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Abstract. Tomato stands out as one of the foremost horticultural crops world-

wide, including in Indonesia that profoundly influences the agricultural economy. 

Tomato leaf disease poses a critical and direct threat to quality, yield, and overall 

production of tomato crops, demanding swift attention and action. Manual detec-

tion of tomato leaf diseases not only consumes significant time, effort, and finan-

cial resources, but also demands specialized expertise and skills, hampering the 

urgency and effectiveness of disease control measures. Utilizing CNN, a robust 

AI approach known for its high precision in image classification, serves as a val-

uable tool for the automated identification of diseases in tomato leaves in large 

datasets. DenseNet is a type of CNN architecture that establishes connections 

between each layer and all subsequent layers, ensuring comprehensive connec-

tivity throughout the network. This approach effectively minimizes the distance 

of gradient flow during backpropagation, addressing and alleviating issues re-

lated to vanishing gradients. Notably, hyperparameter optimization shows signif-

icant potential for improving the performance of CNN.  In this work, we propose 

an innovative algorithm driven by Particle Swarm Optimization (PSO) to swiftly 

and efficiently converge on optimal hyperparameter configurations, including 

number neuron in fully connected layer, dropout rate, learning rate, activation 

function and optimizer for DenseNet architecture. Through this optimization, we 

aim to boost the classification accuracy of the DenseNet architecture in distin-

guishing among nine distinct types of tomato leaf diseases. The proposed Dense-

Net-PSO achieves up to 7.67% improvement in accuracy. 
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1 Introduction 

Tomato stands as a cornerstone of global horticulture, playing a pivotal role in agricul-

tural economies, with Indonesia being no exception. Its widespread cultivation signifi-

cantly shapes and influences the agricultural landscape, contributing significantly to the 

economic fabric of the nation [1]. Agricultural productivity of tomatoes is increasing 

in the agricultural sector along with the high demand for nutrient-rich tomatoes, 

whether in their fresh or processed product [2]. In Indonesia, tomato production has 
shown substantial growth, with an annual average increase of 11.60%, rising from  
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20,000 tons in 1972 to an impressive 1.16 million tons in 2022 [3]. Meanwhile, this 

promising progress poses challenges for farmers and agricultural experts, particularly 

in terms of combatting diseases that affect tomato plants. These diseases represent a 

significant threat, as they can substantially diminish tomato yield and quality, which 

potentially resulting in losses as high as 40% of the total harvest [4]. 

Manual detection of tomato leaf diseases not only consumes significant time, effort, 

and financial resources but also demands specialized expertise and skills [5]. Utilizing 

advanced technology-based solutions offers significant potential for enhancing the 

rapid and precise detection of diseased tomato leaves. One exemplary application of 

the latest technology is the use of drones that equipped with cameras or sensors capable 

of discerning variations in color or texture in diseased tomato leaves with a high level 

of detail, even from altitudes that are hard to access for humans [6]. The image data 

gathered by these drones can be analyzed using algorithms and Artificial Intelligence 

(AI) techniques to classify the types of diseases that attack tomato leaves, so that farm-

ers can obtain relevant information regarding the types of tomato leaf diseases that exist 

and their severity.  

The rapid development of technology based on AI and computer vision has signifi-

cantly improved the detection and classification of objects. Image processing using ma-

chine learning techniques, such as SVM [7], Random Forest [8], KNN [9], and Naive 

Bayes [10], have been applied to classify diseases on tomato leaves, but they tend to 

struggle with large datasets and numerous disease categories due to the challenge of 

identifying critical features [6]. Recently, Deep Learning (DL), a subset of machine 

learning, facilitates robust feature learning and achieves state-of-the-art performance 

on various image classification tasks. One of the most dominant and frequently used 

techniques in tasks such as image classification, pattern, object, face, and motion recog-

nition is Convolutional Neural Networks (CNN) [11]. The utilization of CNN has been 

extensively investigated in the agricultural domain for diverse applications, including 

the identification and categorization of plant pests and disease  [12]–[15], crop yield 

estimation [16], product quality monitoring [17], and others. Several well-known CNN-

based architectures, such as AlexNet [18], GoogLeNet [19], VGGNet [20], Inception 

V3 [21], MobileNet V2 [14], ResNet [22], and DenseNet [23] have been used in several 

studies with high accuracy. Gehlot and Saini (2020) employed the architecture of 

AlexNet, VGG16, GoogleNet, DenseNet-121, and ResNet101 to classify nine distinct 

diseases affecting tomato leaves. The results indicate that DenseNet-121 achieves the 

highest accuracy rate, reaching 99.97% and has a smaller model size compared to other 

architectures [24]. DenseNet-121 has demonstrated remarkable performance while 

maintaining a more efficient use of memory and processing resources compared to 

other architecture. Its primary strength lies in effectively addressing the issue of van-

ishing gradients. This not only alleviates the training challenges associated with deep 

learning models but also facilitates the reuse of features across layers. Additionally, 

DenseNet-121 achieves a reduction in parameter usage when compared to other preva-

lent deep learning architectures [25]. 

The careful selection and configuration of hyperparameters plays a crucial role in 

determining the effectiveness of CNN. If hyperparameters are incorrectly chosen, CNN 

performance may suffer, leading to inaccurate results, as the loss function cannot be 
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appropriately minimized. Generally, hyperparameter selection is done based on trial-

and-error process. The utilization of trial-and-error techniques for hyperparameter tun-

ing may require a significant amount of time and effort to achieve the optimal model. 

Additionally, these processes are influenced by historical experience, pre-existing 

knowledge, and the individual preferences of the network designer, frequently result in 

a locally optimal model, deviating significantly from globally optimal hyperparameter 

configurations [26]. 

Swarm Intelligence (SI) is one of the alternatives in navigating the complexity of 

CNNs to obtain the best hyperparameters. Inspired by natural group behavior, these 

algorithms exhibit the capability to solve complex problems. They are scalable, adapt-

able, and have collective robustness and individual simplicity. Moreover, they can over-

come local optima and can be used for both continuous and discrete optimization prob-

lems. Particle Swarm Optimization (PSO) is a type of SI that has several advantages 

over conventional optimizers in CNNs. Utilizing PSO in conjunction with CNN leads 

to a reduction in the training process's epoch count and its reliance on GPU systems, 

making it more cost-effective and resource-efficient compared to other algorithms [27]. 

Arie et al. propose CNNPSO, a method that combines CNNs with PSO to find the op-

timal architecture for MNIST classification [28]. Junior and Yen introduce a variable-

length PSO algorithm for finding optimal architectures in DNNs, which can be applied 

to various classification tasks [29]. Anam introduces an optimized approach to segment 

leaf spot disease using the K-means algorithm, which is enhanced through PSO [30]. 

Utama focuses on hyperparameter tuning of CNNs for multivariate time-series analysis 

and shows that PSO-CNN produces architectures that exhibit superior performance 

compared to regular CNNs [31]. Wang et.al. introduces cPSO-CNN, a variant of PSO 

that uses a confidence function and vector acceleration coefficients to enhance explo-

ration capability and adapt to the range of CNN hyperparameters [32].  

This article explores the optimal combination of hyperparameters, including the 

number of neurons in fully connected layers, dropout rate, learning rate, activation 

function, and optimizer type of DenseNet121 architecture using Particle Swarm Opti-

mization (PSO). The performance of the DenseNet with the best hyperparameter con-

figuration obtained through PSO is compared with default DenseNet-121 in classifying 

tomato leaf diseases.  

2 Research Methods 

This section outlines the methods utilized in developing the proposed methodology 

for classifying diseases in tomato leaves. The strategy includes optimizing hyperparam-

eters of DenseNet through PSO, aiming to achieve highest classification accuracy. The 

assessment of model performance involves metrics such as accuracy, macro-precision, 

macro-recall, and macro-F1-score. 

 

2.1 DenseNet 

DenseNet forms connections between each layer in a feed-forward manner, where each 

layer obtains feature-maps as inputs from all the layers that precede it. Subsequently, 
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these feature-maps are utilized in all the following layers of the network. DenseNet 

architecture effectively reduces gradient flow distances in backpropagation and miti-

gating vanishing gradient issues. It enhances feature propagation, encourages feature 

reuse, and significantly decreases the parameter count. In this architecture, each layer 

(𝑙𝑡ℎ layer) receives inputs from all prior convolutional blocks and sends its feature-

maps to all the following layers, commencing from 𝐿 −  𝑙 onwards, resulting in 
𝐿(𝐿 + 1)

2
 

connections in 𝐿-layer network. Due to this dense connectivity pattern, the architecture 

is referred to as a Dense Convolutional Neural Network [33]. 

 

2.2 Particle Swarm Optimization (PSO) 

PSO is an iterative optimization technique inspired by the collective movement ob-

served in social animals. PSO operates as a search method based on a population, 

wherein particles collaborate to discover optimal solutions within the search space, with 

each particle representing a potential solution to minimize error or maximize accuracy. 

Two key factors primarily influence the performance of the particle: its position and 

velocity. The velocity of the particle plays a crucial role in optimization, relying on 

both the particle's individual learning and knowledge acquired from neighboring parti-

cles. The position encapsulates the particle's current solution or potential solution to the 

optimization problem [34]. The velocity and position equation are provided below, 
 

𝑣𝑖
𝑡+1 = 𝜔. 𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡 − 𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡) (1)  

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (2)  

where 𝜔 is the inertial coefficient, 𝑐1 and 𝑐2 are acceleration coefficient, 𝑟1 and 𝑟2 are 

random numbers produced in every iteration, falling within the range of [0, 1], 𝑝𝑏𝑒𝑠𝑡,𝑖
𝑡  

denotes the personal or local best position of particle 𝑖 at iteration 𝑡, 𝑔𝑏𝑒𝑠𝑡
𝑡  denotes the 

globally best position within the entire particle swarm. 

 

2.3 Hyperparameter Optimization with PSO 

The optimization of the DenseNet architecture for enhanced accuracy is primarily fo-

cused on five key hyperparameters: the number of neurons in the fully connected layer, 

dropout rate, learning rate, as well as the selection of activation function and optimizer. 

PSO is employed for this optimization task, with each particle in the PSO algorithm 

representing a distinct combination of these hyperparameters within specified con-

straints or search space. The objective of PSO is to systematically choose hyperparam-

eter configurations that maximize accuracy of DenseNet architecture. Initially, a swarm 

or population of random particles is initialized, each corresponding to a hyperparameter 

of DenseNet architecture. These hyperparameters are employed for the training and 

testing of DenseNet model, resulting in the generation of a scalar error value for the 

fitness calculation of each particle. In each iteration of the PSO, three consecutive 

stages are typically executed. Initially, each particle undergoes the evaluation of its fit-

ness function, and then the swarm updates using the best fitness values as both local 

and global bests. Finally, in each iteration, the velocity and position of every particle 

Tomato Leaf Disease Classification with Optimized Hyperparameter             231



are updated. This iterative process continues until the specified termination conditions 

are met. 

 

2.4 Evaluation Metrics 

The quantitative assessment of the DenseNet model's effectiveness in classifying to-

mato leaf diseases encompasses metrics like True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN). TP denotes the number of accurately 

classified positive images, TN signifies the number of correctly classified negative im-

ages, FP denotes the count of inaccurately classified positive images, and FN denotes 

the count of images that should be positive but were misclassified as negative. In mul-

ticlass classification, indices like 𝑇𝑃𝑘, 𝐹𝑃𝑘, and 𝐹𝑁𝑘 are used for each class and there 

is no use of 𝑇𝑁𝑘 as each sample can only be classified as one of the classes. The eval-

uation employs a macro approach, treating each class equally in the average calculation, 

regardless of population differences. This method avoids weighting based on class fre-

quency. Some of the evaluation tools used are: 

Accuracy measures the overall correctness of the model by determining the percent-

age of accurately classified images in relation to the total number of images tested. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑘

∑ 𝑇𝑃𝑘 + ∑ 𝐹𝑃𝑘 + ∑ 𝐹𝑁𝑘
. 

(3)  

Macro-Precision calculates the average precision across all classes with equal 

weighting. Precision is the proportion of instances correctly classified among  

the overall instances predicted as positive for a specific class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑃𝑘
, 

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑔𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑀𝐴𝑃) =
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑘

𝐾
𝑘=1

𝐾
. 

(4)  

Macro-Recall calculates the average recall across all classes with equal weighting.  

Recall evaluates the model's capacity to accurately identify all positive instances within 

a class. 

𝑅𝑒𝑐𝑎𝑙𝑙𝑘 =
𝑇𝑃𝑘

𝑇𝑃𝑘 + 𝐹𝑁𝑘
, 

𝑀𝑎𝑐𝑟𝑜𝐴𝑣𝑔𝑅𝑒𝑐𝑎𝑙𝑙 (𝑀𝐴𝑅) =
∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑘

𝐾
𝑘=1

𝐾
. 

(5)  

Macro-F1-Score calculates the harmonic mean between precision and recall for 

each class, offering a balanced evaluation that takes into account both false positives 

and false negatives. The objective is to achieve a balance between precision and recall. 

 

𝑀𝑎𝑐𝑟𝑜 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑀𝐴𝑃 × 𝑀𝐴𝑅

𝑀𝐴𝑃 + 𝑀𝐴𝑅
. 

(6)  
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3 Experimental and Result 

3.1 Datasets 

In this research, we obtained the dataset from a publicly accessible source on Kaggle 

[35], and it consists of a total of 11,000 images. The dataset exhibits an even distribu-

tion, with each of the ten classes containing 1,100 images. The representative image of 

each class is shown in Fig. 1. All available images are in .jpg and RGB format. The 

provided dataset has been partitioned into training and testing data, maintaining a ratio 

of 90:10. 

 

 

Fig. 1. Representative images of tomato leaf diseases for each class 

3.2 Data Preprocessing 

The original dataset had images sized at 256 ×  256 pixels. To align with requirements 

of DenseNet-121 architecture, which mandates a 224 ×  224 pixel input size, all da-

taset images were resized accordingly. Data augmentation methods were implemented 

to enrich the diversity of the dataset, ensuring better model generalization and robust-

ness. These augmentations included random rotation, shear, shift, flip and zoom with 

detail in Tabel 1. 
 

Table 1. Data augmentation technique 

Technique Value 

Rescale 1./255 

Rotation 200  

Shear range 200  

Vertical shift 20%  

Horizontal shift 20%  

Zoom 20%  

Horizontal flip True 

Vertical flip True 

Fill mode Nearest 
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3.3 Data Processing 

At this phase, the dataset is partitioned into training and validation data. Although the 

initial dataset was initially segregated into training and validation data with a predefined 

ratio of 90:10, for this study, the division will be adjusted to an 80:20 ratio. The PSO 

algorithm implemented with the parameters listed in Table 2 to search for the optimal 

configuration of DenseNet hyperparameters within the specified search space bounda-

ries outlined in Table 3.  
Table 2. Parameter of PSO. 

Parameter  Value 

𝑐1, 𝑐2  1.494  

𝜔  0.792  

Number of particles 10  

Maximum iteration 20  

Number of iterations for convergency criteria 10  

Number of experiments 15  

 

Table 3. The search space boundaries for DenseNet hyperparameters using PSO. 

Hyperparameter Search Space 

Number of neurons in the fully connected layer 128, 256, 512, 1024  

Learning rate 0.1, 0.01, 0.001, 0.0001  

Dropout rate 10%, 20%, 30%, 40%, 50%  

Activation function ReLU, Tanh, Sigmoid 

Optimizer SGD, ADAM 

 

3.4 Evaluation 

The optimized hyperparameters obtained through the PSO technique are outlined in the 

presented Table 4. This table encapsulates the refined configuration achieved through 

the iterative PSO process, showcasing the values of key hyperparameters, such as the 

number of neurons in the fully connected layer, dropout rate, learning rate, activation 

function, and optimizer type. These optimized hyperparameters are instrumental in en-

hancing the performance of the DenseNet ultimately influencing the accuracy and effi-

ciency of image classification, particularly in the context of detecting tomato leaf dis-

eases.  

 
Table 4. Optimized DenseNet hyperparameter based on PSO. 

Hyperparameter Value 

Number of neurons in the fully connected layer 256  

Learning rate 0.0001  

Dropout rate 30%  

Activation function Tanh 

Optimizer ADAM 
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As shown in Table 5, the accuracy of DenseNet-PSO shows an improvement of 

7.67% compared to the conventional DenseNet-121 with an accuracy of 93.73%, 

macro-precision of 93.19%, macro-recall of 92.87%, and macro-F1-score of 92.72%. 

In execution time, DenseNet121-PSO consume longer time than conventional Dense-

Net121, but this could have happened due to hardware limitations and the additional 

layer in the fully connected layer introduced during the optimization process. Never-

theless, it is crucial to highlight that, in the context of memory usage, DenseNet121-

PSO necessitates a smaller amount of memory. This indicates that, despite the longer 

execution time, the PSO-optimized model is more memory-efficient, potentially offer-

ing advantages in scenarios where memory resources are a critical consideration. 

 
Table 5. Comparation of the proposed model with conventional DenseNet121 

 
DenseNet121 DenseNet121-PSO 

Avg Std Avg Std 

Accuracy 0.86058 0.02255 0.93732 0.02845 

Macro-precision 0.85932 0.02532 0.93198 0.02813 

Macro-recall 0.85521 0.02310 0.92879 0.02774 

Macro-F1-score 0.85685 0.0216 0.92725 0.02832 

Time computation 

(second) 
954 33 1288.546 41.56 

Memory (MB) 18002.17 1782.73 11646.8 1591.06 

 
Table 6. DenseNet with optimized hyperparameters classification result for each disease class  

Class Precision Recall F1-score 

Tomato Bacterial Spot 0.93 0.88 0.90 

Tomato Early Blight 0.96 0.78 0.86 

Tomato Healthy 0.85 0.94 0.89 

Tomato Late Blight 0.97 0.91 0.94 

Tomato Leaf Mold 0.89 0.95 0.91 

Tomato Septoria Leaf Spot 0.83 0.92 0.88 

Tomato Target Spot 0.86 0.83 0.84 

Tomato Two Spotted Spider Mite 0.99 0.96 0.97 

Tomato Yellow Leaf Curl Virus 0.94 0.99 0.97 

Tomato Mosaic virus 0.89 0.98 0.93 
    

accuracy   
0.94 

macro avg 0.93 0.93 0.93 

weighted avg 0.93 0.93 0.93 

 

In this research, there are nine categories of tomato leaves affected by diseases and 

one category of tomato leaves in a healthy state. The results of assessing the multiclass 

classification of diseases affecting tomato leaves through DenseNet-PSO are displayed 

in Table 6. In detail, evaluation metrics are provided for ten different classes in tomato 

leaves. For example, for the class "Tomato Early Blight" with a precision of 0.96, recall 

of 0.78, and an F1-score of 0.86 are obtained. High precision indicates that the model 
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has a good level of accuracy in classifying samples as "Tomato Early Blight". This is 

beneficial in avoiding errors in classifying false negatives as "Tomato Early Blight". 

The lower recall value indicates that the model fails to correctly identify some samples 

that are actually "Tomato Early Blight". This could be due to variations in visual char-

acteristics of this disease, making it more challenging for the model to accurately rec-

ognize it. Similar interpretations can be made for each class of disease in the table. 

Furthermore, there is an overall accuracy metric indicating the percentage of correct 

predictions out of all samples. In this case, an accuracy rate of 0.94 is obtained, meaning 

that the model correctly classifies approximately 94% of all samples. 

4 Conclusion 

We proposed a technique for optimizing DenseNet hyperparameters using the PSO al-

gorithm for the classifying nine different kinds of diseases affecting tomato leaves. The 

outcomes indicated an enhancement in the accuracy rate with the proposed DenseNet-

PSO, showing an improvement up to 7.67% compared to the conventional DenseNet-

121. These outstanding metrics, with an accuracy of 93.73%, macro-precision of 

93.19%, macro-recall of 92.87%, and macro-F1-score of 92.72%, validate the potential 

of our approach. This demonstrates the efficacy of the proposed model in processing 

and extracting features from tomato leaf data with the aim of classification. Thus, the 

model holds significant potential in providing superior solutions for farmers in identi-

fying and classifying tomato leaf diseases. Consequently, farmers can enhance crop 

quality, reduce losses due to plant diseases, and adopt a more sustainable agricultural 

approach. 
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