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Abstract. We study properties of a class of 2-connected bipartite planar cubic graphs Gdb obtained by operating on connected
plane graphs with minimum degree two. We show that Gdb is a hamiltonian graph with 2|V (G)| + 2|E(G)| − 1 different perfect
matchings, and demonstrate how Gdb can be decomposed into unions of K2’s and 2-factors. Additional results include how any
hamiltonian cycle in Gdb induces a spanning non-crossing closed trail T in a graph obtained in an intermediate step of constructing
Gdb. The different kinds of subgraphs induced by the non-crossing trail in G are also discussed. We also explore the connection
between hamiltonian cycles in Gdb and hamiltonian cycles in a set of graphs G∗

v called vertex envelopes. Specifically, we show that
certain hamiltonian cycles in Gdb can be easily transformed into hamiltonian cycle in G∗

v . We end by discussing how additional
classes of hamiltonian graphs can be obtained by operating on Gdb.
Keywords: bipartite planar cubic graphs, hamiltonian cycles.

INTRODUCTION

The graph notation and terminology used can be found in West [1]. We explore properties of cubic planar graphs
obtained by operating on connected plane graphs of minimum degree two. These derived graphs, which we denote by
Gdb, are 2-connected, cubic, bipartite, planar, and hamiltonian. We study decompositions of Gdb and show that Gdb
can be decomposed into a union of cycles and K2’s in at least three different ways. We also show that each graph Gdb
contains 2|V (G)|+2|E(G)|−1 different perfect matchings. The hamiltonicity of the graphs Gdb is easily demonstrated,
and we study the subgraphs induced by hamiltonian cycles of Gdb in G and another related graph. A connection is
made between the graph Gdb are another similarly constructed graph, G∗

v called the vertex envelope. Of particular
interest will be how some hamiltonian cycles in Gdb can be transformed into hamiltonian cycle of G∗

v .
Studying of decompositions and hamiltonian cycles is influenced in part by the Berge-Fulkerson conjecture, Gallai’s

conjecture, and Bannet’s conjecture, all of which are stated below. Among other goals, this study aims to build on
work done by other researchers, see for example [2], who studied path and acyclic path decomposition numbers, and
[3] who studied hamiltonicity in vertex envelopes.

Conjecture 1. The Berge-Fulkerson conjecture [4]: If G is a bridgeless cubic graph, then there exist 6 perfect
matchings M1, ...,M6 of G with the property that every edge of G is contained in exactly two of M1, ...,M6.

Conjecture 2. Gallai’s conjecture [5]: If G is a connected graph on n vertices, then G can be decomposed into
⌈n/2⌉ paths.

Conjecture 3. Barnette’s conjecture [6]: Every planar, cubic, bipartite, 3-connected graph is hamiltonian.

In deciding the hamiltonicity of graphs derived from a graph G, researchers often investigate characteristics of
graph G that are sufficient for the derived graph to be hamiltonian. Examples of this approach abound, for example,
showing that the vertex envelope of a cubic plane graph G is hamiltonian if G contains an edge dominating subgraph
with certain properties [3], and finding a dominating cycle in G to show the line graph of G is hamiltonian [7].

DEFINITIONS AND PRELIMINARY RESULTS

A graph G is planar if it can be drawn without crossings, and a plane graph is a planar embedding of G. Faces of a
plane graph are the maximal regions of the plane that do not contain any point used in the embedding. The boundary
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FIGURE 1. A graph G and its derived graph Gdb

of a face F in a plane graph is a closed walk around the edges of the face, and the length l(F) of the face is the number
of edges in the boundary.

Let G be a connected plane graph with minimum degree two. We form a new graph Gb by duplicating each edge
e of G followed by replacing each vertex v in the graph double edges with a face of length 2dG(v), maintaining the
adjacencies induced by adjacencies in G. We denote the new graph by Gdb and state without proof the following result
which summarizes some properties of Gbdand follow easily from the construction.

Proposition 4. Let G be a connected plane graph with minimum degree two. Then

1. For each e ∈ E(G) there is a face Fe of Gdb with l(Fe) = 4, and the two edges e′ and e′′ corresponding to e are
on the boundary of Fe.

2. For each vertex v ∈V (G), there is a face Fv of Gdb satisfying l(Fv) = 2dG(v).

3. For each face F of G, there is a face F ′ of Gdb with l(F ′) = 2l(F).

4. The cycles induced by faces of type Fe form a 2-factor of Gdb. Similarly for the faces of type Fv and type F ′.

5. Gdb is cubic and bipartite for all connected graphs G with minimum degree two.

6. Gdb is simple if G is loopless.

Proposition 5. Let G be a connected plane graph with minimum degree two. Then Gdb is a cubic bipartite planar
graph of order |V (Gdb)|= 4|E(G)) and size |E(Gdb)|= 6|E(G)).

Proof. By construction, each vertex of Gdb lies on the boundary of a face of length four, and there are |E(G)| such
faces. Therefore, the order of Gdb is 4|E(G)). Since for each edge e of G there is a face Fe of length four, and for
each vertex v of G there is an additional dG(v) edges not on the Fe faces, the number of edges of Gdb is 4|E(G))|+
∑v∈V (G) dG(v) = 4|E(G))|+2|E(G)) = 6|E(G)).

RESULT

Decompositions of Gdb

A collection H of edge-disjoint subgraphs H1,H2, ...,Hn of a graph G is a decomposition of G if every edge of G
belongs to exactly one Hi [2].

Proposition 6. Let G be a connected plane graph with minimum degree two. Then Gdb can be decomposed into a
union of cycles and K2’s.

Proof. Let Q be the collection of all cycles of Gdb induced by edges on the boundaries of faces of type Fe, Fv, or type
F ′. Then each component of Gdb −Q = K is a K2. Hence Q∪K is the required decomposition of Gdb.

Theorem 7. Gdb has 2n +2m −1 different perfect matchings, where n = |V (G)| and m = |E(G)|.
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Proof. We begin with a perfect matching M1 that uses only edges on the boundaries of faces of type Fe, for each edge
e of G. We denote the edges on the boundary of some face Fe with e1,e2,e3 and e4, and assume e1 and e3 are in M1.
We can form another perfect matching of Gdb by replacing e1 and e3 with e2 and e4. Doing this with each Fe gives
an additional

(m
1

)
perfect matchings, where m = |E(G)|. Switching out of the edges e1 and e3 can be done in two,

three, or more faces Fe including switching out the edges in all m faces of type Fe. Hence including M1 there are 1 +(m
1

)
+
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+
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= 1+(2m − 1) = 2m Next, we start with the perfect matching M1 again

and note that is it also composed only of edges on faces of type Fv, but not on faces of type F ′. We form additional
perfect matchings by switching out edges in one or more of the faces Fv. Since there are |V (G)|= n faces of type Fv,
the number of additional perfect matchings is

(n
1

)
+
(n

2

)
+
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3
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)
= ∑

n
k=1
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)
= 2n −1. Therefore, the number

of perfect matchings in Gdb has 2n +2m −1.

Hamiltonicity of Gdb

We begin this section by proving a result that gives necessary and sufficient conditions for hamiltonicity of a graph
G. Let A = {A1,A2, ...,Ak},k ≥ 1, be a finite collection of sets that are not necessarily distinct. The intersection graph
I(A) is defined as V (I(A)) = A and E(I(A)) = {AnAm|An,Am ∈ A and An ∩Am ̸= /0}

Theorem 8. Let G be a graph. H is a hamiltonian cycle of a graph G if and only if there is a set K = {C1, ...,Cn} of
cycles of G, with ∪n

i=1V (Ci) =V (G) and

1. any two distinct cycles in C have at most one edge in common.

2. I(K ) is a tree.

Furthermore, such an H consists of precisely those edges that belong to exactly one of the cycles C1, ...,Cn.

Proof. Suppose H is a hamiltonian cycle G. Then C1 = H satisfies stated properties.
Conversely, if K = {C1}, then C1 is a hamiltonian cycle of the graph G. We therefore assume |K | > 1. Then

I(S) has an end vertex c1. We number the cycles so that c1 corresponds to C1, and let K1 = K −{C1}. We break
the cycle generated by K1 at the edge it has in common with C1, attaching C1, and removing the common edge. The
cycle constructed s hamiltonian cycle of G.

Theorem 9. Let G be a plane simple connected graph with minimum degree two. Then Gdb is hamiltonian.

Proof. Let T be a spanning tree of G, and denote the set of cycles of Gdb corresponding to the vertices and edges of
T by C . Then I(C ) is a tree. Hence Gdb is hamiltonian by Theorem 8.

Let H be a hamiltonian cycle constructed from a spanning tree T . The following is true.

1. For each e ∈ E(T ), both e′ and e′′ are in H.

2. If e ∈ E(G)−E(T ), then e′ and e′′ are not in H.

3. H separates Fv if and only if dT (v) = dG(v).

4. If dT (v) = 1, then all but one edge of Fv are in H.

Theorem 10. Let T1 and T2 be two distinct spanning trees of G. Then the respective hamiltonian cycles H1 and H2 of
Gdb are distinct.

Proof. Let T1 and T2 be two distinct spanning tree of G. Then there is at least one edge e ∈ E(G) satisfying e ∈
E(T1)−E(T2). By construction of H1and H2, the edges e′ and e′′ of Gdb corresponding to e are in H1 and they are not
in H2. There H1 and H2 are distinct.

Theorem 11. Let H be a hamiltonian cycle of Gdb. Then H induces a spanning non-crossing closed trail T in Gb.

Proof. Let H be a hamiltonian cycle of Gdb. We carry out a marking procedure on the edges of H by going along H
and placing an arrow indicating the direction in which each edge is traversed. We then form the graph Gd by shrinking
each type Fv face of Gdb into a vertex. This transforms H into a non-crossing closed trail T with V (T ) = V (G) as
required.
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FIGURE 2. Gdb and G∗
v of a graph G

Let e be a bridge of a graph G. Then e′ and e′′ form an edge-cut of Gdb. Therefore, any hamiltonian cycle of Gdb
contains e′ and e′′. We also note that if v ∈ V (G) is a cut-vertex, then there are two edges, say e1 and e2, on the
boundary of Fv that form an edge-cut of Gdb. Hence for each cut vertex v of G there are two edges contained in every
hamiltonian cycle of Gdb.

A comparison of Gdb and the Vertex Envelope of a graph G

Figure 2 shows the graphs Gdb and the vertex envelope G∗
v both superimposed with a graph G shown with dashed

lines. In this section we compare the properties of the graphs Gdb and vertex envelopes G∗
v . We begin by noting that

since every edge of Gdb belongs to some cycle, Gdb is 2-connected. On the other hand, G∗
v is 3-connected according

to [3]. Below is a comparison of other properties.

1. If v ∈V (G), there is a face Fv of Gdb and G∗
v such that l(Fv) = 2dG(v).

2. If F is a face of G, then there is a corresponding face F ′ whose length is l(F ′) = 2l(F) in Gdb and l(F ′) = l(F)
G∗

v .

3. The faces of type Fv form a 2-factor in either graph.

4. Faces of type F ′ also form a 2-factor in either graph.

Figure 3 illustrates how the graph G∗
v can be obtained from Gdb by collapsing all faces of size four corresponding

to each edge e of G by merging the edges e1 and e2 into one edge f , as suggested in the figure.

Theorem 12. Suppose Gdb contains a hamiltonian cycle H such that for any e ∈ E(G), e′,e′′ ∈ E(H). Then G∗
v is

hamiltonian.

Proof. On the left side of Figure 4 are the two non-isomorphic ways that a hamiltonian cycle H that uses both edges
e′ and e′′ can run through the vertices. Since G)db can be transformed into G∗

v by merging edges e1 and e2, the
hamiltonian cycle H can therefore be transformed into a hamiltonian cycle of G∗

v as illustrated in the figure.

Theorem 13. Suppose G contains an independent set of vertices whose deletion leaves a tree. Then the vertex
envelope G∗

v is hamiltonian.

Proof. Consider the tree T obtained by deleting the independent set of vertices I from G. Then the set of cycles C
consisting of cycles Cv and Ce induced by faces Fv and Fe of Gdb corresponding to the vertices and edges of T , and
cycles C f induced be faces Ff of the edges f incident with vertices of I form a vertex cycle cover of Gdb. Each cycle
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FIGURE 3. Gdb and G∗
v of a graph G

FIGURE 4. Transforming hamiltonian cycle of Gdb to a hamiltonian cycle of G∗
v

C f is adjacent to exactly one cycle Cv in C , where v ∈ V (T ) is a neighbor of a vertex in I. Each cycle Ce is adjacent
to exactly two cycles Cx and Cy, where e = xy ∈ E(G). Each cycle Cv is adjacent to dG(v) cycles corresponding to the
edges of G incident with v. By Theorem 8, a hamiltonian cycle H of Gdb can be constructed from C . By construction,
the hamiltonian cycle H uses the edges e′ and e′′ for each edge e of G, and therefore by Theorem 12, G∗

v is hamiltonian.

Conjecture 14. Suppose Gdb contains a hamiltonian cycle H such that for any e ∈ E(G), e′,e′′ ∈ E(H). Then G
contains a set S of independent vertices such that G−S is a tree.

FIGURE 5. Gdb and G∗
v of a graph G
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FIGURE 6. Operating on vertices of Gdb

FIGURE 7. Extending the hamiltonian cycle of Gdb

Infinite classes of hamiltonian graphs obtained from Gdb

The following result help to illustrate that additionally hamiltonian graphs that are not necessarily bipartite can be
obtained by operating on the graphs Gdb.

Proposition 15. The graph obtained by operating one or more vertices of Gdb as shown in Figure 6 is hamiltonian.

Proof. Figure 7 shows the non-isomorphic ways of how a hamiltonian cycle can be extended to a hamiltonian cycle
in the graphs obtained by applying either of the operations illustrated in Figure 6.

CONCLUSION

As seen earlier the graphs Gdb contain multiple perfect matchings, specifically, 2|V (G)|+ 2|E(G)|− 1 different perfect
matchings, and can be decomposed into a union of cycles and K2’s. We also showed that every graph Gdb is hamil-
tonian, and the easiness of finding hamiltonian cycles in Gdb can be exploited to generate other infinite classes of
hamiltonian planar cubic graphs that are not necessarily bipartite, as seen in Proposition 15. In Theorem 12 it was
shown that if Gdb contains a hamiltonian cycle H such that for any e ∈ E(G), e′,e′′ ∈ E(H), then the vertex envelope
G∗

v is hamiltonian. This result is encouraging in that the hamiltonicity of other classes of graphs can be studied by
examining hamiltonicity in Gdb.
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source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
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