leq 6} \overline{nm}_{46}(\chi_{10}) p^4 q^6 \\ &+ \sum_{4 \leq 7} \overline{nm}_{47}(\chi_{10}) p^4 q^7 + \sum_{4 \leq 9} \overline{nm}_{49}(\chi_{10}) p^4 q^9 + \sum_{4 \leq 11} \overline{nm}_{4(11)}(\chi_{10}) p^4 q^{11} \\ &+ \sum_{5 \leq 6} \overline{nm}_{56}(\chi_{10}) p^5 q^6 + \sum_{5 \leq 7} \overline{nm}_{57}(G) p^5 q^7 + \sum_{5 \leq 5} \overline{nm}_{57}(\chi_{10}) p^5 q^7 \\ &+ \sum_{5 \leq 5} \overline{nm}_{55}(\chi_{10}) p^5 q^5 + \sum_{5 \leq 8} \overline{nm}_{78}(\chi_{10}) p^5 q^8 + \sum_{6 \leq 9} \overline{nm}_{69}(\chi_{10}) p^6 q^9 \\ &+ \sum_{6 \leq 6} \overline{nm}_{66}(\chi_{10}) p^6 q^6 + \sum_{7 \leq 7} \overline{nm}_{77}(\chi_{10}) p^7 q^7 + \sum_{6 \leq 7} \overline{nm}_{67}(\chi_{10}) p^6 q^7 \\ &+ \sum_{7 \leq 8} \overline{nm}_{78}(\chi_{10}) p^7 q^8 + \sum_{7 \leq 9} \overline{nm}_{79}(\chi_{10}) p^7 q^9 + \sum_{9 \leq 11} \overline{nm}_{9(11)}(\chi_{10}) p^9 q^{11} \\ &+ \sum_{8 \leq 8} \overline{nm}_{88}(\chi_{10}) p^8 q^8 + \sum_{8 \leq 11} \overline{nm}_{8(11)}(\chi_{10}) p^8 q^{11}. \end{split}$$

$$\begin{split} \mathsf{NM}(\chi_9, p, q) &= |\, E_{(2,4)} \mid p^2 q^4 + |\, E_{(3,8)} \mid p^3 q^8 + |\, E_{(4,6)} \mid p^4 q^6 + |\, E_{(4,7)} \mid p^4 q^7 \\ &+ |\, E_{(4,9)} \mid p^4 q^9 + |\, E_{(4,11)} \mid p^4 q^{11} + |\, E_{(5,6)} \mid p^5 q^6 + |\, E_{(5,7)} \mid p^5 q^7 \\ &+ |\, E_{(5,5)} \mid p^5 q^5 + |\, E_{(5,8)} \mid p^5 q^8 + |\, E_{(6,9)} \mid p^6 q^9 + |\, E_{(6,6)} \mid p^6 q^6 \\ &+ |\, E_{(7,7)} \mid p^7 q^7 + |\, E_{(6,7)} \mid p^6 q^7 + |\, E_{(7,9)} \mid p^7 q^9 + |\, E_{(7,8)} \mid p^7 q^8 \\ &+ |\, E_{(8,11)} \mid p^9 q^{11} + |\, E_{(8,8)} \mid p^8 q^8 + |\, E_{(8,11)} \mid p^8 q^{11} \\ &= 10 p^2 q^4 + 2 p^3 q^8 + 28 p^4 q^6 + 34 p^4 q^7 + 11 p^4 q^9 + 5 p^4 q^{11} \\ &+ 23 p^5 q^6 + 27 p^5 q^7 + 9 p^5 q^5 + 11 p^5 q^8 + 8 p^6 q^9 + 9 p^6 q^6 + 13 p^7 q^7 \\ &+ 26 p^6 q^7 + 17 p^7 q^8 + 10 p^7 q^9 + 2 p^8 q^8 + 2 p^8 q^{11}. \end{split}$$

Hence, we get the required NMTCM-polynomial equation of  $(D_g - N)$ .

Now, using this NMTCM-polynomial equation of  $(D_g - N)$ , we have,

**Corollary 21.** Let  $\chi_{10}$  be a molecular graphs of  $D_g - N$  then topological co-indices for  $\chi_{10}$  are given by

1.  $\overline{NM}_1(\chi_{10}) = 2997.$ 2.  $\overline{NM}_2(\chi_{10}) = 9039.$ 3.  $\overline{NmM}_2(\chi_{10}) = 8.023.$ 4.  $\overline{NI}(\chi_{10}) = 719.75.$ 5.  $\overline{NRZ}_3(\chi_{10}) = 115990.$ 6.  $\overline{NSDD}(\chi_{10}) = 539.23.$ 7.  $\overline{NAZ}(\chi_{10}) = 11324.4.$ 8.  $\overline{NF}(\chi_{10}) = 19509.$ 9.  $\overline{NH}(\chi_{10}) = 111.74$ 

**Theorem 22.** The NMTCM-polynomial for  $M_e - N$  given by

$$NMTCM(M_e - N; p, q) = 2p^2q^4 + 4p^3q^4 + 15p^4q^5 + 5p^4q^6 + 13p^5q^5 + 11p^5q^6 + 8p^5q^7 + p^6q^8.$$

*Proof.* Let  $\chi_{11}$  be the molecular graph of  $M_e - N$  From the figure, it is straightforward to deduce that  $|V(\chi_{11})| = 17$  and  $|E(\chi_{11})| = 18$ . Vertex set can be classified into three classes based on their degrees.  $n_2^* = 1$ ,  $n_3^* = 2$ ,  $n_4^* = 3$ ,  $n_5^* = 6$ ,  $n_6^* = 2$ ,  $n_7^* = 2$ ,  $n_8^* = 1$ . Using definition, we have,

| $\overline{m}_{ij}$ | $\overline{nm}_{24}$ | $\overline{nm}_{34}$ | $\overline{nm}_{45}$ | $\overline{nm}_{46}$ | $\overline{nm}_{55}$ | $\overline{nm}_{56}$ | $\overline{nm}_{57}$ | $\overline{nm}_{66}$ | $\overline{nm}_{68}$ | $\overline{nm}_{78}$ |
|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| frequency           | 2                    | 4                    | 15                   | 5                    | 13                   | 11                   | 8                    | 0                    | 1                    | 0                    |

By definition of NMTCM polynomial,

$$\begin{aligned} Let, NM(\chi_{11}, p, q) &= \sum_{i \le j} \overline{nm}_{ij}(G) p^i q^j \\ &= \sum_{2 \le 4} \overline{nm}_{24}(\chi_{11}) p^2 q^4 + \sum_{3 \le 4} \overline{nm}_{34}(\chi_{11}) p^3 q^4 + \sum_{4 \le 5} \overline{nm}_{45}(\chi_{11}) p^4 q^5 \\ &+ \sum_{4 \le 6} \overline{nm}_{46}(\chi_{11}) p^4 q^6 + \sum_{5 \le 5} \overline{nm}_{55}(\chi_{11}) p^5 q^5 + \sum_{5 \le 6} \overline{nm}_{56}(\chi_{11}) p^5 q^6 \\ &+ \sum_{5 \le 7} \overline{nm}_{57}(\chi_{11}) p^5 q^7 + \sum_{6 \le 6} \overline{nm}_{66}(G) p^6 q^6 + \sum_{6 \le 8} \overline{nm}_{68}(\chi_{11}) p^6 q^8 \\ &+ \sum_{7 \le 8} \overline{nm}_{78}(\chi_{11}) p^7 q^8 + \sum_{6 \le 8} \overline{nm}_{68}(\chi_{11}) p^6 q^8 + \sum_{7 \le 8} \overline{nm}_{78}(\chi_{11}) p^7 q^8 . \end{aligned}$$

$$\begin{split} NM(\chi_{11}, p, q) &= |E_{(2,4)}| p^2 q^4 + |E_{(3,4)}| p^3 q^4 + |E_{(4,5)}| p^4 q^5 + |E_{(4,6)}| p^4 q^6 \\ &+ |E_{(5,5)}| p^5 q^5 + |E_{(5,6)}| p^5 q^6 + |E_{(5,7)}| p^5 q^7 + |E_{(6,6)}| p^6 q^6 \\ &+ |E_{(6,8)}| p^6 q^8 + |E_{(7,8)}| p^7 q^8 \\ &= 2p^2 q^4 + 4p^3 q^4 + 15p^4 q^5 + 5p^4 q^6 + 13p^5 q^5 + 11p^5 q^6 + 8p^5 q^7 + p^6 q^8 \end{split}$$

Hence, we get the required NMTCM-polynomial equation of  $M_e - N$ .

Now, using this NMTCM-polynomial equation of  $M_e - N$ , we have,

**Corollary 23.** Let  $\chi_{11}$  be a molecular graphs of  $M_e - N$  then topological co-indices for  $\chi_{11}$  are given by

1.  $\overline{NM}_1(\chi_{11}) = 486.$ 2.  $\overline{NM}_2(\chi_{11}) = 507.$ 3.  $\overline{NmM}_2(\chi_{11}) = 32.21.$ 4.  $\overline{NI}(\chi_{11}) = 114.28.$ 5.  $\overline{NRZ}_3(\chi_{11}) = 2336.$ 6.  $\overline{NSDD}(\chi_{11}) = 26632.$ 7.  $\overline{NAZ}(\chi_{11}) = 886.9.$ 8.  $\overline{NF}(\chi_{11}) = 1128.$ 9.  $\overline{NH}(\chi_{11}) = 186.49.$ 

**Theorem 24.** The NMTCM-polynomial for  $M_i - E$  given by

$$\begin{split} \textit{NMTCM}(\textit{M}_i-\textit{E};\textit{p},q) &= 49p^3q^5 + 10p^3q^6 + 31p^3q^7 + 64p^3q^8 + 17p^4q^8 + 8p^4q^{10} \\ &+ 2p^4q^{11} + 9p^5q^5 + 4p^5q^6 + 28p^5q^8 + 9p^5q^9 + 14p^5q^{10} + p^6q^9 \\ &+ 16p^7q^8 + 4p^7q^9 + 7p^7q^{10} + 13p^8q^8 + 10p^8q^9 + 15p^8q^{10} \\ &+ 4p^8q^{11} + 2p^{10}q^{10} + 2p^{10}q^{11}. \end{split}$$

*Proof.* Let  $\chi_{12}$  be the molecular graph of  $M_i - E$  From the figure, it is straightforward to deduce that  $|V(\chi_{12})| = 35$  and  $|E(\chi_{12})| = 38$ . Vertex set can be classified into three classes based on their degrees.  $n_3^* = 11$ ,  $n_4^* = 3$ ,  $n_5^* = 5$ ,  $n_6^* = 1$ ,  $n_7^* = 3$ ,  $n_8^* = 6$ ,  $n_9^* = 2$ ,  $n_{10}^* = 3$ ,  $n_{11}^* = 1$ . Using definition, we have,

| $\overline{m}_{ij}$ | $\overline{m}_{(35)}$ | $\overline{m}_{36}$ | $\overline{m}_{37}$ | $\overline{m}_{38}$ | $\overline{m}_{48}$ | $\overline{m}_{4(10)}$ | $\overline{m}_{4(11)}$ | $\overline{m}_{55}$ | $\overline{m}_{56}$ | $\overline{m}_{58}$ | $\overline{m}_{59}$ |
|---------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|------------------------|------------------------|---------------------|---------------------|---------------------|---------------------|
| frequency           | 49                    | 10                  | 31                  | 64                  | 17                  | 8                      | 2                      | 9                   | 4                   | 28                  | 9                   |

| $\overline{m}_{ij}$ | $\overline{m}_{5(10)})$ | $\overline{m}_{69}$ | $\overline{m}_{78}$ | $\overline{m}_{79}$ | $\overline{m}_{7(10)}$ | $\overline{m}_{88}$ | $\overline{m}_{89}$ | $\overline{m}_{8(10)}$ | $\overline{m}_{8(11)}$ | $\overline{m}_{10(10)}$ | $\overline{m}_{10(11)}$ |
|---------------------|-------------------------|---------------------|---------------------|---------------------|------------------------|---------------------|---------------------|------------------------|------------------------|-------------------------|-------------------------|
| frequency           | 14                      | 1                   | 16                  | 4                   | 7                      | 13                  | 10                  | 15                     | 4                      | 2                       | 2                       |

By definition of NMTCM polynomial,

$$Let, NM(\chi_{12}, p, q) = \sum_{i \le j} \overline{nm}_{ij}(G) p^i q^j$$
  
=  $\sum_{3 \le 5} \overline{nm}_{35}(\chi_{12}) p^3 q^5 + \sum_{3 \le 6} \overline{nm}_{36}(\chi_{12}) p^3 q^6 + \sum_{3 \le 7} \overline{nm}_{36}(\chi_{12}) p^3 q^7$ 

$$\begin{split} &+ \sum_{3 \le 8} \overline{nm}_{38}(\chi_{12}) p^3 q^8 + \sum_{4 \le 8} \overline{nm}_{48}(\chi_{12}) p^4 q^8 + \sum_{4 \le 10} \overline{nm}_{4(10)}(\chi_{12}) p^4 q^{10} \\ &+ \sum_{4 \le 11} \overline{nm}_{4(11)}(\chi_{12}) p^4 q^{11} + \sum_{5 \le 5} \overline{nm}_{55}(G) p^5 q^5 + \sum_{5 \le 6} \overline{nm}_{56}(\chi_{12}) p^5 q^6 \\ &+ \sum_{5 \le 8} \overline{nm}_{58}(\chi_{12}) p^5 q^8 + \sum_{5 \le 9} \overline{nm}_{59}(\chi_{12}) p^5 q^9 + \sum_{5 \le 10} \overline{nm}_{5(10)}(\chi_{12}) p^5 q^{10} \\ &+ \sum_{6 \le 9} \overline{nm}_{69}(\chi_{12}) p^6 q^9 + \sum_{7 \le 8} \overline{nm}_{78}(\chi_{12}) p^7 q^8 + \sum_{5 \le 10} \overline{nm}_{79}(\chi_{12}) p^7 q^9 \\ &+ \sum_{6 \le 9} \overline{nm}_{7(10)}(\chi_{12}) p^7 q^{10} + \sum_{8 \le 8} \overline{nm}_{88}(\chi_{12}) p^8 q^8 + \sum_{8 \le 9} \overline{nm}_{89}(\chi_{12}) p^8 q^9 \\ &+ \sum_{8 \le 10} \overline{nm}_{7(10)}(\chi_{12}) p^8 q^{10} + \sum_{8 \le 11} \overline{nm}_{8(11)}(\chi_{12}) p^8 q^{11} \\ &+ \sum_{10 \le 10} \overline{nm}_{10(10)}(\chi_{12}) p^{10} q^{10} + \sum_{8 \le 11} \overline{nm}_{10(11)}(\chi_{12}) p^{10} q^{11} \\ &= |E_{(3,5)}| p^3 q^5 + |E_{(3,6)}| p^3 q^6 + |E_{(5,7)}| p^3 q^7 + |E_{(3,8)}| p^4 q^8 \\ &+ |E_{(4,10)}| p^4 q^{11} + |E_{(5,5)}| p^5 q^6 + |E_{(5,8)}| p^5 q^8 + |E_{(5,9)}| p^5 q^9 \\ &+ |E_{(5,10)}| p^5 q^{10} + |E_{(6,9)}| p^6 q^9 + |E_{(7,8)}| p^7 q^8 \\ &+ |E_{(7,9)}| p^7 q^9 + |E_{(7,10)}| p^7 q^{10} + |E_{(8,8)}| p^8 q^9 \\ &+ |E_{(8,10)}| p^8 q^{10} + |E_{(8,11)}| p^8 q^{11} + |E_{(10,10)}| p^{10} q^{10} + |E_{(10,11)}| p^{10} q^{11} \\ &= 49p^3 q^5 + 10p^3 q^6 + 31p^3 q^7 + 64p^3 q^8 + 17p^4 q^8 + 8p^4 q^{10} \\ &+ 2p^4 q^{11} + 9p^5 q^5 + 4p^5 q^6 + 28p^5 q^8 + 9p^5 q^9 + 14p^5 q^{10} + p^6 q^9 \\ &+ 16p^7 q^8 + 4p^7 q^9 + 7p^7 q^{10} + 13p^8 q^8 + 10p^8 q^9 + 15p^8 q^{10} \\ &+ 4p^8 q^{11} + 2p^{10} q^{10} + 2p^{10} q^{11}. \end{split}$$

Hence, we get the required NMTCM-polynomial equation of  $M_i - E$ .

Now, using this *NMTCM*-polynomial equation of  $M_i - E$ , we have,

**Corollary 25.** Let  $\chi_{12}$  be a molecular graphs of  $M_i - E$  then topological co-indices for  $\chi_{12}$  are given by

1. 
$$\overline{NM}_1(\chi_{12}) = 3920.$$
  
2.  $\overline{NM}_2(\chi_{12}) = 11840.$   
3.  $\overline{NmM}_2(\chi_{12}) = 11.439.$   
4.  $\overline{NI}(\chi_{12}) = 893.67.$   
5.  $\overline{NRZ}_3(\chi_{12}) = 166606.$   
6.  $\overline{NSDD}(\chi_{12}) = 783.74.$   
7.  $\overline{NAZ}(\chi_{12}) = 14570.$   
8.  $\overline{NF}(\chi_{12}) = 28872.$   
9.  $\overline{NH}(\chi_{12}) = 55.34.$ 

**Theorem 26.** The NMTCM-polynomial for  $P_f - A$  given by

$$NMTCM(P_f - A; p, q) = 22p^3q^6 + 8p^3q^7 + 9p^6q^7 + 7p^6q^8 + 7p^6q^6 + 3p^7q^8.$$

*Proof.* Let  $\chi_{13}$  be the molecular graph of  $P_f - A$  From the figure, it is straightforward to deduce that  $|V(\chi_{13})| = 17$  and  $|E(\chi_{13})| = 18$ . Vertex set can be classified into three classes based on their degrees.  $n_2^* = 1, n_3^* = 5, n_4^* = 1, n_5^* = 1, n_6^* = 5, n_7^* = 2r$ . Using definition, we have,

| $\overline{nm}_{ij}$ | $\overline{nm}_{24}$ | $\overline{nm}_{36}$ | $\overline{nm}_{37}$ | $\overline{nm}_{45}$ | $\overline{nm}_{57}$ | $\overline{nm}_{67}$ | $\overline{nm}_{68}$ | $\overline{nm}_{66}$ | $\overline{nm}_{78}$ | $\overline{nm}_{88}$ |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| frequency            | 0                    | 22                   | 8                    | 0                    | 0                    | 9                    | 7                    | 7                    | 3                    | 0                    |

$$\begin{aligned} Let, NM(\chi_{13}, p, q) &= \sum_{i \leq j} \overline{nm}_{ij}(G)p^i q^j \\ &= \sum_{2 \leq 4} \overline{nm}_{24}(\chi_{13})p^2 q^4 + \sum_{3 \leq 6} \overline{nm}_{36}\chi_{13}p^3 q^6 + \sum_{3 \leq 7} m_{37}(\chi_{13})p^3 q^7 \\ &+ \sum_{4 \leq 5} \overline{nm}_{45}\chi_{13}p^4 q^5 + \sum_{5 \leq 7} \overline{nm}_{57}\chi_{13}p^5 q^7 + \sum_{6 \leq 7} m_{67}(\chi_{13})p^6 q^7 \\ &+ \sum_{6 \leq 8} \overline{nm}_{68}\chi_{13}p^6 q^8 + \sum_{6 \leq 6} \overline{nm}_{66}\chi_{13}p^6 q^6 + \sum_{7 \leq 8} m_{78}(\chi_{13})p^7 q^8 \\ &+ \sum_{8 \leq 8} \overline{nm}_{88}\chi_{13}p^8 q^8. \end{aligned}$$

$$= |E_{(2,4)}| p^2 q^4 + |E_{(3,6)}| p^3 q^6 + |E_{(3,7)}| p^3 q^7 + |E_{(4,5)}| p^4 q^5 \\ &+ |E_{(5,7)}| p^5 q^7 + |E_{(3,6)}| p^3 q^6 + |E_{(6,7)}| p^6 q^7 + |E_{(6,8)}| p^6 q^8 \\ &+ |E_{(6,6)}| p^6 q^6 + |E_{(7,8)}| p^7 q^8 + |E_{(8,8)}| p^8 q^8 \\ &= 22p^3 q^6 + 8p^3 q^7 + 9p^6 q^7 + 7p^6 q^8 + 7p^6 q^6 + 3p^7 q^8. \end{aligned}$$

Hence, we get the required NMTCM-polynomial equation of  $P_f - A$ .

Now, using this *NMTCM*-polynomial equation of  $P_f - A$ , we have,

**Corollary 27.** Let  $\chi_{13}$  be a molecular graphs of  $P_f - A$  then topological co-indices for  $\chi_{13}$  are given by

1. 
$$\overline{NM}_1(\chi_{13}) = 622.$$
  
2.  $\overline{NM}_2(\chi_{13}) = 1698.$   
3.  $\overline{NmM}_2(\chi_{13}) = 2.193.$   
4.  $\overline{NI}(\chi_{13}) = 146.07$   
5.  $\overline{NRZ}_3(\chi_{13}) = 20406.$   
6.  $\overline{NSDD}(\chi_{13}) = 129.93.$   
7.  $\overline{NAZ}(\chi_{13}) = 2029.11.$   
8.  $\overline{NF}(\chi_{13}) = 3762.$   
9.  $\overline{NH}(\chi_{13}) = 10.42.$ 

**Theorem 28.** The NMTCM-polynomial for  $P_p - N$  given by

$$\begin{split} NMTCM(P_p-N;p,q) &= 15p^5q^8 + 16p^6q^7 + 18p^6q^8 + 9p^6q^9 + 12p^7q^8 + 7p^7q^9 \\ &+ 5p^8q^8 + 6p^8q^9 + 15p^2q^4 + 9p^3q^6 + 7p^3q^7 + 14p^4q^4 \\ &+ 20p^4q^5 + 28p^4q^6 + 22p^4q^7 + 23p^4q^8 + 5p^5q^5 + 19p^5q^6. \end{split}$$

*Proof.* Let  $\chi_{14}$  be the molecular graph of  $P_p - N$  From the figure, it is straightforward to deduce that  $|V(\chi_{14})| = 30$  and  $|E(\chi_{14})| = 34$ . Vertex set can be classified into eight classes based on their degrees.  $n_2^* = 3, n_3^* = 2, n_4^* = 6, n_5^* = 4, n_6^* = 5, n_7^* = 4, n_8^* = 4, n_9^* = 2$ . Using definition, we have,

| $\overline{nm}_{ij}$ | $\overline{nm}_{(58)}$ | $\overline{nm}_{67}$ | $\overline{nm}_{68}$ | $\overline{nm}_{69}$ | $\overline{nm}_{78}$ | $\overline{nm}_{(79)}$ | $\overline{nm}_{88}$ | $\overline{nm}_{89}$ | <u>nm</u> 99 | $\overline{nm}_{24}$ |
|----------------------|------------------------|----------------------|----------------------|----------------------|----------------------|------------------------|----------------------|----------------------|--------------|----------------------|
| frequency            | 15                     | 16                   | 18                   | 9                    | 12                   | 7                      | 5                    | 6                    | 0            | 15                   |

| $\overline{nm}_{ij}$ | $\overline{nm}_{36}$ | $\overline{nm}_{37}$ | $\overline{nm}_{44}$ | $\overline{nm}_{45}$ | $\overline{nm}_{(46)}$ | $\overline{nm}_{47}$ | $\overline{nm}_{48}$ | $\overline{nm}_{55}$ | $\overline{nm}_{56}$ |
|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------|----------------------|----------------------|----------------------|----------------------|
| frequency            | 9                    | 7                    | 14                   | 20                   | 28                     | 22                   | 23                   | 5                    | 19                   |

$$\begin{split} Let, NM(\chi_{14}, p, q) &= \sum_{i \leq j} \overline{nm}_{ij}(G) p^i q^j \\ &= \sum_{5 \leq 8} \overline{nm}_{58}(\chi_{14}) p^5 q^8 + \sum_{6 \leq 7} \overline{nm}_{67}\chi_{14} p^6 q^7 + \sum_{6 \leq 8} m_{68}(\chi_{14}) p^6 q^8 \\ &+ \sum_{6 \leq 9} \overline{nm}_{69}(\chi_{14}) p^6 q^9 + \sum_{7 \leq 8} \overline{nm}_{78}\chi_{12} p^7 q^8 + \sum_{7 \leq 9} \overline{nm}_{79}(\chi_{14}) p^7 q^9. \\ &+ \sum_{8 \leq 8} \overline{nm}_{88}(\chi_{14}) p^8 q^8 + \sum_{8 \leq 9} \overline{nm}_{89}\chi_{12} p^8 q^9 + \sum_{9 \leq 9} \overline{nm}_{99}(\chi_{14}) p^9 q^9. \\ &+ \sum_{2 \leq 4} \overline{nm}_{24}(\chi_{14}) p^2 q^4 + \sum_{8 \leq 9} \overline{nm}_{36}\chi_{12} p^3 q^6 + \sum_{3 \leq 7} \overline{nm}_{37}(\chi_{14}) p^3 q^7. \\ &+ \sum_{4 \leq 4} \overline{nm}_{44}(\chi_{14}) p^4 q^4 + \sum_{4 \leq 5} \overline{nm}_{45}\chi_{12} p^4 q^5 + \sum_{4 \leq 6} \overline{nm}_{46}(\chi_{14}) p^4 q^6. \\ &+ \sum_{4 \leq 7} \overline{nm}_{47}(\chi_{14}) p^4 q^7 + \sum_{4 \leq 8} \overline{nm}_{48}\chi_{12} p^4 q^8 + \sum_{5 \leq 5} \overline{nm}_{55}(\chi_{14}) p^5 q^5. \\ &+ \sum_{5 \leq 6} \overline{nm}_{56}(\chi_{14}) p^5 q^6 \\ &= |E_{(5,8)}| p^5 q^8 + |E_{(6,7)}| p^6 q^7 + |E_{(6,8)}| p^6 q^8 + |E_{(6,9)}| p^6 q^9 \\ &+ |E_{(2,4)}| p^2 q^4 + |E_{(3,6)}| p^3 q^6 + |E_{(3,7)}| p^3 q^7 + |E_{(4,4)}| p^4 q^4 \\ &+ |E_{(2,4)}| p^2 q^4 + |E_{(5,6)}| p^5 q^6 \\ &= 15 p^5 q^8 + 16 p^6 q^7 + 18 p^6 q^8 + 9 p^6 q^9 + 12 p^7 q^8 + 7 p^7 q^9 \\ &+ 5 p^8 q^8 + 6 p^8 q^9 + 15 p^2 q^4 + 9 p^3 q^6 + 7 p^3 q^7 + 14 p^4 q^4 \\ &+ 20 p^4 q^5 + 28 p^4 q^6 + 22 p^4 q^7 + 23 p^4 q^8 + 5 p^5 q^5 + 19 p^5 q^6. \end{split}$$

Hence, we get the required NMTCM-polynomial equation of  $P_p - N$ .

Now, using this *NMTCM*-polynomial equation of  $P_p - N$ , we have,

**Corollary 29.** Let  $\chi_{14}$  be a molecular graphs of  $P_p - N$  then topological co-indices for  $\chi_{14}$  are given by

- 1.  $\overline{NM}_1(\chi_{14}) = 2846.$ 2.  $\overline{NM}_2(\chi_{14}) = 8259.$ 3.  $\overline{NmM}_2(\chi_{14}) = 9.839.$ 4.  $\overline{NI}(\chi_{14}) = 683.7$ 5.  $\overline{NRZ}_3(\chi_{14}) = 104410.$ 6.  $\overline{NSDD}(\chi_{14}) = 549.65.$ 7.  $\overline{NAZ}(\chi_{14}) = 10281.8.$ 8.  $\overline{NF}(\chi_{14}) = 17838.$
- 9.  $\overline{NH}(\chi_{14}) = 46.55.$

# **Theorem 30.** The NMTCM-polynomial for $P_t - B$ given by

$$\begin{split} NMTCM(P_t-B;p,q) &= 5p^2q^4 + 11p^3q^4 + 13p^4q^4 + 20p^4q^5 + 29p^4q^6 + 10p^4q^7 \\ &+ 9p^3q^6 + 18p^5q^6 + 7p^5q^7 + 9p^6q^6 + 8p^6q^7 + 11p^6q^8 \\ &+ 11p^5q^8 + 2p^8q^8 + p^8q^9 + p^7q^9. \end{split}$$

*Proof.* Let  $\chi_{15}$  be the molecular graph of  $P_t - B$  From the figure, it is straightforward to deduce that  $|V(\chi_{15})| = 24$  and  $|E(\chi_{15})| = 27$ . Vertex set can be classified into eight classes based on their degrees.  $n_2^* = 1$ ,  $n_3^* = 2$ ,  $n_4^* = 6$ ,  $n_5^* = 4$ ,  $n_6^* = 5$ ,  $n_7^* = 2$ ,  $n_8^* = 3$ ,  $n_9^* = 1$ . Using definition, we have,

| $\overline{nm}_{ij}$ | $\overline{nm}_{(24)}$ | $\overline{nm}_{34}$ | $\overline{nm}_{44}$ | $\overline{nm}_{45}$ | $\overline{nm}_{(46)}$ | $\overline{nm}_{47}$ | $\overline{nm}_{36}$ |
|----------------------|------------------------|----------------------|----------------------|----------------------|------------------------|----------------------|----------------------|
| frequency            | 5                      | 11                   | 13                   | 20                   | 29                     | 10                   | 9                    |
|                      |                        |                      |                      |                      |                        |                      |                      |

| $\overline{nm}_{ij}$ | $\overline{nm}_{56}$ | $\overline{nm}_{57}$ | $\overline{nm}_{66}$ | $\overline{nm}_{67}$ | $\overline{nm}_{(68)}$ | $\overline{nm}_{58}$ | $\overline{nm}_{88}$ | $\overline{nm}_{89}$ | <u>nm</u> 79 |
|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------|----------------------|----------------------|----------------------|--------------|
| frequency            | 18                   | 7                    | 9                    | 8                    | 11                     | 11                   | 2                    | 1                    | 1            |

By definition of NMTCM polynomial,

$$\begin{aligned} Let, NM(\chi_{15}, p, q) &= \sum_{i \leq j} \overline{nm}_{ij}(G) p^i q^j \\ &= \sum_{2 \leq 4} \overline{nm}_{24}(\chi_{15}) p^2 q^4 + \sum_{3 \leq 4} \overline{nm}_{34}\chi_{15} p^3 q^4 + \sum_{4 \leq 4} \overline{nm}_{44}(\chi_{15}) p^4 q^4 \\ &+ \sum_{4 \leq 5} \overline{nm}_{45}(\chi_{15}) p^4 q^5 + \sum_{4 \leq 6} \overline{nm}_{46}\chi_{15} p^4 q^6 + \sum_{4 \leq 7} \overline{nm}_{47}\chi_{15} p^4 q^7 \\ &+ \sum_{3 \leq 6} \overline{nm}_{36}(\chi_{15}) p^3 q^6 + \sum_{5 \leq 6} \overline{nm}_{56}\chi_{15} p^5 q^6 + \sum_{5 \leq 7} \overline{nm}_{57}\chi_{15} p^5 q^7 \\ &+ \sum_{6 \leq 6} \overline{nm}_{66}(\chi_{15}) p^6 q^6 + \sum_{6 \leq 7} \overline{nm}_{67}\chi_{15} p^6 q^7 + \sum_{6 \leq 8} \overline{nm}_{88}\chi_{15} p^6 q^8 \\ &+ \sum_{5 \leq 8} \overline{nm}_{58}(\chi_{15}) p^5 q^8 + \sum_{8 \leq 8} \overline{nm}_{88}\chi_{15} p^8 q^8 + \sum_{8 \leq 9} \overline{nm}_{89}\chi_{15} p^8 q^9 . \\ &+ \sum_{7 \leq 9} m_{79}(\chi_{15}) p^7 q^9 \\ &= |E_{(2,4)}| p^2 q^4 + |E_{(3,4)}| p^3 q^4 + |E_{(4,4)}| p^4 q^4 + |E_{(4,5)}| p^4 q^5 \\ &+ |E_{(4,6)}| p^4 q^6 + |E_{(4,7)}| p^6 q^7 + |E_{(5,6)}| p^5 q^6 \\ &+ |E_{(5,7)}| p^5 q^7 + |E_{(6,6)}| p^6 q^6 + |E_{(6,7)}| p^6 q^7 + |E_{(5,8)}| p^6 q^8 \\ &+ |E_{(5,8)}| p^5 q^8 + |E_{(8,8)}| p^8 q^8 + |E_{(8,9)}| p^8 q^9 + |E_{(7,9)}| p^7 q^9 \\ &= 5p^2 q^4 + 11p^3 q^4 + 13p^4 q^4 + 20p^4 q^5 + 29p^4 q^6 + 10p^4 q^7 + 9p^3 q^6 \\ &+ 18p^5 q^6 + 7p^5 q^7 + 9p^6 q^6 + 8p^6 q^7 + 11p^6 q^8 + 11p^5 q^8 + 2p^8 q^8 + 1p^8 q^9 + p^7 q^9. \end{aligned}$$

Hence, we get the required NMTCM-polynomial equation of  $P_t - B$ .

Now, using this *NMTCM*-polynomial equation of  $P_t - B$ , we have,

**Corollary 31.** Let  $\chi_{15}$  be a molecular graphs of  $P_t - B$  then topological co-indices for  $\chi_{15}$  are given by

1.  $\overline{NM}_1(\chi_{15}) = 1728.$ 2.  $\overline{NM}_2(\chi_{15}) = 4594.$ 3.  $\overline{NmM}_2(\chi_{15}) = 7.191.$ 4.  $\overline{NI}(\chi_{15}) = 429.6.$ 5.  $\overline{NRZ}_3(\chi_{15}) = 52454.$ 6.  $\overline{NSDD}(\chi_{15}) = 351.97.$ 7.  $\overline{NAZ}(\chi_{15}) = 5586.15.$ 8.  $\overline{NF}(\chi_{15}) = 9728.$ 9.  $\overline{NH}(\chi_{15}) = 33.005.$ 

**Theorem 32.** The TCONM-polynomial for  $R_f - N$  given by

$$\begin{split} NMTCM(R_f-N;p,q) &= 14p^3q^4 + 44p^3q^5 + 14p^3q^6 + 8p^4q^4 + 69p^4q^5 + 99p^5q^5 + 68p^5q^6 + 41p^5q^7 \\ &\quad + 12p^6q^7 + 9p^6q^8 + 4p^6q^9 + 4p^7q^8. \end{split}$$

*Proof.* Let  $\chi_{16}$  be the molecular graph of  $R_f - N$  From the figure, it is straightforward to deduce that  $|V(\chi_{16})| = 34$  and  $|E(\chi_{16})| = 38$ . Vertex set can be classified into seven classes based on their degrees.  $n_3^* = 3$ ,  $n_4^* = 5$ ,  $n_5^* = 15$ ,  $n_6^* = 5$ ,  $n_7^* = 3$ ,  $n_8^* = 2$ ,  $n_9^* = 1$ . Using definition, we have,

| $\overline{nm}_{ij}$ | $\overline{nm}_{(34)}$ | $\overline{nm}_{35}$ | $\overline{nm}_{36}$ | $\overline{nm}_{44}$ | $\overline{nm}_{(45)}$ | $\overline{nm}_{55}$ | $\overline{nm}_{56}$ |
|----------------------|------------------------|----------------------|----------------------|----------------------|------------------------|----------------------|----------------------|
| frequency            | 14                     | 44                   | 14                   | 8                    | 69                     | 99                   | 68                   |
| $\overline{nm}_{ii}$ | <u>nm</u> 57           | <u>nm</u> 58         | $\overline{nm}_{67}$ | $\overline{nm}_{68}$ | $\overline{nm}_{(69)}$ | $\overline{nm}_{78}$ | $\overline{nm}_{89}$ |
| frequency            | 41                     | 29                   | 12                   | 9                    | 4                      | 4                    | 4                    |

By definition of TCONM polynomial,

$$\begin{aligned} Let, NM(\chi_{16}, p, q) &= \sum_{i \leq j} \overline{nm}_{ij}(G)p^i q^j \\ &= \sum_{3 \leq 4} \overline{nm}_{34} \chi_{16} p^3 q^4 + \sum_{3 \leq 5} \overline{nm}_{35}(\chi_{16}) p^3 q^5 + \sum_{3 \leq 6} m_{36}(\chi_{16}) p^3 q^6 \\ &+ \sum_{4 \leq 4} \overline{nm}_{44} \chi_{16} p^4 q^4 + \sum_{4 \leq 5} \overline{nm}_{45}(\chi_{16}) p^4 q^5 + \sum_{5 \leq 5} m_{55}(\chi_{16}) p^5 q^5 \\ &+ \sum_{5 \leq 6} \overline{nm}_{56} \chi_{16} p^5 q^6 + \sum_{5 \leq 7} \overline{nm}_{57}(\chi_{16}) p^5 q^7 + \sum_{5 \leq 8} \overline{nm}_{58}(\chi_{16}) p^5 q^8 \\ &+ \sum_{6 \leq 7} \overline{nm}_{67} \chi_{16} p^6 q^7 + \sum_{6 \leq 8} \overline{nm}_{68}(\chi_{16}) p^6 q^8 + \sum_{6 \leq 9} \overline{nm}_{69}(\chi_{16}) p^6 q^9 \\ &+ \sum_{7 \leq 8} \overline{nm}_{78}(\chi_{16}) p^7 q^8 + \sum_{8 \leq 9} \overline{nm}_{89}(\chi_{16}) p^8 q^9 \end{aligned}$$

$$\begin{split} NM(\chi_{16}, p, q) &= |E_{(3,4)}| p^3 q^4 + |E_{(3,5)}| p^3 q^5 + |E_{(3,6)}| p^3 q^6 + |E_{(4,4)}| p^4 q^4 \\ &+ |E_{(4,5)}| p^4 q^5 + |E_{(5,5)}| p^5 q^5 + |E_{(5,6)}| p^5 q^6 + |E_{(5,7)}| p^5 q^7 \\ &+ |E_{(5,8)}| p^5 q^8 + |E_{(6,7)}| p^6 q^7 + |E_{(6,8)}| p^6 q^8 + |E_{(6,9)}| p^6 q^9 \\ &+ |E_{(7,8)}| p^7 q^8 + |E_{(8,9)}| p^8 q^9 \\ &= 14 p^3 q^4 + 44 p^3 q^5 + 14 p^3 q^6 + 8 p^4 q^4 + 69 p^4 q^5 + 99 p^5 q^5 + 68 p^5 q^6 + 41 p^5 q^7 \\ &+ 12 p^6 q^7 + 9 p^6 q^8 + 4 p^6 q^9 + 4 p^7 q^8. \end{split}$$

Hence, we get the required NMTCM-polynomial equation of  $R_f - N$ .

Now, using this *NMTCM*-polynomial equation of  $R_f - N$ , we have,

**Corollary 33.** Let  $\chi_{16}$  be a molecular graphs of  $R_f - N$  then topological co-indices for  $\chi_{16}$  are given by

1.  $\overline{NM}_1(\chi_{16}) = 4720.$ 2.  $\overline{NM}_2(\chi_{16}) = 11074.$ 3.  $\overline{NmM}_2(\chi_{16}) = 17.542.$ 4.  $\overline{NI}(\chi_{16}) = 1044.53.$ 5.  $\overline{NRZ}_3(\chi_{16}) = 120858.$ 6.  $\overline{NSDD}(\chi_{16}) = 868.56.$ 7.  $\overline{NAZ}(\chi_{16}) = 13387.3.$ 8.  $\overline{NF}(\chi_{16}) = 23114.$ 9.  $\overline{NH}(\chi_{16}) = 83.076.$ 

**Theorem 34.** The NMTCM-polynomial for  $T_i - K$  given by

$$NMTCM(T_j - K; p, q) = 5p^2q^4 + 10p^3q^4 + 13p^4q^4 + 19p^4q^5 + 4p^6q^7 + 4p^7q^7 + 13p^7q^5 + 23p^7q^4.$$

*Proof.* Let  $\chi_{17}$  be the molecular graph of  $T_j - K$  From the figure, it is straightforward to deduce that  $|V(\chi_{17})| = 19$  and  $|E(\chi_{17})| = 20$ . Vertex set can be classified into six classes based on their degrees.  $n_2^* = 1, n_3^* = 2, n_4^* = 6, n_5^* = 4, n_6^* = 2, n_7^* = 4$ . Using definition, we have,

| $\overline{nm}_{ij}$ | $\overline{nm}_{24}$ | $\overline{nm}_{34}$ | $\overline{nm}_{44}$ | $\overline{nm}_{45}$ | $\overline{nm}_{67}$ | $\overline{nm}_{77}$ | $\overline{nm}_{75}$ | $\overline{nm}_{74}$ |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| frequency            | 5                    | 10                   | 13                   | 19                   | 4                    | 4                    | 13                   | 23                   |

By definition of NMTCM polynomial,

$$\begin{aligned} Let, NM(\chi_{17}, p, q) &= \sum_{i \leq j} \overline{nm}_{ij}(G) p^i q^j \\ &= \sum_{2 \leq 4} \overline{nm}_{24} \chi_{17} p^2 q^4 + \sum_{3 \leq 4} \overline{nm}_{34} \chi_{17} p^3 q^4 + \sum_{4 \leq 4} \overline{nm}^{44} (\chi_{17}) p^4 q^4 \\ &+ \sum_{4 \leq 5} \overline{nm}_{45} (\chi_{17}) p^4 q^5 + \sum_{6 \leq 7} \overline{nm}_{67} \chi_{17} p^6 q^7 + \sum_{7 \leq 7} \overline{nm}_{77} \chi_{17} p^7 q^7 \\ &+ \sum_{7 \leq 5} \overline{nm}_{75} \chi_{17} p^7 q^5 \sum_{7 \leq 4} \overline{nm}_{74} \chi_{17} p^7 q^4 \\ &= |E_{(2,4)}| p^2 q^4 + |E_{(3,4)}| p^3 q^4 + |E_{(4,4)}| p^4 q^4 + |E_{(4,5)}| p^4 q^5 \\ &+ |E_{(6,7)}| p^6 q^7 + |E_{(7,7)}| p^7 q^7 + |E_{(7,5)}| p^7 q^5 + |E_{(7,4)}| p^7 q^4 \\ &= 5 p^2 q^4 + 10 p^3 q^4 + 13 p^4 q^4 + 19 p^4 q^5 + 4 p^6 q^7 + 4 p^7 q^7 + 13 p^7 q^5 + 23 p^7 q^4 \end{aligned}$$

Hence, we get the required NMTCM-polynomial equation of  $T_j - K$ .

Now, using this *NMTCM*-polynomial equation of  $T_i - K$ , we have,

1.  $\overline{NM}_1(\chi_{17}) = 912.$ 2.  $\overline{NM}_2(\chi_{17}) = 2211.$ 3.  $\overline{NmM}_2(\chi_{17}) = 4.584.$ 4.  $\overline{NI}(\chi_{17}) = 215.39.$ 5.  $\overline{NRZ}_3(\chi_{17}) = 23636.$ 6.  $\overline{NSDD}(\chi_{17}) = 195.248.$ 7.  $\overline{NAZ}(\chi_{17}) = 2604.83.$ 8.  $\overline{NF}(\chi_{17}) = 4734.$ 9.  $\overline{NH}(\chi_{17}) = 19.513.$ 

#### CONCLUSION

Introducing the *NMTCM* polynomial, this article highlights its capability to generate closed forms for diverse degreebased topological coindices, effectively predicting physiochemical properties. The investigation seeks to advance our understanding of developing innovative medications, specifically for anticancer treatment. The computed topological coindices demonstrate considerable predictive capabilities regarding the characteristics of potential anticancer drugs. This investigation strives to pinpoint the most impactful predictive topological coindices associated with the *NMTCM* polynomial. The findings aim to offer valuable insights into the development of cutting-edge medications, specifically those tailored for anticancer therapeutic purposes.

#### ACKNOWLEDGMENTS

The author sincerely acknowledges the Department of Mathematics at Vijayanagara Sri Krishnadevaraya University in Ballari, India and PUI-PT Combinatorics and Graph at ICCGANT Universitas Jember in Indonesia for their valuable support in completing this paper. Gratitude is also extended to the anonymous referee for providing invaluable comments and constructive suggestions that significantly improved the paper's readability.

#### REFERENCES

- B. Basavanagoud, I. Gutman, and C. S. Gali, On second Zagreb index and coindex of some derived graphs, Kragujevac Journal of Science, 37, 2015, 113–121.
- B. Basavanagoud and S. Patil, Multiplicative Zagreb indices and coindices of some derived graphs, Opuscula Mathematica, 36(3), 2016, 287–299.
- I. Gutman, Geometric approach to degree based topological indices, MATCH Communications in Mathematical and in Computer Chemistry, 86(1), 2021, 11-16.
- 4. I. Gutman, B. Furtula, Z. Vukicević, and G. Popivoda, On Zagreb indices and coindices, Match, 74, 2015, 5–16.
- 5. Bommanahal Basavanagoud, Shruti Policepatil, *Topological indices of some anticancer drugs*, Ratio Mathematica, 42, 2022.
- V. R. Kulli, V. Lokesha, Sushmitha Jain, A.S. Maragadam, Certain topological indices and related polynomials for Polysaccharides, TWMS journal, 13(3), 2023, 990-997.
- M. Berhe and C. Wang, Computation of certain topological coindices of graphene sheet and C 4 C 8(S) nanotubes and nanotorus, Applied Mathematics and Nonlinear Sciences, 4(2), 2019, 455–468.
- I. Gutman, N. Trinajstic, Graph theory and molecular orbitals. Total π electron energy of alternant hydrocarbons, Chemical Physics Letters, 17(4), 1972, 535-538.
- 9. A. Milicevic, S. Nikolic, N. Trinajstic, On reformulated Zagreb indices, 8, 2004, 393-399.
- 10. K. Pattabiraman, Inverse sum indeg index of graphs, AKCE International Journal of Graphs and Combinatorics, 15(2), 2018, 155-167.
- 11. P. S. Ranjini, V. Lokesha, A. Usha, Relation between phenylene and hexagonal squeez using harmonic index, Int J Graph Theory, 1, 2013, 116–21.

## 144 A. S. Maragadam et al.

- Vukicevic, Damir, Bond Additive Modeling 2 Mathematical Properties of Max-Min Rodeg Index, Croatica Chemica Acta, 54(3), 2010, 261-273.
- 13. B. Furtula, A. Graovac, and D. Vukicević, Augmented Zagreb index, Journal of Mathematical Chemistry, 48(2), 2010, 370-380.
- 14. B. Furtula and I. Gutman, A forgotten topological index, Journal of Mathematical Chemistry, 53(4), 2015, 1184–1190.
- 15. L. Zhong, The harmonic index for graphs, Applied Mathematics Letters, 25(3), 2012, 561-566
- Dafik, V. Lokesha, A. S. Maragadam, M. Manjunath, Ika Hesti Agustin, Semi-Total point Graph of Neighbourhood Edge Corona of two Graphs, European Journal of Pure and Applied Mahematics, 16(2), 2023, 1094-1109.
- A. S. Maragadam, V. Lokesha, Sushmitha Jain, On ve-degree and ev-degree based molecular descriptors of copper oxide, European chemical bulletin, 12(4), 2023, 10704-10712.
- 18. Deutsch. E, Klavzar.S, M-Polynomial, and degree-based topological indices, Iran. J. Math. Chem., 6, 2015, 93-102.
- V. Lokesha, Sushmitha Jain and A.S.Maragadam, M-polynomials for subdivision graphs of antiviral drugs using in treatment of covid-19, International Asian congress on Contemporary Sciences-V, Azerbaijan Nakhchivan State University-İksad Publications, 2021, 1005-1018.

**Open Access** This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

