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Abstract. Forecasting in the presence of intermittence is a challenging task. Several classic statistical approaches such as
ARIMA is not directly applicable to such problem due to the stationary assumption ARIMA has. Fortunately, several
methods such as Croston and ADIDA were devised to handle forecasting in the middle of intermittence. Generally, methods
in forecasting intermittent time-series can be classified into two groups. The first group used inter-demand intervals and
incorporated it in the forecasting model, and the second group used aggregation to  obtain smoother time-series data. To
the best of our knowledge, there is no model that tries to aggregate the effects of both methods. This paper tries to use fully
convolutional neural networks (FCNN) with gating mechanisms to combine the methods present in each of the two groups
while keeping the model efficient to train. Furthermore, this paper also tries to incorporate state-of-the-art model in graph
neural networks in time-series forecasting to extract spatial information between time-series and incorporate it in the
forecasting result, as research in graph neural networks for time-series forecasting is rising in popularity to address spatial
dependence. Our model outperforms existing models which are prominent in the field of intermittent demand forecasting,
and an ablation study is also done to address the effects of each part of the model. Our study shows that combining methods
already established in intermittent demand-forecasting with state-of-the-art model in graph neural networks for time-series
forecasting achieves better result in terms of metrics.
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INTRODUCTION

Demand forecasting is a crucial task, especially in businesses which rely on supply chain and management.
For example, in online retails and e-commerce, businesses need to forecast the demand of their products to meet
customers’ needs. Failure in forecasting product demands could result in the loss of revenue and customer
dissatisfaction. However, not all products are easily forecastable. Long-tail products, for example, may pose a
challenge [1]. This kind of products is harder to forecast than its short-tail counterparts because it exhibits higher
degree of intermittency in their demands or higher degree of variability in the number of products sold in each
transaction period, while still contributing a considerable amount of revenue to the business [2]. Forecasting this kind
of products is studied in a subproblem of demand forecasting, called intermittent demand forecasting.

Classical statistical models, such as ARIMA and its” family could not be used effectively in the middle of
intermittency. This is due to the fact that ARIMA models require stationary assumption in which it is not applicable
due to the number of zero values in the task of intermittent demand forecasting. Therefore, another method of solving
this problem needs to be studied. These methods have been frequently discussed in studies regarding intermittent
demand forecasting [1, 3, 4, 5, 6], therefore in this research paper several of these methods will be briefly discussed.
In 1972, Croston introduced a method to solve this problem by using exponential moving average to forecast inter-
demand periods and quantity of demand separately, which are then aggregated to produce a single point forecast.
Croston method was further studied, in which SBA found that the original Croston method was biased and introduced
a debiasing factor. This line of study of intermittent demand which uses inter-demand interval was continued by TSB
in 2011, in which inter-demand interval was replaced by demand probability. Another line of study, which did not try
to predict the inter-demand interval was introduced in 2011. This line of study aggregates the data points, make
forecast, and then disaggregates the forecast to produce a single point forecast. An improvement of this work called
IMAPA was then introduced in 2021, where instead of using only one aggregation level, IMAPA uses multiple
aggregation levels. We note that solving intermittent demand forecasting problem has been predominantly dominated
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been predominantly dominated by two kinds of models, one which uses inter-demand data and one which uses
aggregate-disaggregate mechanisms. To the best of our knowledge, there are no works before that attempted to
combine the effects of these two kinds of models. In addition to aggregating the effects of the two main modelling
techniques, we also noted that these models are autoregressive in nature, which is computationally inefficient to
forecast for longer horizons. Therefore, we experimented in using deep learning techniques to counter this problem.
The problem of aggregating can be solved by using convolutional networks and the problem of creating
inter-demand intervals can be solved by using gating mechanisms. Therefore, we use dilated causal convolutional
networks which was used first in WaveNet [7] to extract temporal features and design a fully convolutional network
for more efficient training. Our model is also designed to be nonautoregressive in nature.

In addition to using dilated causal convolutional networks, we also experimented in using graph neural
networks to forecast intermittent demand, as products might be correlated by cross selling or upselling scheme, or
more generally, product A might be demanded in higher quantity in a similar timeframe to product B. Previous
works in graph neural networks for time-series forecasting was thoroughly studied in the field of traffic forecasting,
in which models such as STGCN [8] and DCRNN [9] were first introduced in 2017. However, unlike these models
which use spatial distance as proxy to spatial correlation, we directly learn spatial correlation from temporal
patterns, in which series with similar temporal patterns will exhibit higher spatial correlations.

To summarize, the contribution of this study is threefold, (1) we attempt to combine two predominant
methods in solving intermittent demand forecasting, (2) we designed a neural network in which is nonautoregressive
for intermittent demand forecasting, and (3) we attempt to bridge the discrepancy in graph neural networks for
time-series forecasting and intermittent demand forecasting by incorporating techniques present in the graph neural
networks for time-series forecasting in intermittent demand forecasting.

The structure of this paper is as follows. The first section covers the introduction to the paper. The second
section covers some preliminaries regarding dilated causal convolutional layer and STGM [10]. The third section
covers the model architecture that we use in our paper. The fourth section covers the experiments that we do. The
fifth section covers conclusion and future works regarding intermittent demand forecasting with graph neural
networks.

METHOD

Problem Statement

R . . T
A standard multivariate time-series forecasting problem setup can be defined as follows. Define XER o

be a multivariate time-series data where T is the number of historical horizons, n the number of single time-series,
. . . . P .
and c to be the number of channels in the time-series. We want to predict YER "¢ where P is the number of

prediction horizons. We note that x}(,l) and y]@ to be the value of a time-series j at time i for historical and future

time-series. Our model can be written as a function F that minimizes a loss function L(Y, Y) is. We choose our loss

NG
©_ y. | . Because we are only dealing with historical
j

function L to be MSE loss, that is L(Y, Y) = % >y (yj
i=1j=i

time-series data with no additional exogenous variables, here ¢ = 1 and further notations will be written as if c = 1

Dilated Causal Convolutional Layer

Dilated causal convolutional layer was used to extract temporal information across temporal dimension by
using only convolutional layers. Dilated causal convolutional layer was first used to generate raw audio waveform
from previous audio waveform in a regressive manner. The term causal from dilated causal convolutional layer was

noted so that future values can only be generated using previous values, that is x]@ =f (x;i_l), x;i_z), . x@).

Therefore, dilated causal convolutional layer is suitable for time-series forecasting and is more efficient than RNN
and its derivations due to its parallelizability.
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FIGURE 1. Visualization of dilated causal convolutional layer taken from [9]

Dilated causal convolutional layer is constructed as a stack of convolutional layers connected via
residual gates and skip connections as illustrated in Figure 1. and Figure 2. Dilation controls the
receptive field of the convolutional kernels to achieve bigger receptive fields while keeping the
operations to a minimum. However, unlike WaveNet, we use the final layer’s skip output instead
of aggregating skip outputs of different layers.

fias)

FIGURE 2. An overview of the residual connections in a single layer of dilated causal convolutional layer as taken
from [9]

STGM

As mentioned previously, our GNN model relies on temporal extraction to capture similar patterns in each
time-series to construct spatial correlations. Our GNN mimics a lot of STGM architecture, in which STGM was one
of the first models which utilized temporal data to construct spatial correlations. As shown in Figure 3., in addition
to static graph learning methods [13], STGM uses transformers [14] to extract temporal patterns from the data, an
approach which was quite ubiquitous in time-series forecasting [15, 16, 17, 18], and also a similarity estimator that
estimates the cross-correlation of historical to future series. The spatio-temporal graph attention (STGA) block in
STGM creates query (Q), key (K), and value (V) pairs from X by using convolutions across the time dimension. Q
and K for each of the convolutions are then passed through an operation A = Softmax QKT to create the spatial
correlations matrix A. A is then enriched with static embeddings from the graph learning method and similarity
estimator matrix from the similarity estimator to create a final representation of spatial correlations matrix A. V is

then fed to the spatial correlations matrix A through matrix multiplication VAto produce an output for a single layer
of STGA. Multiple outputs of STGA are passed into exponential linear unit layers (ELU) and aggregated using a
linear mixer.
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FIGURE. 3. STGM architecture as taken from [12]
Model Architecture
The model consists of three main blocks in which the data will be fed to, a gated fully convolutional neural

network (FCNN) block, regression FCNN block, and an STGM block, as illustrated in Fig. 4. More details will be
explained in Section 3.1 and Section 3.2.

Reg FONN

FIGURE 4. (from left to right) Full model architecture, FCNN block, STGM block
FCNN Block

The Gated FCNN block and Reg FCNN block are two blocks that can be summarized by the FCNN block.
The FCNN block consists of a temporal downsample dilated causal convolutional layer and a temporal upsample
dilated causal convolutional layer. As seen in aggregate-disaggregate method, the temporal downsample dilated
causal convolutional layer aggregates different timestamps of the input historical and temporal upsample dilated
convolutional layer disaggregates aggregated values from the temporal downsample dilated causal convolutional
layer. The final temporal linear transforms the final disaggregated value to match the prediction horizon.
Mathematically, the operations happening in the block can be written as follows.
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Specifically for Gated FCNN, the output of the linear layer is then passed into a sigmoid activation function to
mimic approximating the probability of demand occurring and a timestep. Mathematically, the formulation can be
written as follows

t

Pxn

T out X
ER
TXnxc
o

€3] @

H"' = TempDownDConv(X), H
H? = TempUpDConvng(l)), H®er
3) ) ) 3) Pxn

HW = Llnear(H ), H

ER
aGated FCNN aGated FCNN
= Sigmoid(H™), ¥ €R
Finally, the output of both of these FCNN blocks is aggregated via the Hadamard function, which can be

mathematically written as follows.

~FCNN  aGated FCNN AReg FCNN 5 FCNN

Y =Y QY , Y ER
The output of the FCNN blocks will be aggregated with the output from STGM block.

ut

Pxn

Pxn

STGM Block

As mentioned before, mimics a lot from the original STGM architecture. Instead of using the whole model, we will
be only using STGA block to create spatial correlations A and pass A through a graph convolutional operator as
done in [13]. Mathematically, the operations can be written as follows.

Q, K,V = Att(X)

A= Softmax(QKT)

£ STGM

Y =0 + AV
Here, the spatial correlations matrix A acts as a parameterized replacement of eigenvectors of the Laplacian of a
graph and it is used to transform V to its frequency domain to be convolved in the frequency domain.

Final Linear

The final linear is used to combine output from the FCNN block and the STGM block. Mathematically, it can be

written as follows, where [...||...] denotes the concatenation operation.
A A FCNN  n STGM AFCNN oo
Y = Linear(|Y 1Y K ER

RESuLTS AND DiscussioN
Dataset

We experimented our model on 3 real world datasets.

® Car Parts

Car parts data comprises of 51 months monthly data of 2,674 timeseries. The data is available online in [31].

® RAF

RAF dataset comprises of 84 months monthly data of 5,000 aerospace parts demand. This data is taken from Royal
Air Force. The data is available online in [32].

® Auto

Auto dataset comprises of 24 months monthly data of 3,000 auto parts demand. The data is available online in [32].

The summary of the dataset can be seen at Table 1. ADI (Average Demand Interval) signifies how many nonzero
demands are present compared to the length of the time-series, lower value means that nonzero demand appears
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more frequent. C Vv (Squared Coefficient of Variation) measures the variability in demand, lower value means that
the timeseries has lower variability. The classification of smooth, intermittent, lumpy, and erratic follows SBA
classification [4, 20] of time-series. Based on the table, we can see that each dataset has considerable amounts of
series other than smooth series, which shows that the dataset is suitable for this particular problem. We will be
forecasting to 6 future horizons by using past 6 observational data.

TABLE 1. Summary of the dataset

Dataset Auto RAF Car Parts
Mean ADI 1.32 11.14 7.49
Mean CV 0.41 0.64 0.27

Smooth Pct (%) 41.37 0 0
Intermittent Pct (%) 35.8 58.1 86.57

Lumpy Pct (%) 10.23 419 13.43

Erratic Pct (%) 12.6 0 0

Result Comparison

To compare the results, we use 2 frequently used metrics in intermittent time-series forecasting, that is RMSE
and RMSSE. Below is the mathematical formulation for both RMSE and RMSSE for each of the series. Loss values
for each series are then averaged across each series.

;
RMSEG) =\[ £ ( (‘))

RG] 12
(0]
D) (y -y, )
1 v‘T+1 /

P m O ?
= 1 Y

RMSSE is a variation of the MASE that has gained popularlty in recent years. MASE is a suitable measure in
measuring model performance in intermittent demand forecasting since it measures the relative errors of each of the
time-series while also being robust to the frequent number of zero demands, since it scales the mean squared error in
the numerator by comparing it with in-sample data treated as random walk forecast, unlike MAPE which will be
undefined for data with zero demands.

From Table 2., we can see that our model (ITNGF) outperforms the other model in terms of both RMSE and
RMSSE. 1t is also notable that the models based on aggregate-disaggregate method achieves better result in general,
as opposed to models that predicts the inter-demand arrival time. However, combining the two methods using deep
learning in addition to graph neural networks improves the performance of the model.

RMSSE(j) =

TABLE 2. Model comparison across all datasets

Datasets Model RMSE RMSSE
Auto Croston 8.084991 1.555839
SBA 8.800440 1.597474

TSB 8.448380 1.522256
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Datasets Model RMSE RMSSE
ADIDA 8.264835 1.492977
IMAPA 8.249843 1.486004
ITNGF 8.095933 1.444035
RAF Croston 20.698347 1.482354
SBA 20.308754 1.445033
TSB 18.105827 1.167171
ADIDA 17.377874 1.163829
IMAPA 17.128208 1.163118
ITNGF 16.686794 1.156339
Car Parts Croston 1.519452 0.794615
SBA 1.471653 0.748317
TSB 1.106884 0.452554
ADIDA 1.105914 0.450473
IMAPA 1.083539 0.446223
ITNGF 1.045698 0.432099

Diving deeper into the RAF dataset, as shown in Table 3., we can see that our model outperforms the other
models in terms of forecasting both intermittent time-series and lumpy time-series.

TABLE 3. Model comparison in RAF disaggregated by time-series classification

Classification of TS Model RMSE RMSSE

Intermittent Croston 26.100779 1.816995
SBA 25.341681 1.711956
TSB 20.826457 1.118378
ADIDA 19.232345 0.969510
IMAPA 18.735551 0.912418
ITNGF 17.841560 0.815757

Lumpy Croston 16.374712 18.825332
SBA 16.333515 18.748421
TSB 16.145245 18.398667
ADIDA 16.091846 18.298634
IMAPA 16.025890 18.178220
ITNGF 15.913298 17.951510

Ablation Study

In this ablation study, we only use RAF dataset since it is the only dataset with only intermittent and lumpy
time-series, which are the subject of interest in this study. From Table 4., we can see that our model achieves the best
performance. However, it is worth noting that our model exhibits a significant drop in performance after removing
the STGM block from our model, while a comparable result is shown by using only the STGM block. This shows
that state-of-the-art model in time-series forecasting is also sufficient in forecasting intermittent demand since it also
extracts temporal information from the data. This is also supported by the fact that STGM achieves better
performance than directly forecasting demand values by using only Reg FCNN. However, the presence of Gated
FCNN in our model is necessary to control the effect of Reg FCNN to STGM for the aggregation to be effective.

TABLE 4. Ablation study of ITNGF model

Model RMSE RMSSE

ITNGF 16.686794 1.156339
ITNGF No STGM 16.904516 1.262679
ITNGF No Gated FCNN 16.888088 1.193248
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ITNGF No STGM & Gated FCNN 16.895565 1.235920

(Reg FCNN Only)

STGM Only 16.697180 1.159825
CONCLUSION

Forecasting in the presence of intermittency is a challenging task because of the prominent presence of zero
values and the high variability of data. However, it is also important as businesses in the retail or e-commerce
industry also experience periods of no demand, in which intermittent demand forecasting could be an integral part of
the business as an effort to reduce the cost of having too much supply of a specific product and to understand
customer behavior in the future. However, we found that the growth in the research of intermittent demand
forecasting to be lagging as opposed to its more general time-series forecasting counterpart.

In this work, we devised a model which combines methods which are commonly used in intermittent demand
forecasting along with graph neural networks which is gaining popularity in the field of time-series forecasting. Our
model outperforms prominent models in intermittent demand forecasting and also achieves the best result when
focusing only on time-series which are classified as intermittent and lumpy. Our work also is the first to make
connections to graph neural networks in time-series forecasting by using parts of a state-of-the-art model in graph
neural networks for time-series forecasting, which opens up possibilities of utilizing graph neural networks
alongside already established methods in intermittent demand forecasting to improve models in the context of
intermittent demand forecasting. We believe that our work is also the first to incorporate state-of-the-art time-series
forecasting method in intermittent demand forecasting and shows that using the state-of-the-art time-series
forecasting method is sufficient in solving intermittent demand forecasting. We also believe that segregating
time-series into different classification, as done by SBA, could provide better analysis on how models perform
differently in different contexts of series, which is a good direction for researchers to also focus on onwards.
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The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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