A Class of Hamiltonian Cubic Planar Graphs: a Brief Exploration of Their Properties

Michael T. Muzheve ${ }^{\text {a) }}$
Texas A\&M University - Kingsville
Department of Mathematics
1055 N. University Blvd.,
Kingsville TX 78363.

Abstract

We study properties of a class of 2-connected bipartite planar cubic graphs $G_{d b}$ obtained by operating on connected plane graphs with minimum degree two. We show that $G_{d b}$ is a hamiltonian graph with $2^{|V(G)|}+2^{|E(G)|}-1$ different perfect matchings, and demonstrate how $G_{d b}$ can be decomposed into unions of K_{2} 's and 2-factors. Additional results include how any hamiltonian cycle in $G_{d b}$ induces a spanning non-crossing closed trail T in a graph obtained in an intermediate step of constructing $G_{d b}$. The different kinds of subgraphs induced by the non-crossing trail in G are also discussed. We also explore the connection between hamiltonian cycles in $G_{d b}$ and hamiltonian cycles in a set of graphs G_{v}^{*} called vertex envelopes. Specifically, we show that certain hamiltonian cycles in $G_{d b}$ can be easily transformed into hamiltonian cycle in G_{v}^{*}. We end by discussing how additional classes of hamiltonian graphs can be obtained by operating on $G_{d b}$.

Keywords: bipartite planar cubic graphs, hamiltonian cycles.

INTRODUCTION

The graph notation and terminology used can be found in West [1]. We explore properties of cubic planar graphs obtained by operating on connected plane graphs of minimum degree two. These derived graphs, which we denote by $G_{d b}$, are 2-connected, cubic, bipartite, planar, and hamiltonian. We study decompositions of $G_{d b}$ and show that $G_{d b}$ can be decomposed into a union of cycles and K_{2} 's in at least three different ways. We also show that each graph $G_{d b}$ contains $2^{|V(G)|}+2^{|E(G)|}-1$ different perfect matchings. The hamiltonicity of the graphs $G_{d b}$ is easily demonstrated, and we study the subgraphs induced by hamiltonian cycles of $G_{d b}$ in G and another related graph. A connection is made between the graph $G_{d b}$ are another similarly constructed graph, G_{v}^{*} called the vertex envelope. Of particular interest will be how some hamiltonian cycles in $G_{d b}$ can be transformed into hamiltonian cycle of G_{v}^{*}.

Studying of decompositions and hamiltonian cycles is influenced in part by the Berge-Fulkerson conjecture, Gallai's conjecture, and Bannet's conjecture, all of which are stated below. Among other goals, this study aims to build on work done by other researchers, see for example [2], who studied path and acyclic path decomposition numbers, and [3] who studied hamiltonicity in vertex envelopes.
Conjecture 1. The Berge-Fulkerson conjecture [4]: If G is a bridgeless cubic graph, then there exist 6 perfect matchings M_{1}, \ldots, M_{6} of G with the property that every edge of G is contained in exactly two of M_{1}, \ldots, M_{6}.
Conjecture 2. Gallai's conjecture [5]: If G is a connected graph on n vertices, then G can be decomposed into $\lceil n / 2\rceil$ paths.

Conjecture 3. Barnette's conjecture [6]: Every planar, cubic, bipartite, 3-connected graph is hamiltonian.

In deciding the hamiltonicity of graphs derived from a graph G, researchers often investigate characteristics of graph G that are sufficient for the derived graph to be hamiltonian. Examples of this approach abound, for example, showing that the vertex envelope of a cubic plane graph G is hamiltonian if G contains an edge dominating subgraph with certain properties [3], and finding a dominating cycle in G to show the line graph of G is hamiltonian [7].

DEFINITIONS AND PRELIMINARY RESULTS

A graph G is planar if it can be drawn without crossings, and a plane graph is a planar embedding of G. Faces of a plane graph are the maximal regions of the plane that do not contain any point used in the embedding. The boundary

[^0]

FIGURE 1. A graph G and its derived graph $G_{d b}$
of a face F in a plane graph is a closed walk around the edges of the face, and the length $l(F)$ of the face is the number of edges in the boundary.
Let G be a connected plane graph with minimum degree two. We form a new graph G_{b} by duplicating each edge e of G followed by replacing each vertex v in the graph double edges with a face of length $2 d_{G}(v)$, maintaining the adjacencies induced by adjacencies in G. We denote the new graph by $G_{d b}$ and state without proof the following result which summarizes some properties of $G_{b d}$ and follow easily from the construction.

Proposition 4. Let G be a connected plane graph with minimum degree two. Then

1. For each $e \in E(G)$ there is a face F_{e} of $G_{d b}$ with $l\left(F_{e}\right)=4$, and the two edges e^{\prime} and $e^{\prime \prime}$ corresponding to e are on the boundary of F_{e}.
2. For each vertex $v \in V(G)$, there is a face F_{v} of $G_{d b}$ satisfying $l\left(F_{v}\right)=2 d_{G}(v)$.
3. For each face F of G, there is a face F^{\prime} of $G_{d b}$ with $l\left(F^{\prime}\right)=2 l(F)$.
4. The cycles induced by faces of type F_{e} form a 2 -factor of $G_{d b}$. Similarly for the faces of type F_{v} and type F^{\prime}.
5. $G_{d b}$ is cubic and bipartite for all connected graphs G with minimum degree two.
6. $G_{d b}$ is simple if G is loopless.

Proposition 5. Let G be a connected plane graph with minimum degree two. Then $G_{d b}$ is a cubic bipartite planar graph of order $\left.\left|V\left(G_{d b}\right)\right|=4 \mid E(G)\right)$ and size $\left.\left|E\left(G_{d b}\right)\right|=6 \mid E(G)\right)$.

Proof. By construction, each vertex of $G_{d b}$ lies on the boundary of a face of length four, and there are $|E(G)|$ such faces. Therefore, the order of $G_{d b}$ is $\left.4 \mid E(G)\right)$. Since for each edge e of G there is a face F_{e} of length four, and for each vertex v of G there is an additional $d_{G}(v)$ edges not on the F_{e} faces, the number of edges of $G_{d b}$ is $\left.4 \mid E(G)\right) \mid+$ $\left.\left.\left.\sum_{v \in V(G)} d_{G}(v)=4 \mid E(G)\right)|+2| E(G)\right)=6 \mid E(G)\right)$.

RESULT

Decompositions of $G_{d b}$

A collection \mathscr{H} of edge-disjoint subgraphs $H_{1}, H_{2}, \ldots, H_{n}$ of a graph G is a decomposition of G if every edge of G belongs to exactly one H_{i} [2].

Proposition 6. Let G be a connected plane graph with minimum degree two. Then $G_{d b}$ can be decomposed into a union of cycles and K_{2} 's.

Proof. Let \mathscr{Q} be the collection of all cycles of $G_{d b}$ induced by edges on the boundaries of faces of type F_{e}, F_{v}, or type F^{\prime}. Then each component of $G_{d b}-\mathscr{Q}=\mathscr{K}$ is a K_{2}. Hence $\mathscr{Q} \cup \mathscr{K}$ is the required decomposition of $G_{d b}$.

Theorem 7. $G_{d b}$ has $2^{n}+2^{m}-1$ different perfect matchings, where $n=|V(G)|$ and $m=|E(G)|$.

Proof. We begin with a perfect matching M_{1} that uses only edges on the boundaries of faces of type F_{e}, for each edge e of G. We denote the edges on the boundary of some face F_{e} with e_{1}, e_{2}, e_{3} and e_{4}, and assume e_{1} and e_{3} are in M_{1}. We can form another perfect matching of $G_{d b}$ by replacing e_{1} and e_{3} with e_{2} and e_{4}. Doing this with each F_{e} gives an additional $\binom{m}{1}$ perfect matchings, where $m=|E(G)|$. Switching out of the edges e_{1} and e_{3} can be done in two, three, or more faces F_{e} including switching out the edges in all m faces of type F_{e}. Hence including M_{1} there are $1+$ $\binom{m}{1}+\binom{m}{2}+\binom{m}{3}+\ldots+\binom{m}{m}=1+\sum_{k=1}^{m}\binom{m}{k}=1+\left(2^{m}-1\right)=2^{m}$ Next, we start with the perfect matching M_{1} again and note that is it also composed only of edges on faces of type F_{v}, but not on faces of type F^{\prime}. We form additional perfect matchings by switching out edges in one or more of the faces F_{v}. Since there are $|V(G)|=n$ faces of type F_{v}, the number of additional perfect matchings is $\binom{n}{1}+\binom{n}{2}+\binom{n}{3}+\ldots+\binom{n}{n}=\sum_{k=1}^{n}\binom{n}{n}=2^{n}-1$. Therefore, the number of perfect matchings in $G_{d b}$ has $2^{n}+2^{m}-1$.

Hamiltonicity of $G_{d b}$

We begin this section by proving a result that gives necessary and sufficient conditions for hamiltonicity of a graph G. Let $A=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}, k \geq 1$, be a finite collection of sets that are not necessarily distinct. The intersection graph $I(A)$ is defined as $V(I(A))=A$ and $E(I(A))=\left\{A_{n} A_{m} \mid A_{n}, A_{m} \in A\right.$ and $\left.A_{n} \cap A_{m} \neq \emptyset\right\}$

Theorem 8. Let G be a graph. H is a hamiltonian cycle of a graph G if and only if there is a set $\mathscr{K}=\left\{C_{1}, \ldots, C_{n}\right\}$ of cycles of G, with $\cup_{i=1}^{n} V\left(C_{i}\right)=V(G)$ and

1. any two distinct cycles in \mathscr{C} have at most one edge in common.
2. $I(\mathscr{K})$ is a tree.

Furthermore, such an H consists of precisely those edges that belong to exactly one of the cycles C_{1}, \ldots, C_{n}.
Proof. Suppose H is a hamiltonian cycle G. Then $C_{1}=H$ satisfies stated properties.
Conversely, if $\mathscr{K}=\left\{C_{1}\right\}$, then C_{1} is a hamiltonian cycle of the graph G. We therefore assume $|\mathscr{K}|>1$. Then $I(S)$ has an end vertex c_{1}. We number the cycles so that c_{1} corresponds to C_{1}, and let $\mathscr{K}_{1}=\mathscr{K}-\left\{C_{1}\right\}$. We break the cycle generated by \mathscr{K}_{1} at the edge it has in common with C_{1}, attaching C_{1}, and removing the common edge. The cycle constructed s hamiltonian cycle of G.
Theorem 9. Let G be a plane simple connected graph with minimum degree two. Then $G_{d b}$ is hamiltonian.
Proof. Let T be a spanning tree of G, and denote the set of cycles of $G_{d b}$ corresponding to the vertices and edges of T by \mathscr{C}. Then $I(\mathscr{C})$ is a tree. Hence $G_{d b}$ is hamiltonian by Theorem 8 .

Let H be a hamiltonian cycle constructed from a spanning tree T. The following is true.

1. For each $e \in E(T)$, both e^{\prime} and $e^{\prime \prime}$ are in H.
2. If $e \in E(G)-E(T)$, then e^{\prime} and $e^{\prime \prime}$ are not in H.
3. H separates F_{v} if and only if $d_{T}(v)=d_{G}(v)$.
4. If $d_{T}(v)=1$, then all but one edge of F_{v} are in H.

Theorem 10. Let T_{1} and T_{2} be two distinct spanning trees of G. Then the respective hamiltonian cycles H_{1} and H_{2} of $G_{d b}$ are distinct.
Proof. Let T_{1} and T_{2} be two distinct spanning tree of G. Then there is at least one edge $e \in E(G)$ satisfying $e \in$ $E\left(T_{1}\right)-E\left(T_{2}\right)$. By construction of H_{1} and H_{2}, the edges e^{\prime} and $e^{\prime \prime}$ of $G_{d b}$ corresponding to e are in H_{1} and they are not in H_{2}. There H_{1} and H_{2} are distinct.
Theorem 11. Let H be a hamiltonian cycle of $G_{d b}$. Then H induces a spanning non-crossing closed trail T in G_{b}.
Proof. Let H be a hamiltonian cycle of $G_{d b}$. We carry out a marking procedure on the edges of H by going along H and placing an arrow indicating the direction in which each edge is traversed. We then form the graph G_{d} by shrinking each type F_{v} face of $G_{d b}$ into a vertex. This transforms H into a non-crossing closed trail T with $V(T)=V(G)$ as required.

FIGURE 2. $G_{d b}$ and G_{v}^{*} of a graph G

Let e be a bridge of a graph G. Then e^{\prime} and $e^{\prime \prime}$ form an edge-cut of $G_{d b}$. Therefore, any hamiltonian cycle of $G_{d b}$ contains e^{\prime} and $e^{\prime \prime}$. We also note that if $v \in V(G)$ is a cut-vertex, then there are two edges, say e_{1} and e_{2}, on the boundary of F_{v} that form an edge-cut of $G_{d b}$. Hence for each cut vertex v of G there are two edges contained in every hamiltonian cycle of $G_{d b}$.

A comparison of $G_{d b}$ and the Vertex Envelope of a graph G

Figure 2 shows the graphs $G_{d b}$ and the vertex envelope G_{v}^{*} both superimposed with a graph G shown with dashed lines. In this section we compare the properties of the graphs $G_{d b}$ and vertex envelopes G_{v}^{*}. We begin by noting that since every edge of $G_{d b}$ belongs to some cycle, $G_{d b}$ is 2 -connected. On the other hand, G_{v}^{*} is 3-connected according to [3]. Below is a comparison of other properties.

1. If $v \in V(G)$, there is a face F_{v} of $G_{d b}$ and G_{v}^{*} such that $l\left(F_{v}\right)=2 d_{G}(v)$.
2. If F is a face of G, then there is a corresponding face F^{\prime} whose length is $l\left(F^{\prime}\right)=2 l(F)$ in $G_{d b}$ and $l\left(F^{\prime}\right)=l(F)$ G_{v}^{*}.
3. The faces of type F_{v} form a 2-factor in either graph.
4. Faces of type F^{\prime} also form a 2-factor in either graph.

Figure 3 illustrates how the graph G_{v}^{*} can be obtained from $G_{d b}$ by collapsing all faces of size four corresponding to each edge e of G by merging the edges e_{1} and e_{2} into one edge f, as suggested in the figure.

Theorem 12. Suppose $G_{d b}$ contains a hamiltonian cycle H such that for any $e \in E(G), e^{\prime}, e^{\prime \prime} \in E(H)$. Then G_{v}^{*} is hamiltonian.

Proof. On the left side of Figure 4 are the two non-isomorphic ways that a hamiltonian cycle H that uses both edges e^{\prime} and $e^{\prime \prime}$ can run through the vertices. Since $\left.G\right) d b$ can be transformed into G_{v}^{*} by merging edges e_{1} and e_{2}, the hamiltonian cycle H can therefore be transformed into a hamiltonian cycle of G_{v}^{*} as illustrated in the figure.

Theorem 13. Suppose G contains an independent set of vertices whose deletion leaves a tree. Then the vertex envelope G_{v}^{*} is hamiltonian.

Proof. Consider the tree T obtained by deleting the independent set of vertices I from G. Then the set of cycles \mathscr{C} consisting of cycles C_{v} and C_{e} induced by faces F_{v} and F_{e} of $G_{d b}$ corresponding to the vertices and edges of T, and cycles C_{f} induced be faces F_{f} of the edges f incident with vertices of I form a vertex cycle cover of $G_{d b}$. Each cycle

FIGURE 3. $G_{d b}$ and G_{v}^{*} of a graph G

FIGURE 4. Transforming hamiltonian cycle of $G_{d b}$ to a hamiltonian cycle of G_{v}^{*}
C_{f} is adjacent to exactly one cycle C_{v} in \mathscr{C}, where $v \in V(T)$ is a neighbor of a vertex in I. Each cycle C_{e} is adjacent to exactly two cycles C_{x} and C_{y}, where $e=x y \in E(G)$. Each cycle C_{v} is adjacent to $d_{G}(v)$ cycles corresponding to the edges of G incident with v. By Theorem 8, a hamiltonian cycle H of $G_{d b}$ can be constructed from \mathscr{C}. By construction, the hamiltonian cycle H uses the edges e^{\prime} and $e^{\prime \prime}$ for each edge e of G, and therefore by Theorem 12, G_{v}^{*} is hamiltonian.

Conjecture 14. Suppose $G_{d b}$ contains a hamiltonian cycle H such that for any $e \in E(G), e^{\prime}, e^{\prime \prime} \in E(H)$. Then G contains a set S of independent vertices such that $G-S$ is a tree.

FIGURE 5. $G_{d b}$ and G_{v}^{*} of a graph G

FIGURE 6. Operating on vertices of $G_{d b}$

FIGURE 7. Extending the hamiltonian cycle of $G_{d b}$

Infinite classes of hamiltonian graphs obtained from $G_{d b}$

The following result help to illustrate that additionally hamiltonian graphs that are not necessarily bipartite can be obtained by operating on the graphs $G_{d b}$.

Proposition 15. The graph obtained by operating one or more vertices of $G_{d b}$ as shown in Figure 6 is hamiltonian.
Proof. Figure 7 shows the non-isomorphic ways of how a hamiltonian cycle can be extended to a hamiltonian cycle in the graphs obtained by applying either of the operations illustrated in Figure 6.

CONCLUSION

As seen earlier the graphs $G_{d b}$ contain multiple perfect matchings, specifically, $2^{|V(G)|}+2^{|E(G)|}-1$ different perfect matchings, and can be decomposed into a union of cycles and K_{2} 's. We also showed that every graph $G_{d b}$ is hamiltonian, and the easiness of finding hamiltonian cycles in $G_{d b}$ can be exploited to generate other infinite classes of hamiltonian planar cubic graphs that are not necessarily bipartite, as seen in Proposition 15. In Theorem 12 it was shown that if $G_{d b}$ contains a hamiltonian cycle H such that for any $e \in E(G), e^{\prime}, e^{\prime \prime} \in E(H)$, then the vertex envelope G_{v}^{*} is hamiltonian. This result is encouraging in that the hamiltonicity of other classes of graphs can be studied by examining hamiltonicity in $G_{d b}$.

REFERENCES

1. D. West, Introduction to Graph Theory, (Prentice Hall, 2001).
2. S. Arumugam, I. Sahul Hamid, and V. M. Abraham. "Decomposition of Graphs into Paths and Cycles", in Journal of Discrete Mathematics 2013. 10.1155/2013/721051 (2013).
3. H. Fleischner, A. M. Hobbs, M. T. Muzheve, "Hamiltonicity in vertex envelopes of plane cubic graphs", in Discrete Mathematics 309(14), 4793-4809 (2009).
4. D. R. Fulkerson, "Blocking and anti-blocking pairs of polyhedra", in Math. Programming 1 168-194, (1971).
5. L. Lovasz, "On covering of graphs", in Theory of Graphs, P. Erdos and G. Katona, Eds., (Procedure Collage, Academic Press, Tihany, Hungary, 1968), pp. 231-236.
6. Conjecture attributed to D. W. Barnette, by B. Grünbaum in Unsolved Problem 5, page 343, in: Proc. of the Third Waterloo Conf. on Combinatorics (May, 1968), in: W.T. Tutte (Ed.), Recent Progress in Combinatorics, Academic Press, New York, NY, 1969.
7. F. Harary, C. St. J.A. Nash-Williams, "On Eulerian and Hamiltonian graphs and line graphs", in Canadian Mathematical Bulletin 8(6), 701-709 (1965).

Open Access This chapter is licensed under the terms of the Creative Commons AttributionNonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

[^0]: ${ }^{\text {a) }}$ Corresponding author: michael.muzheve@tamuk.edu

