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Abstract. In this study, we delve into the versatile application of the Neighborhood M-Polynomial (NM) in predicting a wide array
of material characteristics. Our research investigates the capability of the neighborhood M-polynomial to discern neighborhood
degree sum-based topological indices when analyzing synthetic polymers. These indices serve as pivotal tools, enabling us to
accurately predict the diverse physical, chemical, and biological properties inherent in the materials under scrutiny.
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INTRODUCTION

In recent decades, there has been a significant surge in the study of graphs and their various invariants. These invariants
can take the form of matrices, polynomials, numeric values, or sequences assigned to a given graph. One noteworthy
category among these invariants is the class of topological indices, which assigns a numerical value to a graph.
The value of a topological index for a molecular structure is intricately linked to its shape, size, symmetry, bond
patterns, and the types of atoms it contains [1]. Consequently, topological indices play a vital role in quantitatively
characterizing molecular structures [2, 3, 4].

Numerous researchers have delved into different aspects and applications of topological indices, exploring their
implications in understanding the physical, chemical, and biological properties of various materials. For more de-
tailed information on recent advancements in the realm of topological indices, readers are encouraged to refer to the
references [5, 6, 7, 8].

It’s important to note that polymers, essential components of various materials, come in two primary types: syn-
thetic and natural. Synthetic polymers, such as nylon, polyethylene, polyester, Teflon, and epoxy, are engineered by
scientists and engineers and are derived from petroleum oil. On the other hand, natural polymers, like silk, wool,
DNA, cellulose, and proteins, occur naturally and can be extracted from biological sources.

In the context of topological indices, the neighborhood M-polynomial plays a pivotal role [9, 10, 11]. It proves to
be effective in recovering topological indices based on neighborhood degree sums, which, in turn, provide valuable
insights into the diverse physical, chemical, and biological characteristics of the materials under investigation [12].

Recognizing the profound importance of the neighborhood M-polynomial, this paper embarks on a journey to un-
veil the computed closed forms of NM-polynomials for both vulcanized rubber networks and poly-methyl methacry-
late networks. These NM-polynomials, in turn, serve as a valuable source for deriving various topological indices
grounded in neighborhood degree analysis. For a comprehensive understanding of our findings and in-depth informa-
tion, we invite readers to explore the references [13, 14].

VULCANIZED RUBBER NETWORK (VR})

Vulcanite, also known as vulcanized rubber, is a remarkable material created through a chemical transformation
process. This transformation involves the addition reaction of polyisoprene, which is the primary component of
natural rubber, with sulfur under the influence of steam pressure. The crucial factor in this process is the quantity of
sulfur, as it significantly influences the hardness of vulcanite by fostering the formation of cross-links between the
polyisoprene chains. These cross-links give rise to a rigid, dense, and exceptionally durable solid material.
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TABLE 1. Formulae of some neighbourhood degree-based topological indices

TI Degree based index Derivation from f(x,y)= NM(G;x,y)
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My () [15] Y [ded)] (Dx.Dy)(NM(¥:x,¥)) lx=y=1
xyeE(¥)
F(¥)116] Y [di+d]) (D2.D})(NM(¥:x,)) |i=y=1
XyeE(¥)
1
meeun ¥ L] (6.8, (VM (5x.3) |y
xyeE(w) Ly
Rk (P) [18] Z [dy.dy]¢ (DE.DY)(NM(¥3x,Y)) |x=y=1
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What sets vulcanized rubber apart is its remarkable array of physicochemical properties, far superior to those
of natural rubber. This transformation, credited to Charles Goodyear’s pioneering work in 1839, marked a pivotal
moment in the world of polymers. Vulcanite swiftly earned recognition as an ideal material for crafting denture
bases, maintaining its status for nearly three decades. Its popularity stemmed from its ability to offer an accurate and
comfortable fit, combined with an affordable cost, making it a celebrated choice in the field of dental prosthetics [23].

Structure of VR,

FIGURE 1. Hydrogen depleted molecular graph of VR};,.
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Results of VR)),

Theorem 1. Let VR, be the vulcanized rubber network then NM-
polynomial is
M((VR;,,x,y) = 20y +4xy + (2m = 2)xy® + (4n +2)x°)°
+26%y7 + 20y + (Bmn 4 2m 4 n — 2)x%y°
+2x5y7 + dnx®yS + (4m — 4)x8y? + (6mn — 6n)
6 )10 44y )’8 T (2 72))68)’8 + (2m 2) 9,,10
+(mn7m7n+ 1)x ]0 10,
Proof. In the realm of vulcanized rubber networks, denoted as VRY,, an intriguing interplay of edges and vertices
defines its intricate structure. This network boasts a total of 10mn +9m+ 6n+5 edges and 8mn + 8m + 6n + 6
vertices, shaping a complex web of connections. What adds depth to its complexity is the partitioning of edges based
on the neighboring degrees within VR;,.

Specifically, when we delve into this partitioning based on the sum of neighbors’ degrees, fascinating patterns
emerge. For instance, there are 2 edges denoted as E37), 4 edges represented by E(47), and a quantity of 2m — 2
edges designated as E(4 g). Additionally, the network exhibits 4 edges for E s 5) and 2 edges each for E s 7) and Esg).
Moving further, we encounter 3mn +2m edges for E(s ), 2 edges for E g 7), and 4n edges for E(s 3). Moreover, 4m —4
edges emerge in the context of E ), while 6mn — 6 edges define the intriguing dynamics of Eg 10). The interplay
continues with 4 edges in the category of E(7), 2n —2 edges for E(gg), 2m —2 edges for E(9 10) and a distinct count
of mn —m edges encapsulated within E¢,10)-

This detailed partitioning illuminates the complex structures and interconnections within the vulcanized rubber
network, unveiling a fascinating tapestry of interconnected elements, eagerly awaiting exploration and comprehension.

Let, NM(VR},),x,y) = Y mi;(VRy))x'y/
i<j
=|Ea7 | XY + [ Eag) | XY + | Eugy | XY+ | Eisg) |
Y+ Esq | 9+ | Esg) | X5+ | Eg) | X550+
| E) 155"+ | Eg.8) | X%+ | E(g o) | 2%+ | Eg.10) |
KOO0+ B gy [ 2758+ | Egsg) | 255+ | Eqg 10y | 230
+|E 10,10) |X10 1()
NM((VRE x,y) = 2°y" 4+ docty” 4 (2m — 2)x*y® 4 (4n 4+ 2)x°y° + 2x°y7
+2n00y8 + (3mn 4+ 2m +n — 2)x8y° + 2x5y7 4 4ma®y®
+(4m — 4)x8° + (6mn — 6n)x%y'0 + 4x"y® + (2n —2)
Y4 (2m— 25950 4 (mn— m—n + 1)1y 10.

Theorem 2. Let VR, be the vulcanized rubber network then
1.M7 (VR},) = 126m+ 54n+ 152mn + 38.

2.M; (VRY) = 432m + 96n + 568mn + 32.

3. (VRY) = 934m+ 134n+ 1232mn +78.
4MI(VRE) = (0.204)m+ (0.190)n -+ (0.193)mn + (0.245).

S.NR()) (VL) = (61.681)m -+ (27.795)n -+ (74.475)mn + (18.331),

6. ND3(VR;;) = (6292)m + (8872)n + (9056)mn + (15392).
7.NDs(VR") = (19.682)m + (10.687)n + (21.6)mn + (11.522).
8.NH(VR}) = (1.31)m+ (1.172)n+ (1.35)mn + (0.854).

9. NI(VRY) = (30.207)m + (6.209)n+ (36.5)mn + (9.924).

10. S(VR™) = (570.824)m + (94.228)n + (783.712)mn — (294.36).
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Proof.
Let, NM((VRY,x,y) = 2x>y" +4x*y" + 2m — 2)x*y® + (4n +2)
Xy +26%y + 20y + Bmn+2m+n
—2)x%y0 + 2x5y7 + 4nx®y8 + (4m — 4)x®
¥ + (6mn —6n)x%y'04x7y8 + (2n —2)x®
W+ 2m—=2)y"0 4 (mn—m—n+1)
x10y10,
LD, NM((VR™),x,y) = 6x>y" + 16x*y" +4(2m —2)x*y + 5(4n
+2)x°y% 4+ 105°y” 4 10n°y® + 6(3mn +
2m+n—2)x08y0 +12x8y7 +24nmx%y8 + 6
(4m — 4)x°y° +6(6mn — 6n)x%y'0 4+ 28x7
¥ +8(2n—2)x%¢ +9(2m —2)x°y' + 10
(mn—m—n+1)x'%!1°,
2.DyNM((VRY),x,y) = 14x3y +28x*y7 +8(2m — 2)x*y® +6(4n
+2)x°y0 +14x°y" + 16nx°y® + 6(3mn +
2m~4n—2)x%y® + 14x%7 +32nx%8 49
(4m — 4)x%y° + 10(6mn — 6n)x°y'" + 32
x"y8 4+ 8(2n —2)x8y% 4 10(2m — 2)x°y!°
+10(mn —m —n+ 1)x'%10,
3.D,D,NM((VRY),x,y) = 423y + 112x*y7 +32(2m — 2)x*y® + 30
(4n+2)x°y0 +70x°y” + 80nx°y® 4 36(3
mn+2m+n—2)x%y5 4 84x5y7 +192n
X%y 54(4m — 4)x°y° +60(6mn — 6n)x°
¥ +224x"y® + 64(2n — 8) +90(2m — 2)
Y104+ 100(mn —m —n+1)x'%y10.

4.5,NM((VR"),x,y) = %x3y7+§x4y7+ (m; 1)x4y3+ (2n3+ 1)
By 4 25y sy, Bmnt2mAn=2)
7 8 6
0+ %x6y7 + 220+ @x%g
x8y8 ¢ (2’”](; 2))C9y10 (mn — n;O— n+1)

xlO

1
y10.

2 1 (m—1) (2n+1)
. NM((VR" :737 — .47 4.8
5.SxSyNM((VR),x,y) = 727y + 22y’ 4 —==2x"y + =2

n 5¢  (3mn+2m+n—2)
TR 36

x5y6 + %xj)ﬂ +
x6y6+%x6y7+1%x6y8+ (4";;4)x6y9+
(6’"’;; 6")x6 10+%x7y8+ (2”6; 2)x8y8
+(2";(;2) n (m”—';fogn'i'l)xloqu

x9y10




Topological Aspects of Synthetic Polymers Through NM Polynomials

),%,¥) =2(3%7%)y" +4(4%7%)x*yT 4 (2m —2)(478%)
x84 (4n42)(5%6%)xyS +2(5%7%)x°yT 42
n(5%8%)x°y® 4 (3mn + 2m+n — 2)(6%6%)x5y°
+2(6%7%)x%" + 4n(6*8%)x0y® + (4m — 4)(6*
9%)x5y? + (6mn — 6n) (6%10%)x%y!0 4 4(7%8%)
X7y 4 (2n—2)(8%8%)x%y® + (2m — 2)(9%10%)
Y10 4 (mn—m —n+1)(10%10%)x'%y'0.

; 2 37, 4 45 (@m=2) 45 (4n+2)

TSESINM((VR,),x,y) = 510y + 5oy’ + 5=y + 22
2 2n Bmn+2m+n-2)

56, 2 57, 20 5¢ (GmntZm+n—2)

xy +35afy +4oafy + o

6.DfD§‘NM((VR"

m

1 4
S'DX‘SYNM((VR:L)vxvy) =Xy + =X vy +

6(6mn—6n) ¢ 1o 7 73 8(2n—2) ¢4

a0 YRt
9(2m—2 10(mn—m—n+1

+ ( o )x9y10+ ( = )xl()ylo.

6(4n+2)

5
14 1
x5y6+?x5y7+%x5y8+(3mn+2m+n72)
7 16n 9(4m —4
x6yﬁ+7xsy7+7x6y8Jr ( - )xﬁy9Jr
8,8

3
32
+ 7)c7y8 + (2n—2)x%

14
9.5..Dy,NM((VRy;,),x,y) = ?x3y7 + x4y +2(2m—2)x*y8 +

10(6mn — 6
(mg ”)xeylo

10(2m—2
( "91 )xgy'0+(mn—m—n+l)x'0y10.

10.JNM((VRY),x,y) = 2x"0 + 4o + (2m — 2)x'2 + (dn 4 2)x"! + 2x'2
+2nx3 + Bmn +2m+n—2)x'2 + 2x1% 4 4px™
+(4m —4)x"5 + (6mn — 6n)x'® + 4x'5 + (2n - 2)
x84+ (2m —2)x"° + (mn —m —n+ 1)x%.

1 4 -1 4n+2
ll.SXJNM((VR',;),x,y):gx]0+ﬁx”+(m6 Sz ”IT ) it

1 15, 2n 43 @Bma+2m+n-2) |,

+6x + 13x 2 X
2 3 2n 4, (4m—4) |5 3(mn—n)

+13x + 7x + 5 X+ 3

4 (n—2) 2(m—1)

16, 4 15 16 19
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12.JDDyNM((VRL), x,y) = 42x"0 + 112x! +32(2m — 2)x'% + 30(4n +-2)
x4 70x12 4 80nx'® + 36(3mn +2m+n — 8)
x12 4 84x13 119200 + 54(dm — 4)x'% + 60(6
mn — 6n)x'6 +224x'3 +64(2n — 2)x'® +90(2m
—2)x! +100(mn —m —n +1)x%.
13.8,JD.D,NM((VR,),x,y) = %x”’ + %x” + 8(2"137 2) 12 + 30(41" 1+ 2)

Ay qu N @xm 36(3mn+2m+n—2)

12 13 12
x4 %x” + 97ﬂx14 + Wx's +
wxlé+¥xls+wﬂﬁ+
90(2;1197 2)x19 . 100(mn ;?)1 —n+ ])xzo.

14.830_,JDIDINM((VRY), x,y) = (36.175)x% + (120.44)x° + (32.768) (2m — 2)x"°
+(37.03) (4n +2)x° + (85.75)x'" + (96.16)nx!"!
+(46.65)(3mn +2m +n — 8)x'% 4 (111.32)x!!
+256nx'% 4 (71.672) (4m — 4)x"3 4 (78.717)
(6mn —6n)x'* + (319.73)x"> + (95.53) (2n — 2)
x4+ (148.38) (2m — 2)x!7 + (171.46) (mn — m
—n+1)x!8.

15.(D2 + D2)NM((VR}),x,y) =2(32 + 72)xy" +4(4% + T)x*y + (2m —2)(4?

+82)x*yS + (4n+2)(52 + 62)°y° +2(52 +77)
Xy +2n(5% 4+ 82)°y + (3mn+2m+n —2)
(6% +6%)x%y5 +2(6% +7%)x5y7 +4n(6* + 82)x°
¥ 4 (4m — 4) (6% +9%)x%° + (6mn — 6n) (6% +
10%)x0y10 4 4(72 + 82)x7y% 4 (20— 2)(8% + 82)
1358 4+ (2m —2)(9% +10%)2°y'° + 10(mn
—m—n+1)(10> +10*)x'%1°.

By substituting these cardinalities into the definitions of topological indices, we attain the desired outcomes.

3D structure of VR,

The 3D-plot of NM-polynomials of VR, with the help of Maple software. A three-dimensional plot can depict
intricate connections among three variables. For example, it could visually demonstrate the interplay between tem-
perature, time, and cross-link density in the vulcanization process. Utilizing such a plot facilitates the optimization of
vulcanization conditions, leading to the attainment of specific material properties as desired.
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FIGURE 2. 3D plot of NM-polynomial of VR};,.

POLY-METHYL METHACRYLATE NETWORK(PMMA,)

Poly-methyl methacrylate (PMMA), a versatile synthetic resin recognized by its trade name acrylic glass, has gained
widespread popularity as an exceptional glass substitute. This versatile material finds applications in various sectors,
including the manufacturing of instrument panels, aircraft canopies, skylights, and cutting-edge medical technologies.
Interestingly, its history dates back to 1937 when Walter Wright introduced PMMA as the first-ever replacement for
vulcanite, pioneering a revolution in the field of dental prosthodontics. Since then, PMMA has evolved to become
the primary choice for fabricating denture bases and is now the most widely utilized material in the dental industry,
offering both functional and aesthetic benefits to countless patients.

Structure of PMMA,,

FIGURE 3. Hydrogen depleted molecular graph of PMMA,,.

Results of PMMA,

Theorem 3. Let PMMA, be the poly-methyl methacrylate network then NM-polynomial is
NM((PMMA,,x,y) = nx®y* +x*y° + ny” + nxy” + (n+ 1)aty!?
510 Tyl g (20— 2)x8y10
Proof. Let PMMA, be the poly-methyl methacrylate network shown in Figure with n monomers, then total number of

vertices and edges are 7n+2 and 7n + 1, respectively. Now, if we partitioning edges based on neighbors degree sum
of PMMA, we get, E(2=4) =n, E(Z.S) =1, E(3,7) =n, E(4A’7) =n, E(4,10) =n+1, E(S,IO) =1, E(7=10) =n, E(S,IO) =2n-2.
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Let, NM(PMMA,),x,y) = Y m;j(PMMA,)x'y/
i<j
=Y mou(PMMA,)x*y* + Y mos(PMMA,))x*y
2<4 2<5

+ Y mz(PMMA,)XY + Y myg(PMMA,)x*y
3<7 4<7

+ Y mao(PMMA,))XY'0 + Y msio(PMMA,)xy"
4<10 5<10

+ Y mo(PMMA,))XTy'"+ Y mg1o(PMMA,)x®y'0.
7<10 8<10

= Y mu(PMMA)x'y* + Y myn(PMMA,)x*Y
uvek 5 uwek g )

+ Y mp(PMMA,)xY’.

uveE( 3)
=[Eqna [yt | Es) [ X%+ | E;3q |2y + | Eu) |
XY | E o) | 349"+ | Es10) | ©9'4 | Eg7,10) | X"
+ | Eg10) | 255"
NM(PMMA,),x,y) = nx®y* +x2° +nx®y” +nx*y” 4+ (n+ 1)x*y!0 4 x5y10
+nx’y!0 + (2n— 2)x8y10.

Now we compute some degree-based topological indices of PMMA,, from this NM-polynomial.

Theorem 4. Let PMMA, be the poly-methyl methacrylate network then

[

. M; (PMMA,) = 94n+20.

2. Mj(PMMA,) = 327n— 60.

(98]

. F{{(PMMA,) = 736n —58.

4. MI™(PMMA,) = (0.272)n + (0.12).

wn

-NRy,(PMMA,) = (45.282)n — (1.330).

(3
6. ND3(PMMA,) = 5196n — 1500.

7. NDs(PMMA,) = (16.711)n+ (4.2).

8. NH(NM(PMMA,) = (1.086)n -+ (0.339).
9. NI(PMMA,) = (21.842)n — (1.269).

10. S(PMMA,) = (444.84)n — (148.08).
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Proof.

let, NM((PMMA,),x,y) = nx*y* +x%° + ny’ + iy’ + (n+1)
Y10 L Sy10 L Ty10 40— 2), 8310,

1.D.NM((PMMA,),x,y) = 2nx>y* + 2x2y° 4+ 3nx>y" +4nx*y’ +-4
(n+1)x*y'0 45510 4 7nx"y10 - 8(2n
_2)8y10,

2.D,NM((PMMA,),x,y) = Anx?y* + 502y + Tnxdy’ + Tnx*y’ 4+ 10
(n+Dx*y1° 10650 + 10nx"y1% 410
(2n —2)x8y10.

3.D,D,NM((PMMA,),x,y) = 8nx’y* +10x2y° + 21nx3y” + 28nxty’

+40(n+1)x*y'% 4+ 50x7y10 4+ 70nx7y'0
+80(2n —2)x8y'0.

n 1 n n
4.S,NM((PMMA,),x,y) = Zx2y4 + gxzy5 + 7x3y7 + ?x“y7 +

n+1 1 n
( )xztyloJrixsyloJr7)67)}10Jr

10 10 10
(2n—2) 5 1o
10 Xy .
5SS NM((PMMA,) x,y) = "oyt 4 L2ys 4 L3741
.SxSy n)%,y) = Xy +10xy +21xy +28xy+
(m+1) 400, 1 510, 7 710
20 X'y +50xy +70xy +
(2n=2) 5 19
80 Xy .

6.DIDINM((PMMA,),x,y) = n(8%)x*y" + (10%)x*y* +n(21%)x*y’ +
n(28%)x*y” 4 (n+1)(40%)x*y!% + (50%)

Ky 4 n(70%)x7y10 + (21 — 2)(80%)x8y10.

x2y5 +

7.8“SENM((PMMA " 24 37

FSYNMUPMMAR),%22) = Gy ™"+ (o)™ * (e
no 47, (n+1) 40 L 510

@ o) T som Y

_n g0, (21=2) g0

(70%) (809) :

+

n 2 3n 4n
8.D,SyNM((PMMA,),x,y) = §x2y4 + g)czy5 + 7x3y7 + 7x4y7 +
4(n+1 5 Tn
( )4y'0+—510 7,10 4

X7y +Exy

0 " 10
8(2n—-2) 3 19
T Xy

51
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4 5 7 7
9.5, DyNM((PMMA,), x,y) = —x2y* + 225 + 023y 4 ?"x“ﬂ +

2 2 3
1 1 1 1
0(”4+ )thyloJr?Oxsy10+g);yloJr
10(2n—2
( Z )Xxym'

1
10.SINM((PMMA,),x,y) = 2a® 4+ o7 4 Lyl nny
6 "7 10 11
(n+1) 44 1 45, n 1y
TR TR T
2n—2
(2n )XIS.

18
11.JDDyNM((PMMA,),x,y) = 8nx® 4+ 10x” 4+ 21nx'° 4 28nx!" +
40(n+ 1)x™ +50x"5 4 70nx"7 +

80(2n —2)x'8.

4 10, 21 28
12.8,JDDyNM((PMMA,), x,y) = ?"xﬁ bt 0 l—]"x“ T

7 10
20(n+1) 4, 10 45 70n 44
7 C et
40(2n—2
0(’; )x18v

13.530_2JDIDINM((PMMA,),x,y) = 8nx* + 8x° + (18.087)nx® + (30.11)n
¥+ (n+1)(37.03)x"% 4 (56.89)x"* +
(101.62)nx'3 + (n— 1)(250)x'°.
14.(D? + DI)NM((PMMA,), x,y) = 20nx"y* +29x%y° + 58nx’y” + 65nx*y’
+116(n+ 1)x*y'0 4+ 125x7y10 1 149017
y104+328(n— 1)x%y'0.

3D Plot of PMMA,,

The 3D-plot of NM-polynomials of PMMA, with the help of Maple software. In a three-dimensional context,
PMMA’s polymer chain extends into space, forming a intricate and three-dimensional framework. The inclusion
of methyl groups (—3CH3) along the primary polymer backbone significantly influences the overall spatial configu-
ration. This three-dimensional arrangement is distinguished by the rotational freedom permitted around single bonds,
resulting in a polymer that is both flexible and amorphous. The presence of methyl groups introduces potential steric
effects, exerting an impact on the spatial organization and characteristics of the polymer. The physical properties of
PMMA are intricately tied to its three-dimensional structure. Notably, the polymer exhibits transparency, rigidity, and
possesses a high glass transition temperature.

CONCLUSION

A remarkable method for computing topological indices based on neighborhood degree sums is through the utilization
of the neighborhood M-polynomial. In this study, we have delved into the topological characteristics of specific
synthetic polymers. Our approach involved initially deriving the general form of the neighborhood M-polynomial for
these structures. Subsequently, we harnessed these polynomials to recover several neighborhood degree sum-based
indices. To facilitate a clearer understanding of our findings, we have also provided graphical representations of the
results.
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FIGURE 4. 3D plot of NM-polynomial of PMMA,, .
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