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Abstract.The phase “public goods” has been with the theories of economics for 

quite a long time and there are multiple ways to analyze and interpret why these 

goods will cause the free-rider problem. This paper suggests a variant of the basic 

information cascade game by introducing an idea of mutual benefit such that for 

each player, he receives benefit partially from himself making a correct choice 

and the last person making the correct choice. It is possible to design a infor-

mation cascade game such that the final payoff for each player is both non-rival 

and non-excludable to satisfy the definition of a public good. By observing the 

results, we can prove that the free-rider problem still exists through a different 

approach. Moreover, it is possible to adjust and refine the model into such a way 

that even when the collective gain for each person is much larger than the private 

sacrifice for the person to do so, the free-rider problem still exist. In this paper, 

we Observe the key features of a public good and observe whether it is possible 

for us to obtain similar features in an information cascade game, propose a variant 

of the basic information cascade game, explore the threshold value for some im-

portant parameters, extend the model from 4 person to infinite and test whether 

it is still viable. Prove that it is possible to explain the free-rider problem in the 

context of information cascades, thus showing that the free-rider problem can be 

explained by information cascades. 
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1 Introduction

Since the influencing work of Samuleson (1954), the phase public good have been
brought into the world of economics, and been developed as one of the basic theories.
It is defined as being non-excludable such that it is not possible to exclude one from
benefiting from it and non-rival such that the consumption of public good by one
individual will not reduce the availability of others.[3] The main problem of public
goods as mentioned in M. Olson (1965) is the free rider problem, as many scholars
have proven later in multiple ways, has caused the lack of provision in public goods.
[4]After exploring the theories embedded in the fundamentals of public goods, real
life agents have designed multiple approaches to address the problem, such as taxes,
subsidies, patents etc. These approaches have been proven to be effective but costly in
occasions. Therefore, it is incentivized to try a different approach to explain the
free-rider problem and perhaps spark new ways to counter the problem.

The appearance of information cascades on the other hand is much later, since the
influential work of Bikhchandani, Hirshleifer, and Welch (1992).[1] The most basic
structure of information cascades has been established and has been a widely studied
topic in fields of game theory and computer science. Later work has been focusing on
implications in real life researches such as the paper by LR Anderson and CA
Hult(1997) which lays foundation of information cascades in laboratory. [5]Many
others simply uses it as a phenomenon in the study of herding effects such as the work
of W Galuba and K Aberer and D Chakraborty.(2010)[6] Although the model itself
have been mentioned in 1992, little advance has been made on the model itself.
However, the interesting laboratory paper mentioned above by LR Anderson and CA
Hult(1997) does conclude by mentioning cascades can be fragile and can be broken
by the introduction of public signals.[5]

Interestingly, the method of public signal has also been addressed as a common
solution to the free-rider problem in the context of public goods. Reputation for
example can be seen as a typical type of public signal. And as mentioned by
Andreoni, J., & Petrie, R. (2004) the provision of public good does increase if
contributions were made publicly compared to confidentiality. [8]With that being
said, it may also be possible to address the free-rider problem as a mutant of the
information cascade game.

This paper approach endeavors to address the past free-rider problem using
information cascade theory, despite the extensive body of research incorporating
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elements such as variable posterior beliefs and differential signal accuracy, little of
which tries to explore the implication of information cascades when mutual benefit
exists. This paper aims to provide an innovative perspective on information cascade
models by introducing the concept of mutual benefit. By this way, we explore the
implications of public goods and whether it still exhibits the free-rider problem under
this scenario.

The principal motive behind this research stems from the desire to blend the
untouched aspects of information cascade models into explaining one of the classic
theories of economics. By doing so, this paper seeks to enhance our comprehension of
public goods and perhaps offer a fresh outlook on the dynamics of crowd behavior.

There are three primary dimensions of this concept. Firstly, to investigate whether
cascades form under these conditions. Subsequently, to ascertain the critical ratio
between individual and collective benefits that triggers the cascade. Lastly, to study
how these introduced variables influence individual choices and the ultimate
outcomes and whether they are still applicable in a large group of players. In the
following section, this paper starts by illustrating the basic model, the simple mutant
of the original information cascade game.

2 The Basic Model

At the heart of this study, like all information cascade models, imagine a sequence of
'n' rational and utility-maximizing individuals, denoted as i=1 to n. Each player acts in
sequence, with each subsequent player (i=3, i=4, etc.) making their move after the
immediate predecessor (i=2, i=3, etc.).

In this setup, a new behavior exists, designated by nature, with a 50% probability
of being beneficial (denoted as A) and 50% probability of being detrimental (denoted
as R). Each player receives a private signal Xi∈ {H, L}，(1>=H>=0.5>=L>=0). The
high signal (H) implies a higher probability that the behavior is correct, while the low
signal (L) indicates a greater likelihood that the behavior is erroneous. The accuracy
of these private signals is not guaranteed, such that

P(H|A) = P(L|R) = p, (1)

and

P(L|A) = P(H|R) = (1-p). (2)
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This accuracy of signal p must be strictly larger than 0.5, this is for simplicity
since p is an information known to all, a value p smaller than 0.5 will only result in
individuals playing opposite to the signal they have received.

Upon receiving their private signal, each player decides to either accept or reject
the behavior. This choice is observable to subsequent players. Expectedly, a cascade
ensues when the players' Bayesian updated beliefs reaches a point when the private
signal of a player is not enough to change its actions.

With a keen interest to try and break the inevitable cascade, it is necessary to
introduce the collective benefits and create our unique model for our purpose. Our
strategy to incorporate mutual benefit involves introducing a parameter, α, into the
equation. Under this scenario, a player receives an α proportion of the benefit when
they make a correct choice, and the remaining (1-α) proportion when the final player
makes a correct choice. Assuming all other variables remain constant, the expected
utility for an individual can be expressed using the following equation.

(3)

For the simplicity of our computations, this paper maintains a decision rule wherein
an individual, when confronted with two equally persuasive updated beliefs, conforms
their choice with their private signal. This rule prompts our players to initially
calculate their Bayesian updated belief regarding the correct behavior. Subsequently,
they are expected to envisage the potential moves of succeeding individuals, thus
determining the most optimal response.

3 Multi-Player Models

In order to systematically analyze the problem, it is reasonable to firstly focus on a
smaller game with limited players. By optimizing the expected payoffs of each player
in the game, it is possible to establish a sequence of optimal strategies and associated
alpha values that underpin their choices.
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3.1 Player Model

The first player will adhere to their private signal. Similarly, in accordance with our
specified decision rule, the second player follows their private signal.

The complexity emerges on the third player. Suppose the first two players both
choose 'A', and the third player receives the 'R' private signal. The updated belief of
the third player can be computed as follows:

(4)

Should the third player decide to conform with the cascade, they can be confident that
the fourth player will also play 'A', regardless of their private signal. Given that the
updated belief is 'p', the payoff for the third player would be 'p', independent of alpha.

However, if the third player opts to follow their private signal, their immediate
payoff would be α(1-p), and their subsequent payoff, contingent on the final player's
action, would be (1-α)(p^2+(1-p)p). The total payoff would then amount to
α(1-p)+(1-α)p, which is considerably less than 'p' since 1-p < p. Therefore, a cascade
forms in our game with mutual benefits.

Yet, an intriguing question arises - is the formation of the cascade an inevitable
outcome as this game is extended to a scenario with a larger number of players?

3.2 Player Model

Under a similar setting as previous, arriving to the same part when two previous
players have the same result and the third obtains a conflicting one. Under classic
information cascades, it is easy to arrive at a point to compute the Bayesian updated
belief of individual three same as Equation(1).

Without loss of generosity, assume that player three has observation=aa, Xi=R.
Which allows to start deriving the utilities from two different actions:

(5)
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and

(6)

For the third individual choosing to accept the behavior, the decision for player four
and player five is simple. For player 4, it is perfectly clear that whatever it chooses
could not have affect player 5, since the previous three has the same result and it is
optimal for player 5 to follow through the cascade. It is optimal for player 4 and
player 5 following through with the cascade. Thus, the utility of player three in this
occasion is as following:

(7)

However, if it decides to play reject and follow its own private signal, the equation is
changed to:

(8)

In which the third individual would start to simulate the actions of later individuals,
and would start with the fourth individual, assuming it has observation= aar.
Similarly, computing the Bayesian updated belief then its decisions for individual 4
both occasions, X4=a and X4=r. Assuming the first occasion, it has observation = aar,
X4=A:

(9)

And observation = aar, X4=R:

(10)

Thus, the optimal choice for individual 4 if individual 4 has gotten private signal a
suggesting it to accept the behavior is comparing between:
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(11)

and

(12)

Since for all values of p>0.5, Equation (8) is larger than equation (9), individual 4 will
choose to accept the behavior if its private signal suggests it to do so.

The optimal choice for individual 4 if individual 4 has gotten private signal r is
quite simple. Since it has updated belief 1/2as Equation (7) has suggested will follow
the private signal due to our assumption and it will choose to reject the behavior.

Back to Individual three, it is obvious now, upon rejecting the behavior when
observing aa and Private signal X3=R. It choosing to reject will mean that on
probability p, individual 4 will choose to accept and the final decision at individual 5
will also be to accept. At (1-p), individual 4 will get reject as its private signal and
individual 5 will play whatever its private signal suggests. It is possible to compute
the utility of individual 3 choosing to reject given as below:

(13)

To prevent a cascade from forming, it must satisfy , thus:

(14)

With some simplification, the final equation for alpha is:

(15)

in which there is a different threshold value for alpha for different values of p.
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Fig. 1. The curve for threshold values of Equation (12), the threshold values of alpha

Figure 1 suggests that there is an threshold alpha for every p such that any alpha
larger than the threshold would lead to a result no different to the original information
cascade game. And in the entire 5-player game, for alpha greater than 0.20, the result
is still the same as the original information cascade game.

It now seems that alpha does to some extent matter, and at alphas less than the
threshold value, it is in fact able to prevent to appearance of a cascade. With the
clearly conflicting results between a 5 player game and a 4 player one, it is necessary
to proceed the research into a more generalized version, to try and observe what
would happen if there is a larger number of individuals.

3.3 The Generalized Model

To understand this issue from a generalized perspective, it is important to adopt a
different approach. Imagine if we are using the approach as before, the first person is
considering the results for both of its actions, in which in their own simulation have to
consider the results of its following players. This process is non-stopping to an extent
that the first player has to come up with all the possible results of the game. Making
the problem NP-complete. Thus it becomes exceedingly complex to use the same
method as before, since considering all possible choices of each subsequent player is
rather difficult especially computationally.

Instead, let's consider what each player is primarily focused on when deciding. It
is quite obvious how each player make decisions, they simply compare their expected
payoff from either decision. In which case, we can decompose the expected payoff for
both choices into the following components: the updated belief, denoted Prn, which is
determined by the actions of preceding players. Define qAn, the probability that the
final player chooses 'A' given that the current player chooses 'A' and 'A' is correct.
Similarly, define qRRn and qRAn which respectively denote the probabilities that the
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final player chooses 'R' given the current player chooses 'R' and 'R' is correct, and that
the final player chooses 'A' given the current player chooses 'R' and 'A' is correct.
There is a sequence of an infinite number of players, with the player of interest being
the nth in the sequence, followed by an infinite number of players after them.

Given this setup, a player's decision is a comparison between the following
expressions:

� × ��� + 1 − � ��n × ��� (16)

and

� × (1 − ���) + (1 − �)(���n × (1 − ���) + ��� ��� ) (17)

For computational simplicity, it is enough for us to only consider a case that where a
cascade is most likely to form in the sequence of players. In other words, if it is
possible to prevent even this player from joining the cascade, it is quite safe to assume
the rest won't either. In this case, as the player is on the verge of a possible cascade,
qAn equals 1 since it is certain that the final player will continue the cascade if the
current player chooses 'A'. For qRRn, the maximum it can be is 'p', signifying that
immediately after the next player receives a low signal and chooses 'R', the final
player also chooses 'R'. For qRAn, given an infinite number of players after the current
one, the highest it can reach is when the next player gets a high signal and the final
player in the infinite horizon chooses 'A'. In these circumstances, qRAn and qRRn equal
'p'. Substitute this into the former equations, the results show that there are no positive
value of alpha for 0.5<p<1 assuming that there is no cascade.

However, why is it possible to have an alpha that prevents a cascade in a 5-player
game while not in a game with infinite number of player? The detailed reasoning
might be difficult and will require some sort of calculations. But it may be helpful to
take a step back considering the original version of the public goods and free-rider
problem. Assume a reasonably small group of individuals, lets say 4 individuals, upon
contributing a total of 1 units of some good, they will each receive 1.1 units in return,
or else they will receive nothing in return. It is quite clear in this case that nothing for
all result will not be a Nash equilibrium, since we are quite sure that if individuals are
caught up in that situation, they are willing to contribute the unit to receive a larger
payoff. However if there is an arbitrarily large group of individual, assuming that the
return per person in this setting stays the same if there is a provision of public good,
and the total cost is enlarged by scale, eventually there will be a Nash equilibrium
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such that all individual chooses not to contribute is sustainable: for example a 5 player
version of the above gives 4.4/5 units while the player has to pay 1 unit to obtain it.

Therefore, rather counterintuitively, when there is an infinite number of players,
The results will be quite different to those obtain by a much smaller group of
individuals.

4 Conclusion

This paper has proven quite obviously that, it is possible to represent public goods and
the problem it encounters quite adequately using information cascade model as a
foundation while making some modifications to it. By thinking conveying
information as a contribution to the collective gain, and the loss in expected payoff in
current stage as the sacrifice, we can obtain an outcome similar to the free-rider
problem. Even if the collective gain approaches infinity(a sequence of infinite players
that will all gain from the collective gain), individuals will definitely not follow the
cascade.

This paper has also proven that under a large enough sequence of players, a
mutual benefit of close to one will not be able to alter the players into conveying
information and will eventually lead to a cascade. The results have proven that the
free rider problem of public goods still exist in this new scenario but perhaps it will be
possible for us to find new ways to address the problem. However, this paper is quite
limited to the theoretical part to try and simulate the free-rider problem. It has not
been tested in experiments thus there may be unnoticed flaws. Further researches can
be focused on experiment the theoretical method to make sure real life situations will
not occur to be off by too much. Also, it will appear to be valuable to start thinking
about the ways in which we can avoid the cascade thus not be trapped into the free
rider problem.

References

1. Bikhchandani, S., Hirshleifer, D., & Welch, I. (1992). A Theory of Fads, Fashion, Custom,

and Cultural Change as Informational Cascades. Journal of Political Economy, 100(5),

992-1026.

2. Baumol, William (1952). Welfare Economics and the Theory of the State. Cambridge,

Massachusetts: Harvard University Press.

82             H. Y. M. Cheung



3. Samuelson, P. A. (1954). The pure theory of public expenditure. The review of economics

and statistics, 36(4), 387-389.

4. Olson, Mancur (1971) [1965]. The Logic of Collective Action: Public Goods and the

Theory of Groups (Revised ed.). Harvard University Press. ISBN 0-674-53751-3.

5. Anderson, L. R., & Holt, C. A. (1997). Information cascades in the laboratory. The

American economic review, 847-862.

6. Galuba, W., Aberer, K., Chakraborty, D., Despotovic, Z., & Kellerer, W. (2010).

Outtweeting the {Twitterers—predicting} information cascades in microblogs. In 3rd

Workshop on Online Social Networks (WOSN 2010).

7. Gul, F., & Lundholm, R. (1995). Endogenous timing and the clustering of agents'

decisions. Journal of political Economy, 103(5), 1039-1066.

8. Andreoni, J., & Petrie, R. (2004). Public goods experiments without confidentiality: A

glimpse into fund-raising. Journal of Public Economics, 88(7-8), 1605-1623.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
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